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In a typical instance of a network design problem, we are given a directed or undirected graph G = (V,E),
non-negative edge-costs ce for all e∈E, and our goal is to find a minimum-cost subgraph H of G that satisfies
some design criteria. For example, we may wish to find a minimum-cost set of edges that induces a connected
graph (this is the minimum-cost spanning tree problem), or we might want to find a minimum-cost set of arcs
in a directed graph such that every vertex can reach every other vertex (this is the minimum-cost strongly
connected subgraph problem). This abstract model for network design problems has a large number of
practical applications; the design process of telecommunication and traffic networks, and VLSI chip design
are just two examples.

Many practically relevant instances of network design problems are NP-hard, and thus likely intractable.
This survey focuses on approximation algorithms as one possible way of circumventing this impasse. Ap-
proximation algorithms are efficient (i.e., they run in polynomial-time), and they compute solutions to a given
instance of an optimization problem whose objective values are close to those of the respective optimum so-
lutions. More concretely, most of the problems discussed in this survey are minimization problems. We then
say that an algorithm is an α-approximation for a given problem if the ratio of the cost of an approximate
solution computed by the algorithm to that of an optimum solution is at most α over all instances. In the
following we will also sometimes refer to α as the performance guarantee of the respective approximation
algorithm.

The last 30 years have seen a tremendous amount of research on approximation algorithms for network
design problems. And over this period, several technical themes have emerged, and have been explored and
exploited to give algorithms and analyze their performance. Our aim in this survey is to provide an overview
over these techniques. Each of the following sections focuses on one technique and has two main parts: first,
we present an introductory application to the well-known classical minimum-spanning tree problem. The
second part of each section demonstrates more sophisticated recent example applications of the respective
technique. Throughout we assume that the reader is familiar with fundamental concepts of graph theory,
combinatorial optimization, and approximation algorithms. While we may recap certain key definitions,
we rely on the reader to be familiar with others. We refer to the excellent text books [45, 160, 163] for
background reading.

The minimum spanning tree problem has been studied for at least a century, and it is clearly one of the
most prominent network design problems. The input to an instance of this problem consists of an undi-
rected graph G = (V,E) each of whose edges e ∈ E is endowed by an arbitrary cost ce, and the goal is to
compute a spanning tree of smallest cost. The earliest known algorithm for this problem was developed by
Boru̇vka [21], and since then a vast number of techniques have been developed and subsequently used in
order to devise increasingly sophisticated algorithms.
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1 Greedy Algorithms

The first known algorithms for the minimum spanning tree problem use a tree growing approach (see [48, 95,
112, 134]); we describe Kruskal’s algorithm: the algorithm starts with the empty spanning forest F = (V, /0)
and in each step adds a cheapest edge uv ∈ E whose endpoints lie in different connected components of F .
The algorithm terminates as soon as F is a spanning tree.

Kruskal’s algorithm is a good example for a greedy algorithm, as it constructs the final set of edges
iteratively, starting from the empty set, and each of its edge-addition steps is independent of future iterations.
Acting in a locally optimal way in each step is maybe the most characteristic feature of a greedy algorithm.

Theorem 1. For any connected graph G with arbitrary edge costs c, Kruskal’s algorithm finds a minimum-
cost spanning tree.

A direct combinatorial proof of this theorem is based on idea by Jarnı́k [95] and shows that each inter-
mediate forest is contained in a some minimum-cost spanning tree of G. We omit details and refer the reader
to [151].

1.1 Matroids and greedy algorithms

A slight generalization of Kruskal’s algorithm turns out to be optimal for a much more general class of
problems.

Definition 2. Let E be a ground-set of elements and consider a set F ⊆ 2E of subsets of E. (E,F ) is called
an independence system if (M1) /0 ∈F , and (M2) if X ∈F and Y ⊆ X, then Y ∈F as well.

The elements of F are called independent and the elements in 2E \F are dependent. For any set S of
elements, an inclusion-wise maximal subset T of S is called a basis of S. For brevity, we say that T is a basis,
if it is a basis of E.

For example, consider a connected undirected graph G = (V,E) and let S⊆ E be in F iff S has no cycles.
It is then not hard to see that (E,F ) is an independence system whose bases are the spanning trees of G.

Definition 3. Given an independence system (E,F ) and a subset S ⊆ E. The rank r(S) is defined as the
cardinality of the largest basis of S, and the lower rank ρ(S) is the cardinality of the smallest basis of S. The
rank-quotient q(E,F ) then defined as

q(E,F ) = min
S⊆E

ρ(S)
r(S)

.

Given an independence system (E,F ) and a non-negative weight we for each of the elements e ∈ E, we
now consider the problem of finding a basis of E of maximum total weight. Consider the following greedy
algorithm.

Best-In-Greedy Algorithm:
1: Input: independence system (E,F ), weights we ≥ 0 for all e ∈ E
2: Sort E = {e1, . . . ,em} such that we1 ≥ ·· · ≥ wem

3: F = /0
4: for 1≤ i≤ m do
5: if F ∪{ei} ∈F then
6: Add ei to F
7: end if
8: end for
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9: Return F

The following result is due to Jenkyns [96], and Korte and Hausmann [105]. We omit its proof and refer
the reader to [108].

Theorem 4. Given an independence system (E,F ), the Best-In-Greedy algorithm finds a set F such that
w(F)≥ q(E,F ) ·w(F∗), where F∗ is a basis of maximum total weight.

Consider the spanning tree example from before, and let S ⊆ E be a subset of the edges. Clearly, T ⊆ S
is a basis of S iff it is an inclusion-wise maximal forest in the graph G[S] induced by the edges in S. Any
such forest has n− κ(S) edges, where κ(S) is the number of connected components of G[S]. Hence, the
independence system for acyclic subgraphs has rank quotient equal to 1.

Definition 5. An independence system (E,F ) with q(E,F ) = 1 is called a matroid.

The specific matroid whose independent sets correspond to acyclic sub-graphs of G is called the graphic
or forest matroid. It follows that the Best-In-Greedy algorithm is an exact algorithm for finding a spanning
tree of maximum weight in a given graph G. Given an instance of the minimum-cost spanning tree problem,
we define the weight we of each edge e ∈ E as cmax− ce where cmax is the maximum cost among all edges.
Observe now that any maximum-weight spanning tree for these weights is, at the same time, a minimum-cost
spanning tree under the original costs, and vice versa. Moreover, all weights are non-negative, and we can
therefore use the Best-In-Greedy method to compute a minimum-cost spanning tree. In fact, it is not hard to
see that the Best-In-Greedy method is equivalent to Kruskal’s algorithm in this case.

We remark that Korte, Lovász, and Schrader [106] showed that the class of greedoids which contains
that of all matroids admits optimal greedy algorithms if a certain strong exchange property is satisfied.

It is easily checked that the independence system given by the intersection of k matroids has q(E,F )≤ k,
and hence the greedy algorithm is a k-approximation for the max-weight independent set in the intersection
of k matroids; this generalizes the observation that the greedy algorithm is a 2-approximation for the max-
weight matching in a graph. Also, Theorem 4 can be generalized to show that given any independence
system (E,F ) and a monotone submodular function f : 2E→R≥0, the greedy algorithm is a (q(E,F )+1)-
approximation for the problem of maximizing f (S) over sets S ∈F [129, 96, 24]; recently other algorithms
have been used to give a e

e−1 -approximation for the case of q(E,F ) = 1 [161]. These algorithms for sub-
modular maximization have many applications to approximation algorithms, see, e.g. [24] and the references
therein.

2 Primal-Dual Approaches

The original primal-dual method was introduced by Dantzig, Ford and Fulkerson [47] as an alternate method
for solving linear programs. Its main feature, the reduction of weighted instances of an optimization problem
to unweighted ones, is at the heart of many classical algorithms in combinatorial optimization (e.g., [48, 50,
60]).

Later work on the vertex-cover problem due to Bar-Yehuda and Even [14] showed that primal-dual tech-
niques can also be employed to obtain good approximation algorithms for NP-hard optimization problems.
In [75, 76], Goemans and Williamson provided a rigorous description of a primal-dual framework for the
design of approximation algorithms. In the course of the last 20 years, this method has evolved to one of
the most powerful techniques in the design optimization problems for network design problems. Central to
this approach is the idea that for a minimization problem (say), given a LP relaxation of the problem (the
“primal”) and its LP dual, the cost of any feasible dual solution is no more than the cost of the optimal primal
solution—hence, if we can construct an integral primal solution and a dual solution such that the cost of this
primal is no more than α times the cost of the dual solution, we have an α-approximate integral solution.
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2.1 A primal-dual interpretation of Kruskal’s algorithm

We demonstrate the main features of primal-dual algorithms by reinterpreting Kruskal’s algorithm. For this,
we first exhibit a linear programming formulation for the minimum-cost spanning tree problem. The LP has
a variable xe for each edge e ∈ E, and its feasible 0,1-valued solutions correspond to incidence vectors of
spanning trees. Let Π denote the set of all partitions of the vertex set V , and let the rank r(π) of π ∈ Π be
the number of parts of π . We use Eπ to denote the set of edges whose ends lie in different parts of π and also
say that an edge e crosses partition π if e ∈ Eπ . The following formulation is due to Fulkerson [64].

min ∑
e∈E

cexe (P+
SP)

s.t. ∑
e∈Eπ

xe ≥ r(π)−1 ∀π ∈Π,

x≥ 0.

The validity of the above formulation is not difficult to see: for a spanning tree T and a partition π of V ,
T must have at least r(π)− 1 edges in Eπ . Hence, the optimum value of the above LP is at most the cost
of an MST. In fact, Fulkerson [64] states the following theorem whose first explicit proof was given by
Chopra [41].

Theorem 6. The feasible region of (P+
SP) is the dominant of the convex hull of incidence vectors of spanning

trees of G.

The standard linear programming dual of (P+
SP) has a variable yπ for each partition π ∈Π and a constraint

for each edge e ∈ E.

max ∑
π∈Π

(r(π)−1) · yπ (D+
SP)

s.t. ∑
π:e∈Eπ

yπ ≤ ce ∀e ∈ E, (1)

y≥ 0.

Constraint (1) for edge e restricts the total dual value of partitions that e crosses by the cost ce of the edge.
Kruskal’s algorithm can now be viewed as a continuous process over time: we start with an empty tree at
time τ = 0 and add edges as time progresses. The algorithm terminates at time τ∗ with a spanning tree of the
input graph G. At any time 0≤ τ ≤ τ∗ we keep a pair (xτ ,yτ), where xτ is the incidence vector of a spanning
forest in G and yτ is a feasible dual solution for (D+

SP). Initially, we let xe,0 = 0 for all e ∈ E and yπ,0 = 0 for
all π ∈Π.

Let Fτ denote the forest corresponding to partial solution xτ and Eτ denote its edges, i.e., Eτ = {e ∈ E :
xe,τ = 1}. We use πτ to denote the partition induced by the connected components of Fτ . At time τ , the
algorithm increases yπτ

until constraint (1) for some edge e ∈ Eπτ
is satisfied with equality; we say that edge

e becomes tight. Suppose that this happens at time τ ′ ≥ τ . We then include e into our solution by setting
xe,τ ′ = 1 and update the dual by letting

yπτ ,τ ′ = τ
′− τ.

The above view of Kruskal’s algorithm first appeared in [41]. Chopra showed that the final primal and dual
solutions have the same objective value (and are, by LP duality, optimal). We remark that a similar interpre-
tation for Prim’s algorithm appears in Lawler’s book [118]. We sketch Chopra’s proof for completeness.
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Proof of Theorem 1. All edges e ∈ Eτ∗ are tight and therefore ce = ∑π:e∈Eπ
yπ,τ∗ . We can use this to express

the cost of the final tree as follows:

c(Fτ∗) = ∑
e∈Eτ∗

∑
π:e∈Eπ

yπ,τ∗ = ∑
π∈Π

|Eτ∗ ∩Eπ | · yπ,τ∗ .

By construction the set Eτ∗ ∩Eπ has cardinality exactly r(π)−1 for all π ∈Π with yπ,τ∗ > 0. We obtain that

∑
e∈E

cexe,τ∗ = ∑
π∈Π

(r(π)−1) · yπ,τ∗

whose right-hand side is the objective value of the dual solution yτ∗ . The theorem follows from weak duality.

2.2 Modeling network design problems: f -connectivity

In an f -connectivity problem we are given an undirected graph G = (V,E), non-negative costs ce for all
e ∈ E, and a cut-requirement function f : 2V → {0,1}. Our goal is to find a minimum-cost subgraph H of
G such that H has at least f (S) edges crossing each set S ⊆ V . We will assume f (V ) = 0 throughout this
section. The following is a natural LP formulation of the problem:

min ∑
e∈E

cexe (IP f )

s.t. ∑
e∈δ (S)

xe ≥ f (S) ∀S⊆V

xe integer ∀e ∈ E

Replacing the integrality requirement by non-negativity constraints yields the canonical LP relaxation (P f ).
Its LP dual has a variable yS for every set S⊆V .

max ∑
S⊆V

f (S) · yS (D f )

s.t. ∑
S:e∈δ (S)

yS ≤ ce ∀e ∈ E (2)

y≥ 0

Note the minimum spanning tree problem can be cast in this framework by using the function f (S) = 1 for
all S 6∈ { /0,V}, f ( /0) = f (V ) = 0.

2.3 Advanced Primal-Dual Applications: Steiner trees and forests

The Steiner tree problem is a well-studied classical problem that fits into the framework of Section 2.2. The
input in an instance of this problem specifies a set of terminals R and the goal is to find a minimum-cost tree
in the input graph that connects all terminals. In the following we say that two vertex sets S and T intersect
if all of S∩T , S\T , and T \S are non-empty. The Steiner tree problem is then modeled by letting f (S) = 1
if S intersects R, and f (S) = 0 otherwise; such a set is sometimes called a Steiner cut. The resulting integer
program (IP f ) is commonly known as the undirected cut formulation for Steiner tree [9].

The Steiner tree problem is a fundamental problem in combinatorial optimization with a rich history and
many practical applications; we refer the reader to the two excellent surveys in [92, 135] for a much more
detailed account. The Steiner tree problem is well-known to be NP-hard in general (see [98]), and remains
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hard even in Euclidean spaces [68] and in other restricted topologies. Moreover, Chlebı́k and Chlebı́ková
showed in [40] that it is NP-hard even to approximate the minimum-cost Steiner tree within any ratio better
than 96

95 .
Until very recently, the best known algorithm for the Steiner tree problem was due to Robins and Ze-

likovsky [149]. Robins and Zelikovsky’s algorithm follows a greedy strategy, and achieves a performance
ratio of 1+ ln3

2 ≈ 1.55; the algorithm is the final refinement of a long list of greedy algorithms for the problem
[18, 91, 99, 168]. Roughly speaking, the main insight in these algorithms is to view the Steiner tree problem
as a minimum-cost spanning tree problem in a suitably defined hypergraph. This hypergraphic view of the
Steiner tree problem inspired a number of linear programming relaxations [101, 133, 162]. Using an ele-
gant randomized rounding approach applied to the directed relaxation of [133], Byrka et al. [22] recently
obtained the currently best ln4 < 1.39-approximation for the problem.

We start this section by presenting a primal-dual approximation algorithm due to Agrawal, Klein and
Ravi [4]. This algorithm (henceforth denoted by AKR) is a primal-dual algorithm and as such it constructs a
solution to (P f ) and (D f ) simultaneously. Much like the primal-dual algorithm for minimum-cost spanning
trees presented earlier, it does this in an incremental fashion.

We can think of an execution of AKR as a process over time. Let xτ and yτ , respectively, be the primal
incidence vector and feasible dual solution at time τ . We use Fτ to denote the forest corresponding to xτ .
Initially, x0

e = 0 for all e ∈ E and y0
S = 0 for all S ⊆V . Assume that the forest Fτ at time τ is infeasible. We

use F̄τ to denote the subgraph of G that is induced by the tight edges for dual yτ . In the following, we will
also use the term moat to refer to a connected component S of F̄τ .

Algorithm AKR raises the dual variables of all moats uniformly as long as Fτ is infeasible. Let S1 and
S2 be two distinct connected components of the forest maintained by the algorithm. We say that these
components collide at time τ if τ is the first time during the execution of the algorithm where S1 and S2 are
contained in a common moat.

If this happens, we add the edges on a shortest S1,S2-path to Fτ and continue. The algorithm stops at the
earliest time τ∗ where Fτ∗ is a feasible Steiner tree. Suppose

P = {P1, . . . ,Pq}

is the set of paths that the algorithm adds in the process of constructing Fτ∗ and let τi be the time where Pi

is added for all 1 ≤ i ≤ q (we order the paths such that τ1 ≤ . . . ≤ τq). Also let S1
i and S2

i be the colliding
components that caused AKR to add path Pi. We obtain the following lemma:

Lemma 7. For all times 0≤ τ ≤ τ∗ and for all moats S ∈ F̄τ we have

∑
e∈E(S)

cexτ
e ≤ 2 · ∑

S′⊆S
yτ

S−2τ.

Proof. In the following let τ0 = 0 be the start time of the algorithm. We prove the claim using induction over
0≤ i≤ q. The claim is trivially true for time i = 0. Now assume that the claim holds for i≥ 0. We state the
following technical fact and refer the reader to [4] for a proof:

Claim 8. The cost of path Pi is at most 2τi.

By induction, we have that
∑

e∈E(S)
cexτi

e ≤ 2 · ∑
S′⊆S

yτi
S −2τi. (3)

for all moats S of F̄τi . Consider such a moat S; the algorithm grows the dual variable for this moat at all times
τ ∈ [τi,τi+1). During this interval, no edges are added to the partial tree and the left-hand side of (3) remains
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unchanged. Similarly, it is not hard to see that the right hand side of the equation remains unchanged as well
and we have

∑
e∈E(S j

i+1)

cexτi
e ≤ 2 · ∑

S′⊆S j
i+1

yτi+1
S −2τi+1. (4)

for j ∈ {1,2} (where we abuse notation slightly and let E(S j
i+1) denote the set of edges with both ends in

S j
i+1 of the partial forest before path Pi+1 has been added). Let S be the new moat created at time τi+1 by

merging moats S1
i+1 and S2

i+1. We have

∑
e∈E(S)

cexτi+1
e =

2

∑
j=1

∑
e∈E(S j

i+1)

cexτi+1
e

≤
2

∑
j=1

∑
S′⊆S j

i+1

yτi+1
S + c(Pi+1)−4τi+1

≤
2

∑
j=1

∑
S′⊆S j

i+1

yτi+1
S −2τi+1

where the last inequality uses Claim 8. The lemma follows.

This immediately implies the following corollary.

Corollary 9 ([4]). Algorithm AKR computes a (2−2/|R|)-approximate Steiner tree.

Proof. As AKR grows at most one moat per terminal at all times 0≤ τ ≤ τ∗, we have

∑
S⊆V

yτ∗
S ≤ |R| · τ∗ (5)

and hence we must have

∑
e

cexτ∗
e = ∑

P∈P
c(P)

≤ 2 ∑
S⊆V

yτ∗
S −2τ

∗

≤ (2−2/|R|) · ∑
S⊆V

yτ∗
S

where the first inequality follows from Lemma 7 and the second inequality uses (5). The corollary follows
from weak duality as yτ∗ is feasible for (D f ).

The above result is easily seen to be tight as (P f ) has an integrality gap of nearly 2 even for the minimum
spanning tree setting (where R = V ): consider a circle with n terminals where each edge has a cost of 1. The
cost of an optimum solution to (P+

SP) is n−1 while the optimum solution x∗ to the LP relaxation (P f ) assigns
a value of 1/2 to each edge and thus has cost n/2.

We note that there is a large body of work on alternate relaxations for the Steiner tree problem (e.g., see
[73, 101, 132, 133, 162]) that, until very recently, were not known to be stronger than the undirected cut
relaxation. Chakrabarty et al. [26] show that the hypergraphic relaxations of [101, 133, 162] are equivalent,
and Byrka et al. [22] prove that their integrality gap in general graphs is at most 1.55.

The downside of using hypergraphic LPs is their size: they have an exponential number of constraints,
and no compact alternative formulations are known. On the other hand, the bidirected cut relaxation [51,
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166] is a compact relaxation for the Steiner tree problem, and it is widely conjectured to have a gap smaller
than 2. The worst-known integrality gap example shows a factor of 8/7 and is due to Goemans (see [2]). It
is well known that the bidirected cut relaxation is weaker than the hypergraphic relaxations in general. How-
ever, in quasi-bipartite instances (where no two Steiner nodes are connected by an edge), these relaxations
are equivalent [26], and their gap is bounded by 1.28 [22].

2.4 More Applications of the Primal-Dual Method

Goemans and Williamson [74] showed that the above primal-dual algorithm can be adapted to yield a 2-
approximation for (IP f ) if f is a 0,1-downwards monotone function, where a cut-requirement function f is
downwards monotone if

f (B)≤ f (A)

for any pair of sets A,B⊆V with A⊆ B.
A more advanced application of the primal-dual method is for the survivable network design problem

(SNDP). In this problem, we are given non-negative integers ri j for each pair of nodes i, j ∈V , and the goal
is to find a minimum-cost subgraph H of G that contains ri j edge-disjoint paths for each pair i, j ∈ V . The
central motivation for SNDP lies in fault tolerance issues in the design of communication networks; nodes
i and j stay connected in H even if ri j − 1 edges are removed (see also [79]). SNDP clearly generalizes
the Steiner tree and forest problems discussed in the previous section. It also falls into the f -connectivity
framework by letting

f (S) = max
i∈S, j 6∈S

ri j (6)

for all S⊆V in integer program (IP f ).
The SNDP cut-requirement function given in (6) is easily seen to be proper, where a function f is proper

if it is symmetric (i.e., if f (A) = f (V \A) for all A⊆V ) and if it satisfies “maximality”:

f (A∪B)≤max{ f (A), f (B)}

for all pairs of disjoint sets A,B⊆V . For this class of cut-requirement functions, Goemans and Williamson [75]
showed that the primal-dual method from the previous section can be used to obtain a 2-approximation al-
gorithm.

Klein and Ravi [100] were the first to consider non-0,1 proper functions, and gave a primal-dual 3-
approximation algorithm for (IP f ) where f is a proper function with range {0,2}. Subsequently, Williamson,
Goemans, Mihail and Vazirani [165] presented a primal-dual 2k-approximation algorithm for general proper
functions, where k = maxS f (S) is the maximum cut requirement. Goemans, Goldberg, Plotkin, Shmoys,
Tardos and Williamson [72] presented a further improvement by giving a primal-dual 2H(k)-approximation
algorithm for the problem, where H(k) is the kth harmonic number 1+1/2+ . . .+1/k.

The authors of [72] also showed that the same approximation guarantee can be obtained for the larger
class of weakly or skew supermodular cut-requirement functions. A function f : 2V → N is skew supermod-
ular if f ( /0) = f (V ) = 0, and

f (A)+ f (B) ≤ f (A\B)+ f (B\A), or

f (A)+ f (B) ≤ f (A∩B)+ f (A∪B)

for all A,B ⊆ V . In the next section we will see a direct LP rounding algorithm due to Jain that achieves a
performance ratio of 2 for this problem.

Finally, we refer the reader to the surveys in [76, 110, 164] for further applications, and pointers.
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3 Iterative Rounding: A Polyhedral Approach

In this section, we discuss the technique of iterative rounding, a powerful and elegant scheme which was
first introduced by Jain in his work on the generalized Steiner network problem in [93]. Extension of this
technique (iterative relaxation [116]) has more recently lead to breakthrough results in the area of constrained
network design, where a number of linear constraints are added to a classical network design problem. Such
constraints arise naturally in a wide variety of practical applications, and model limitations in processing
power, bandwidth or budget. The design of powerful techniques to deal with these problems is therefore an
important goal.

In this section we first show how iterative rounding can be used to obtain an alternative proof of Theorem
6; subsequently, we discuss Jain’s work on the survivable network design problem. We conclude this section
by showing an application of the technique for a degree-bounded network design problem.

3.1 Spanning trees via iterative rounding

As the key step in the proof of Theorem 6, Chopra showed that the vertices of the feasible region of (P+
SP)

are identical to those of the following formulation:

min ∑
e∈E

cexe (PSP)

s.t. x(E) = n−1 (7)

x(E(S))≤ |S|−1 ∀S⊂V (8)

x≥ 0.

where n = |V | is the number of vertices in G, E(S) denotes the set of edges in E for which both endpoints
lie in S, and where we use x(A) as a short-hand for ∑e∈A xe for A ⊆ E. Edmonds [52] showed that (PSP) is
a formulation of the convex hull of incidence vector of spanning trees of G. We now provide an alternate
proof that is based on iterative rounding; our exposition follows that of Singh and Lau [152].

Our strategy will be as follows: first solve LP (PSP) and obtain an optimal basic feasible solution x∗. We
shall show that there is at least one edge e∈ E for which x∗e = 1. We add this edge to a partial spanning forest
and subsequently obtain a new graph by contracting it. We continue recursively by computing an MST in
the resulting contracted graph, and obtain a spanning tree for the original graph by adding in e again. We
will be able to show that the cost of the final tree is at most the objective value of x∗ and hence it is optimal.

We begin by stating a fundamental structural lemma but defer its proof to a later point in this section.

Lemma 10. Let G be a connected graph with at least two vertices and let x∗ be a basic solution of (PSP)
with support E∗ = {e ∈ E : x∗e > 0}. There exists a vertex v that is incident to exactly one edge in E∗.

Let uv ∈ E∗ be the single support edge incident to vertex v described in Lemma 10. It is easy to see that
constraints (7) and (8) imply that x∗uv = 1. We obtain the following iterative algorithm:

Iterative MST Algorithm:
1: Input: connected graph G = (V,E).
2: F = /0
3: while V (G) 6= /0 and |V |> 1 do
4: Compute optimum basic solution x∗ of (PSP), and remove all edges with x∗e = 0 from G.
5: Find vertex u as in Lemma 10 and let uv be the single support edge incident to it.
6: Add uv to F .
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7: Delete u and all incident edges from G.
8: end while
9: Return F

Theorem 11. Given a connected graph G = (V,E) and edge costs ce for all e ∈ E, the above algorithm
correctly computes an MST of G.

Proof. We will prove a slightly stronger statement by showing that the tree computed by the algorithm has
cost at most the optimal value of (PSP). We will use induction on the number of vertices of G.

In the base case where G has at most one vertex, the above algorithm clearly does the right thing by
returning the empty set. Now assume that G has at least two vertices. As G is connected, Lemma 10
guarantees that step 5 of the above algorithm will identify a vertex u that is incident to a single support edge
uv with x∗uv = 1.

As described in the algorithm, we obtain G′ = (V ′,E ′) from G by deleting vertex u and its incident edges.
Let x′ be the projection of x∗ onto the edge set of G′; i.e., x′ ∈RE ′ and x′e = x∗e for all e∈ E ′. Observe that x′ is
feasible for (PSP) for graph G′. Let F ′ be the tree computed by the algorithm from iteration 2 on. Inductively,
it follows that F ′ is a minimum-cost spanning tree of G′ and, as the projection of x∗ onto E ′ is feasible for
(PSP), we also must have

c(F ′)≤ ∑
e∈E ′

cex∗e .

Finally, F = F ′ ∪ uv is a spanning tree of G and its cost is equal to cuv + c(F ′) ≤ ∑e∈E cex∗e where the
inequality uses the fact that x∗uv = 1.

We remark (see [152]) that the projection x′ of x∗ onto the edge set of G′ is a basic feasible solution
for (PSP) for graph G′. This means that the algorithm does not need to resolve LP (PSP) in every iteration
of the while loop, and may instead just work with a suitable projection of the initial basic feasible solution.
Theorem 11 therefore shows that x∗ is the incidence vector of a spanning tree and it provides an alternate
argument for Edmonds result in [52].

It now remains to give a proof of Lemma 10. Its fundamental techniques are ubiquitous in LP rounding
algorithms for network design problems.

Proof of Lemma 10. Let x∗ be a basic feasible solution for (PSP) and assume that x∗e > 0 for all e ∈ E. This
assumption is w.l.o.g. as we can always delete 0-value edges; x∗ projected onto the space defined by the
remaining edges is an optimal basic feasible solution for (P+

SP) in the resulting graph. Now let

F = {S⊆V : x∗(E(S)) = |S|−1}

be the set of all tight constraints among (7) and (8). We use χA to denote the characteristic vector of a set
A⊆ R: χA has an element χA

e for each edge e ∈ E, where χA
e = 1 if e ∈ A and χA

e = 0 otherwise. As x∗ is a
basic solution, it follows that the characteristic vectors of sets in F span the set

span(F ) = {x ∈ Rm
+ : xe = 0 for all e 6∈ E∗}

where E∗ is the support of x∗. We say that two sets A,B ⊆ V intersect if A \B, B \A, and A∩B are all
non-empty. We obtain the following well-known uncrossing argument (e.g., see [46, 93, 121]):

Claim 12 ([71]). Let S,T be two intersecting sets in F . Then, both S∩ T and S∪ T are sets in F and
χE(S) + χE(T ) = χE(S∩T ) + χE(S∪T ).

10



Proof. Since S∩T 6= /0 it follows that

|S|−1+ |T |−1 = |S∩T |−1+ |S∪T |−1

≥ x∗(E(S∩T ))+ x∗(E(S∪T ))
≥ x∗(E(S))+ x∗(E(T ))
= |S|−1+ |T |−1

and hence all inequalities above hold with equality. Thus, S∩T and S∪T are in F and, furthermore, no
edges uv ∈ E∗ exist with u ∈ S\T and v ∈ T \S. This implies that χE(S) + χE(T ) = χE(S∩T ) + χE(S∪T ).

This innocuous looking lemma has important structural consequences for bases of span(F ). In the
following we call a family of subsets of V laminar if no two of its sets intersect (i.e., for any two sets in a
laminar family, either they are disjoint, or one of them is contained within the other).

Corollary 13 ([93]). Let L be an inclusion-wise maximal laminar family in F , then span(L ) = span(F ).

Proof. Assume that the above statement is false and let L be a maximal laminar family in F whose span is
different from that of F . Then pick a set S ∈F that intersects a minimum number of sets in L . As L is
maximal, there must exist a set T ∈L that intersects S. Claim 12 implies that S∩T and S∪T are also in F
and

χ
E(S) + χ

E(T ) = χ
E(S∩T ) + χ

E(S∪T ).

Therefore, at least one of S∩T and S∪T cannot be in span(L ) either. Now note that every set in L that
intersects S∩T or S∪T must also intersect S and hence both S∩T and S∪T intersect fewer sets of L than
S. This contradicts the choice of S.

Armed with the above corollary we are now ready to finish the proof of Lemma 10. The fact that x∗ is
basic, the assumption that x∗e > 0 for all e∈ E, and Corollary 13 imply that there is a maximal laminar family
L in F such that x∗ is the unique solution of

x(E(S)) = |S|−1 ∀S ∈L .

As F does not contain singleton sets, it follows that L has at most n− 1 sets and this is an upper bound
on the rank of the above linear system. Consequently, E∗ can have at most n−1 non-zeros and this in turn
implies that there must be a vertex in V that is incident to exactly one edge of E∗.

3.2 Advanced iterative rounding: Survivable network design

In this section we return to the survivable network design problem discussed in Section 2.4. In particular,
we will see Jain’s 2-approximation algorithm for (IP f ) for the case where f is skew-supermodular (see [93]).
Jain’s algorithm iteratively rounds optimal solutions to LP (P f ). The main technical lemma whose proof we
defer until later is the following:

Lemma 14. Let x∗ be a basic feasible solution to (P f ) where f is a skew-supermodular function, and assume
that x∗e > 0 for all e ∈ E. Then there is an edge e ∈ E for which x∗e ≥ 1/2.

The algorithm resembles the iterative rounding algorithm presented in Section 3.1. For a subgraph H of
G and a vertex set S, we use degH(S) for the number of edges in H that have exactly one endpoint in S.

Jain’s Algorithm:
1: Input: G = (V,E), cost ce ≥ 0,∀e ∈ E, skew supermodular function f .
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2: H = /0, f ′ = f
3: while ∃S⊆V s.t. f ′(S) > 0 do
4: Compute optimum basic solution x∗ of (P f ′) and remove all edges with x∗e = 0 from G.
5: Find an edge e ∈ E with x∗e ≥ 1/2 and add dx∗ee copies of e to H.
6: Update f ′ by letting f ′(S) = f (S)−degH(S) for all S⊆V .
7: end while
8: Return H

At this point we remark that it is not known whether LP (P f ) can be solved in polynomial time for
arbitrary skew supermodular cut-requirement functions. However, this is possible – via the Ellipsoid method
– for general proper functions (e.g., see Theorem 20.19 of [108] for a proof of this fact). In the following,
we assume that step 4 of Jain’s algorithm can be implemented to run in polynomial time. Modulo this
assumption, Lemma 14 yields the following main theorem of [93]:

Theorem 15. Jain’s algorithm achieves a performance guarantee of 2 for the survivable network design
problem.

Proof. We will prove a stronger result and show that the algorithm returns a subgraph H of cost at most
twice the optimal value of LP (P f ). We use induction on the number of iterations of the algorithm’s main
loop.

The theorem is trivially true if f (S) = 0 for all S⊆V . If f (S) > 0 for at least one S⊆V , then Lemma 14
guarantees that there is at least one edge e ∈ E with x∗e ≥ 1/2. Let f ′ be the residual cut requirement function
obtained by the algorithm, i.e.,

f ′(S) =
{

f (S)−dx∗ee :e ∈ δ (S)
f (S) :otherwise

for all S⊆V . The reader verifies that function f ′ is skew-supermodular if f is. Furthermore, it is not hard to
see that the projection x′ of x∗ onto E ′ = E \{e∗} is feasible for (P f ′) with the above residual cut requirement
function. Inductively, we can therefore conclude that the algorithm finds a subgraph H ′ of G that is feasible
for f ′ and has cost at most 2∑e′∈E ′ cex∗e . We obtain H from H ′ by adding e∗. The resulting subgraph is
feasible for f and its cost is

c(H) = ce∗ + c(H ′)≤ 2 · cex∗e∗ +2 · ∑
e∈E ′

cex∗e ≤ 2 ·∑
e∈E

cex∗e .

We now prove Lemma 14. Our exposition follows a recent argument due to Nagarajan, Ravi and
Singh [127].

Proof of Lemma 14. The strategy pursued in this proof resembles that used in the proof of Lemma 10. Let
x∗ be the positive basic feasible solution of (P f ), and let

F = {S⊆V : x∗(δ (S)) = f (S)}

be the set of tight inequalities for the given basic solution. Using an argument similar to that of Claim 12 and
Corollary 13 together with the skew supermodularity of f , Jain [93] showed that there is a laminar family
L ⊆F such that x∗ is uniquely defined by the system

x(δ (S)) = f (S) ∀S ∈L . (9)

In the following we assume that the rank of the above system is exactly |L |.
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Let us assume, for the sake of contradiction, that 0 < x∗e < 1/2 for all e ∈ E. We will use a counting
argument to arrive at a contradiction. To start, we assign one token to each edge e ∈ E, and we redistribute
these tokens over the sets in L so that every set obtains at least one token, and at least one set obtains strictly
more than a token. This would show that the number of positive variables x∗e is larger than L , and hence
larger than the rank of the system in (9); this is, of course, a contradiction.

The token of edge uv∈ E is reassigned as follows. We give x∗uv tokens each to the inclusion-wise smallest
sets in L that contain u and v. Furthermore, we give 1−2x∗uv tokens to the inclusion-wise smallest set in L
that contains both u and v. Note that, by assumption, 0 < x∗uv < 1/2, and hence all three sets in the above
redistribution receive a positive amount of tokens.

We proceed by showing that each set in L receives at least one token. Consider one such set S, and let
T1, . . . ,Tp be its children in L ; i.e., T1, . . . ,Tp are the inclusion-wise maximal proper subsets of S in L . The
set of edges that contribute tokens to S can be partitioned into sets A,B,C ⊆ E.

[A] Edges e with one endpoint in S\ (T1∪ . . .∪Tp), and the other in V \S contribute x∗e tokens to S.

[B] Edges e with one end in S\ (T1∪ . . .∪Tp), and the other in T1∪ . . .∪Tp contribute 1− x∗e tokens to S.

[C] Edges e with one end in Ti and the other in Tj for some 1≤ i < j ≤ p contribute 1−2x∗e to S.

Thus S receives

x∗(A)+(|B|− x∗(B))+(|C|−2x∗(C)) = |B|+ |C|+ x∗(δ (S))−
p

∑
i=1

x∗(δ (Ti))

tokens in total. Using the tightness of the constraints for sets S,T1, . . . ,Tp in (P f ), we can rewrite the number
of tokens of S as

|B|+ |C|+ f (S)−
p

∑
i=1

f (Ti). (10)

Note that each edge e ∈ A∪B∪C contributes a positive amount of tokens to S, and the expression in (10) is
therefore non-negative. Furthermore, it is 0 only if A = B = C = /0. But in this case, we observe that

χ
δ (S) = χ

δ (T1) + . . .+ χ
δ (Tp),

which contradicts the fact that the system of equalities in (9) has full rank. Thus S obtains a positive amount
of tokens, and since (10) is integral it follows that S receives at least one token.

Finally consider an inclusion-wise maximal set S ∈ L . As the constraint for S in (P f ) is tight, there
must be at least one edge e ∈ δ (S) with x∗e > 0. Observe that L has no set containing both endpoints of e,
and hence there are 1−2x∗e > 0 tokens of edge e that have not yet been redistributed. We conclude that the
number of edges is bigger than |L |, and this is the desired contradiction.

3.3 Advanced iterative rounding: Degree-bounded network design

In this section we study degree-bounded variants of the f-connectivity and survivable network design prob-
lems introduced so far. Adding degree constraints to network design problems is natural and models com-
munication- as well as hardware constraints in physical networks. Initial work on these problems mostly
focused on uniform cost (i.e., unweighted) network design problems. Very recently, several breakthrough
results have been obtained for weighted instances as well using beautiful extensions of the iterative rounding
paradigm discussed above. Once again, we will use the spanning trees as a canonical example to illustrate
the essential ideas.

We begin with the minimum-degree spanning tree problem (MDST). In this problem, we are given a con-
nected unweighted graph G = (V,E), and the goal is to find a spanning tree of smallest maximum degree. We
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first note that this problem, unlike the minimum-spanning tree problem, is NP-hard; an undirected graph has
a Hamiltonian path iff it has a spanning tree with maximum degree at most 2. Fürer and Raghavachari [65]
were the first to consider the problem, and gave an O(log |V |) approximation algorithm for it, as well as
for the related problem of finding an arborescence of smallest maximum out-degree in a directed graph.
Subsequently, Fürer and Raghavachari improved upon their previous result and showed how to compute a
spanning tree that has degree within an additive one of the minimum possible degree [66]. The algorithm in
[66] and its performance guarantees extend to the minimum-degree Steiner tree problem as well. We refer
the reader to [138] for an excellent survey discussing the above and related algorithms.

The minimum-cost degree-bounded spanning tree problem (BMST) is a natural generalization of MDST
to weighted graphs. In this problem, we are given a non-negative integer parameter Bv for each vertex
v ∈V , and the goal is to find a minimum-cost tree T such that degT (v)≤ Bv for all vertices v. Let T ∗ be an
optimum solution for an instance of this problem. Given Fürer and Raghavachari’s algorithm for MDST, it is
natural to ask whether one can find an algorithm that computes a spanning tree T of cost at most c(T ∗), and
degT (v)≤ Bv +1 for all vertices v. After much work on the topic (e.g., see [30, 31, 71, 102, 103, 143, 146]),
this question was recently resolved by Singh and Lau [152] via an elegant adaptation of Jain’s iterative
rounding technique. We give a simplified presentation of their algorithm that is due to Bansal, Khandekar
and Nagarajan [13].

Just like in Jain’s algorithm, Singh and Lau propose a natural linear programming relaxation for BMST,
and their algorithms produces an integral solution via an iterative rounding process. The new ingredient in
their algorithm concerns the treatment of degree constraints. Singh and Lau observed that, whenever the
number of fractional (support) edges incident to a vertex becomes small, then the corresponding degree
constraint can be dropped. The reason is simple: no matter what the algorithm does in subsequent iterations,
in the worst case, it decides to include all support edges; we drop a constraint if these are few. This refinement
of Jain’s iterative rounding technique is commonly referred to as iterative relaxation and it first appeared in
[116].

In a bit more detail, Singh and Lau’s algorithm (SL) maintains a set F of edges that have already been
included, and a set W of remaining degree constraints. Given these two sets, SL repeatedly solves the
following linear programming relaxation, where we use E ′ for the set of remaining (non-dropped) edges in
E \F , and degF(v) denotes the number of edges in F that are incident to v.

min ∑
e∈E ′

cexe (PBMST )

s.t. x(E ′) = n−|F(V )|−1 (11)

x(E(S))≤ |S|− |F(S)|−1 ∀S⊂V (12)

x(δ (v))≤ Bv−degF(v) ∀v ∈W (13)

x≥ 0.

Constraints (11) and (12) are familiar from the spanning tree application in Section 3.1; (13) captures the
new degree constraints. The following lemma states the key structural property needed buy the algorithm.

Lemma 16. Let x∗ be a basic feasible solution for (PBMST ). Then either x∗e ∈ {0,1} for some e ∈ E ′, or there
is a vertex v ∈W with

degE ′(v)≤ Bv−degF(v)+1. (14)

Before we prove Lemma 16, let us describe the algorithm. Given F and W , algorithm SL first solves
(PBMST ); let x∗ be the solution obtained. If there is an edge e with x∗e = 0, then e is simply removed from E ′,
and we iterate. Similarly, if there is an edge e with x∗e = 1, we include e into F , and delete it from E ′. Finally,
if none of the above two cases holds, Lemma 16 implies that there must be a vertex v ∈W with few incident
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support edges; we drop this vertex from W and continue. The proof of the following main theorem of [152]
is similar to that of Theorem 15, and we omit it here.

Theorem 17. Let T ∗ be an optimum solution for the given BMST instance. Algorithm SL computes a span-
ning tree T of cost at most c(T ∗), and degT (v)≤ Bv +1 for all v ∈W.

In the following sketch of the proof Lemma 16 we follow [13].

Proof-Sketch of Lemma 16. Let us assume that 0 < x∗e < 1 for all e ∈ E ′; we are done, otherwise. An un-
crossing argument, similar to that used in the proofs of Claim 12 and Corollary 13 implies that there is a
laminar family L of vertex sets, and a set T ⊆W such that x∗ is the unique solution to the system

x(E ′(S)) = |S|− |F(S)|−1 ∀S ∈L (15)

x(δ (v)) = Bv−|F ∩δ (v)| ∀v ∈W (16)

Furthermore, the characteristic vectors {χE(S)}S∈L and {χδ (v)}v∈T are linear independent, and the size of
the support is |E|= |L |+ |T |. Now define the spare of vertex v ∈W as

spare(v) = degE ′(v)− x∗(δ (v)).

The following is the central technical claim needed for this proof.

Claim 18 ([13]). ∑v∈W spare(v) < 2|W |

Let us first see how this claim implies the existence of a vertex v with small support. The lemma shows
that there is a vertex v ∈W with spare(v) < 2. We obtain

degE ′(v) < 2+ x∗(δ (v))≤ 2+Bv−degF(v),

where the second inequality uses the feasibility of x∗ for (PBMST ). Note that the left- and right-hand sides of
the latter inequality are integral, and hence (14) is satisfied for v.

In order to see Claim 18, observe that each edge in E ′ contributes to the spare of at most two vertices of
W , and hence

∑
v∈W

spare(v)≤ 2 ∑
e∈E ′

(1− x∗e) = 2(|E ′|− x∗(E ′)) = 2(|L |+ |T |− x∗(E ′)),

where we have used the assumption that 0 < x∗e < 1 for all e, and the fact that the system in (15) and (16) is
non-singular. A counting argument shows that |L | ≤ x∗(E ′) (see [13]), and hence

∑
v∈W

spare(v)≤ 2|T | ≤ 2|W |.

Finally, Bansal et al. show that the non-singularity of the system in (15) and (16) implies that the above
inequality holds strictly.

In [13], Bansal et al. applied the above spare argument to the more general minimum crossing spanning
tree problem (MCSP). In this problem, we are given edge subsets E1, . . . ,Ek and integers B1, . . . ,Bk, and the
goal is to find a spanning tree T of smallest cost that has at most Bi edges from Ei for all i. For the case
where each edge e ∈ E is in at most r of the given sets Ei, Bansal et al. presented an algorithm that returns
a tree of at most optimum cost, that has at most Bi + r−1 edges from Ei for all 1≤ i≤ k. An improvement
for the structured special case where the sets E1, . . .Ek are induced by a laminar system of cuts was given in
[12]. Checkuri et al. [37] recently presented a very elegant randomized technique for rounding a fractional
point in a matroid polytope to an integral one. The authors derive concentration bounds on linear functions
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of variables for the elements of the underlying matroid. In the special case of MCSP, this yields a tree of at
most optimum (expected) cost with (1+ ε)Bi +O( 1

ε
logn) edges from set Ei for all i.

Lau et al. [116] were the first to apply iterative rounding ideas to the more general degree-bounded
survivable network design problem (BSNDP). The authors showed how to find a subgraph H satisfying all
connectivity constraints whose cost is at most twice that of an optimum solution. Moreover, the degree of
each vertex v is at most 2Bv +3.

The multiplicative degree-guarantees obtained in [116] were recently improved by Lau and Singh [117]
who presented algorithms for degree-bounded survivable network design problems with additive degree
guarantees. The authors presented an algorithm that computes a 2-approximate solution where the degree of
each vertex is violated by at most 6rmax +3, where rmax is the maximum requirement across any cut. In the
special case of Steiner forests, this can be improved to 3.

While we have focused on undirected problems in this section, we emphasize that similar progress has
been made for the directed counterparts of the problems considered. In [116], Lau et al. consider degree-
bounded problems in directed graphs where the connectivity requirements are given by crossing supermodu-
lar cut requirement functions (see also [62]), and where the in- and out-degree for each vertex v is constrained
to be at most av and bv, respectively. For this case, the authors showed how to compute a feasible solution
of cost at most 3 times the optimum whose in-degree at v is at most 3av +4, and whose out-degree at v is at
most 3bv + 4, for all v ∈ V . Subsequently, Bansal et al. [13] presented several further improvements of the
directed results given in [116]. The authors also demonstrated how their techniques can be used to compute
arborescences whose out-degree at each vertex v is at most Bv +2.

3.4 Other applications of iterative rounding

The survivable network design problem, the way we introduced it in Section 2.4, is concerned with estab-
lishing pre-specified number of edge-disjoint paths between any pair of vertices i and j at a small total cost.
It is natural to ask a similar question in the vertex-connectivity setting: given integer parameters ri j for each
pair of vertices i, j ∈V , find a minimum-cost subgraph H of G such that H has at least ri j internally vertex-
disjoint paths between any pair of vertices i, j ∈ V . (Here, internally vertex-disjoint means the paths only
share the endpoints i and j, and no other vertices.)

Ravi and Williamson [147, 148] describe a primal-dual 3-approximation for this problem when ri j ∈
{0,1,2} for all i, j ∈ V . Subsequently, Fleischer [58] presented an IP formulation for the problem and used
iterative rounding to obtain a 2-approximation algorithm for this special case. Kortsarz et al. [109] showed
that no polynomial-time approximation algorithm with performance guarantee better than 2log1−ε n exists
for any ε > 0 unless NP ⊆ DTIME(npolylog(n)). Recently, Chuzhoy and Khanna [44] gave an O(k3 logn)-
approximation for this problem, which we shall discuss in Section 5.2, via a reduction to the element-
connectivity problem we talk about next.

The element-connectivity problem was introduced by Jain et al. [94] as a problem which is intermediate
in difficulty between the edge- and vertex-connectivity versions described above. Here, the vertex set V of
graph G is partitioned into terminals and non-terminals. Edges and non-terminals are called elements. For
each pair of terminals i, j we are given a parameter ri j and we require ri j element-disjoint paths between
them. Jain et al. [94] presented a 2H(k) approximation algorithm where k is the largest value of ri j over
all i, j. Fleischer et al. [59] then presented a 2-approximation algorithm for the problem, once again using
iterative rounding, and matching the approximation ratio for the edge-connectivity case.

4 Approximate Packing Results

The network design problems considered so far aim at selecting a minimum-cost subgraph of a given
weighted undirected graph that satisfies certain prescribed connectivity properties. This section focuses
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on packing problems which are, in a sense, dual to these problems. The arc-version of Menger’s classical
theorem serves as a canonical example:

Theorem 19 (Menger [123]). A directed graph G = (V,E) has k arc-disjoint s, t-paths for some s, t ∈ V if
and only if any s, t-cut has at least k arcs.

Menger’s theorem characterizes the class of graphs in which we can pack k arc-disjoint s, t-paths; the
theorem provides a succinct certificate for the existence and non-existence of such paths. We will see that
similar min-max type statements exist for the case where we pack spanning trees instead of paths, but no
such exact characterization exists for the packing variants of the Steiner tree and f -connectivity problems.

In this section we will be interested in the implications of min-max characterizations of packing problems
for network design problems. Packing is an important and active area of research that has applications in
VLSI circuit design (e.g., see [77, 78, 107]), in computer networking (e.g., see [20, 38, 39]), and in many
other domains. Research in this area has been very active throughout the last decade and before, and a
comprehensive account is beyond the scope of this survey. We refer the reader to the survey by Frank [61],
and to Lau’s recent thesis [114] for more information.

4.1 Packing spanning trees

In their ground-breaking work Nash-Williams [128] and Tutte [159] provided the following beautiful gener-
alization of Menger’s theorem.

Theorem 20. There exist k edge-disjoint spanning trees in an undirected graph G = (V,E) if and only if
|Eπ | ≥ k · (r(π)−1) for all partitions π ∈Π.

The theorem immediately yields a short alternative proof of integrality of (P+
SP). Let x∗ be an optimum

basic feasible solution for the LP and let k be smallest such that x̄ = kx∗ is integral. Note that the existence
of an optimal solution implies that all edges costs are non-negative. As x∗ is feasible for (P+

SP) it follows that

∑
e∈Eπ

x̄e ≥ k(r(π)−1)

for all π ∈Π. Let H be a graph with vertex set V and x̄e parallel copies of each edge e ∈ E. By Theorem 20,
H has k edge-disjoint spanning trees T1, . . . ,Tk. Let xi be the incidence vector of tree Ti for 1≤ i≤ k, then

k

∑
i=1

xi ≤ kx∗, (17)

and hence kx∗ dominates the sum of k integer solutions. Polyhedra whose extreme points satisfy (17) are
said to have the integer decomposition property. We refer the reader to [151] for more information on this
well-studied property.

An immediate consequence of (17) is that there is an 1≤ i≤ k such that c(T i)≤ cT x∗, and the optimality
of x∗ implies that the inequality as well as that in (17) must hold with equality. Hence, we showed that x∗ is
a convex combination of minimum-cost spanning trees.

4.2 Advanced Packing Theorems

Unless NP=co-NP, Nash-Williams’ and Tutte’s result in Theorem 20 cannot be extended to the Steiner tree
and the more general f -connectivity setting. Nevertheless, Kriesell [111] conjectured that a graph G has k
edge-disjoint Steiner trees if every Steiner cut is crossed by at least 2k edges. While this conjecture remains
open, some partial progress has been made. In particular, Frank, Király, and Kriesell [63] showed that
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a given quasi-bipartite graph G has k edge-disjoint Steiner trees if the terminal set is 3k-edge-connected.
Kriesell [111] showed that the conjecture in general Eulerian graphs G. For a general undirected graph G,
Lau [115] recently proved that G has k edge-disjoint Steiner trees if every Steiner cut has at least 26k edges;
in his thesis ([114], Theorem 3.1.2) he slightly improves this bound to 24k.

It is natural to ask whether Kriesell’s conjecture extends to more general network design problems. For
example, given a Steiner forest instance such that each of the pairs is connected by k edge-disjoint paths,
does the graph have k edge-disjoint Steiner forests? Chekuri and Shepherd [36] pose this conjecture for the
more general 0,1- f -connectivity problem.

Conjecture 1 ([36]). Let G be an undirected graph, and f a 0,1-skew-supermodular function. If x∗ is a
feasible solution to (P f ) such that kx∗ is integral, there exist f -connected integer vectors x1, . . .xk such that
∑

k
i=1 xi ≤ kx.

In fact, Chekuri and Shepherd remark that there is no reason why this result should not also be true for
general (non-0,1) skew-supermodular functions. Using Nash-Williams and Tutte’s theorem for spanning
trees as well as Mader’s well-known splitting-off technique [119], the authors arrive at the following main
decomposition theorem.

Theorem 21. Let G be an undirected graph and let f be a 0,1-valued downwards monotone or proper
function. Further let x∗ be a feasible solution of (P f ) and let k ≥ 1 be an integer such that kx∗ is integral.
Then there are solutions x1, . . . ,xk to (IP f ) such that

k

∑
i=1

xi ≤ 2k · x∗.

The theorem provides an alternate 2-approximation algorithms for the f -connectivity problem where f
is a 0,1 proper or downwards monotone function. Extending his work on Steiner trees, Lau [113] recently
showed that Conjecture 1 is approximately true for the Steiner forest problem: if each of the given terminal
pairs is 32k-edge-connected, then G has k edge-disjoint Steiner forests.

5 Randomization

Randomization has long been a widely used technique in approximation algorithms: perhaps the most com-
mon use has been in randomized rounding of linear programming relaxations, but often randomization is a
useful tool in its own right. In this section, we show a randomized rounding for minimum spanning tree, and
then give two recent examples of the use of randomization in non-rounding contexts.

5.1 Randomized Rounding for Minimum Spanning Tree

The general idea in randomized rounding is to take an integer programming (IP) formulation of the problem
at hand, solve a convex programming relaxation (CP) of this formulation, and then convert the resulting
fractional solution to (CP) into an integral solution for (IP) by randomly rounding the variables. The goal is
to do this so that the cost of the integral solution thus obtained is not much more than that of the fractional
solution to the convex program.

In this section, we show how to randomly round the linear programming relaxation (PSP) of the minimum
spanning tree problem. In particular, we give a proof due to Alon [5] that, given any feasible solution to the
minimum spanning tree LP relaxation with cost Z∗ = ∑e cexe, shows that there is a randomized rounding
procedure to obtain a tree with expected cost at most O(Z∗ logn). The procedure is simple:

Random-Round-MST
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1: i← 0
2: repeat
3: i← i+1
4: Let Ai be the set of edges obtained by picking each edge e independently with probability xe.
5: until Gi = (V,∪ j≤iA j) is connected.
6: return any spanning tree of Gi.

Lemma 22. Given any (multi)graph H = (U,E ′) and a feasible solution {xe}e∈E ′ to (PSP) for this graph,
suppose we pick each edge with probability xe independently. Then the number of components is at most
0.9|U | with probability at least 1/2.

Proof. We call a vertex u isolated if no edge incident to u is picked by the random process: the probability
that u is isolated is ∏e∈δ ({u})(1−xe)≤ e−∑e∈δ ({u}) xe ≤ 1/e. By linearity of expectation, the number of isolated
vertices is at most |U |/e, and Markov’s inequality implies that we have at most 2|U |/e isolated vertices with
probability at least 1/2. Since all the other non-isolated vertices must be in components of size at least 2, the
total number of components is at most |U |(2/e+1/2(1−2/e)) < 0.9|U | with probability at least 1/2.

Theorem 23. The expected cost of the tree returned by MST-Rand-Round is O(logn) times the cost of the
LP solution Z∗.

Proof. We show that the expected number of rounds before the procedure stops is O(logn). Let L = 20logn,
and recall that Gi = (V,∪ j≤iA j). We claim that the graph GL is disconnected with probability at most 1/2;
conditioned on it being disconnected, an identical argument shows that G2L will be disconnected with prob-
ability at most 1/2 etc., and hence the expected number of rounds will be at most 2L.

To prove that GL is connected with probability at least 1/2, define Ci to be the number of components
of the graph Gi, and define index i to be successful if either Gi−1 is connected (i.e., if Ci−1 = 1) or if
Ci ≤ 0.9 ·Ci−1 (if the number of components decreases by a constant fraction due to the edges in Ai). The
crucial claim is that the probability of i being successful is at least 1/2 regardless of all random choices
made in previous rounds. The proof of this claim is simple: if Gi−1 is connected then i is always successful.
Else, let Hi−1 be the graph on Ci−1 vertices obtained by contracting all edges in Gi−1. Since each cut in
Hi−1 corresponds to a cut in Gi−1, we have that ∑e∈δ (S) xe ≥ 1 holds for Hi−1; now Lemma 22 ensures that
the number of components after another round of randomly adding edges will cause Ci ≤ 0.9 ·Ci−1 with
probability at least 1/2.

Given the above claims, the probability that the graph GL is not connected is bounded above by the
probability that a sequence of L independent unbiased coin-flips contains fewer than logn/ log0.9 heads.
Note that while the events in the random rounding process are not independent, we proved a lower bound of
1/2 on the probability of success regardless of the history. Since L = 20logn, the probability we see fewer
than logn/ log0.9 < 10logn heads (and hence the probability that GL is not connected) is at most 1/2, which
completes the proof.

5.1.1 Advanced Applications of Randomized Rounding

Randomized rounding and derandomization techniques have been widely used since the results of Raghavan
and Thompson [140, 139] for the low-congestion routing problems, and even surveying the wealth of ideas
developed in this area is beyond the scope of this survey (see, e.g., the texts [125, 126] or the surveys [150,
153]). Apart from the idea of independent rounding used above, techniques have been developed to round
the fractional solutions in more advanced ways: e.g., in some cases randomized rounding does not give the
desired solution, but the blemishes can be fixed by alterations (see, e.g., [7, 23, 25, 155]; in other cases, we
might need to round the variables in some dependent fashion (see, e.g., [3, 67, 154]). Moreover, a variety
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of probabilistic bounds, such as Chernoff-Hoeffding bounds, the Lovász Local Lemma, Janson’s inequality,
and the FKG inequality are often used to bound the probability of failure: see, e.g., [7] for definitions, and
the books and surveys above for applications.

5.2 Two Other Randomized Algorithms

A recent paper of Chuzhoy and Khanna [44] used a simple randomized argument to approximate the vertex-
connectivity problem using algorithms for element-connectivity problem (see Section 3.4 for definitions;
recall that k = maxi j ri j is the maximum element-connectivity requirement for the instance). Their argument
is the following: let V1, . . . ,VL be independent random samples of the vertex set V , where for any `, each
vertex in V is added to V` independently with probability p = 1/k. For each ` ∈ [L], define an element-
connectivity instance I` on the original graph G where r`

i j = ri j if both i, j ∈ V`, and r`
i j = 0 otherwise.

Clearly, the optimal vertex-connected solution is feasible for all these element-connectivity instances; the
claim is that the union of the solutions to these instances is a solution to the original vertex-connectivity
instance with high probability. The proof is simple: given i, j and any set S ⊆ V \ {i, j} of size k, the
probability that at least one ` ∈ [L] has both i, j ∈ V` and also S∩V` = /0 is 1− [1− p2(1− p)k]L = 1/2nk if
L = Ω(k3 logn). For that choice of `, the set S is not a vertex cut for i, j in the element-connected solution
for I`. By a trivial union bound over all n2

(n−2
k

)
choices of i, j,S, we have that the union of these random

element-connectivity solutions is solution to the original vertex-connectivity instance with probability at
least half. As discussed in Section 3.4, each element-connectivity instance is approximable to within a factor
of 2, which implies a 2L = O(k3 logn) approximation to the vertex-connectivity problem. Note that for the
single-source case of vertex-connectivity, the above argument can be improved to L = O(k2 logn), which
matches the best result known for this case via other involved arguments [43, 130, 131].

A different use of randomization appears in an algorithm for the connected facility location problem:
here the input is a metric space (V,d) along with a set of clients D ⊆ V , and an integer M ≥ 1. The goal
is to designate a set F ⊆ V of the vertices as “facilities”, to assign each client j ∈ D to its closest facility
i( j) ∈ F , and to build a Steiner tree T = (VT ,ET ) connecting all the facilities. The objective function is
∑ j∈D d( j, i( j))+M ∑e=uv∈ET d(u,v). Several algorithms have been proposed for this problem, e.g., based on
rounding linear programming relaxations [84, 145], the primal-dual method [156], and reductions to unca-
pacitated facility location [97]. Subsequently a simple randomized algorithm was proposed [85]: randomly
pick each client location in D to also be in F independently with probability 1/M, assign each client to its
closest facility in F , and build an ρST -approximate Steiner tree on F (using, say, the ρST = ln4-approximation
algorithm of Byrka et al. [22]). This algorithm gives a 2 + ρST ≈ 3.39-approximation to the connected fa-
cility location problem. This random sampling technique has since been used in approximation algorithms
for other problems in network design (see, e.g., [53] and the references therein), and for approximation
algorithms for stochastic optimization problems [87, 90].

6 Metric Embedding Techniques

Metric embedding techniques have been very widely used in recent years in network design, and one of the
most popular results has been that of embedding a general metric space into distributions over tree metrics.
The main idea is simple: given any metric space, one can randomly generate a tree metric such that distances
in the original metric space are closely approximated by the expected distances in this random tree; Hence,
this allows us to randomly reduce many optimization problems on general metrics to their counterparts on
tree metrics, which are often much simpler to solve. In this section, we give the main result on which this
technique is based, and illustrate it by giving an approximation algorithm for the buy-at-bulk problem.
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6.1 Embeddings into Distributions of Trees

For any graph G = (V,E) with edge-lengths we, we define dG to be the induced shortest-path metric; i.e.,
dG(x,y) is the length of the shortest-path between x and y according to these edge lengths we, which can
be found using, say, an all-pairs-shortest-paths computation. Given a metric space (V,d), consider a tree
T = (V,E ′) with edge-lengths w′e′ ; note that since there is a unique path between any pair of nodes in T , the
computation of the shortest-path distances dT in the tree T is especially simple. Such a tree T is called a
dominating tree for the metric (V,d) if dT (x,y)≥ d(x,y) for all x,y ∈V . We define DT(V,d) to be the set of
all dominating trees defined on the vertex set V .

Definition 24. A metric space (V,d) α-probabilistically embeds into dominating tree metrics if there is a
probability distribution D defined on DT(V,d) such that

ET∈D [dT (x,y)]≤ α ·d(x,y) (18)

for all x,y ∈V . The embedding is efficient if there is a polynomial-time algorithm that returns a sample from
the distribution D .

Theorem 25. Any metric space (V,d) with |V | = n points α-probabilistically embeds into dominating tree
metrics with α = O(logn); moreover, this embedding is efficient.

Theorem 25 was proved by Fakcharoenphol et al. [55], building on a series of important papers [6, 15,
16, 28, 29]. The procedure of [55] outputs random trees on a larger set of vertices V ′ ⊇V , but it is simple to
remove the “Steiner” nodes in V ′ \V using ideas from [81, 104] whilst changing distances only by a constant
factor. For some applications, however, it is more convenient to directly use the trees output by the procedure
of [55] due to their “hierarchical well-separated” structure, despite the presence of these Steiner nodes (see,
e.g., [17]).

In fact, there is a deterministic polynomial-time algorithm that outputs a set of O(n logn) trees from
DT(V,d) such that the uniform distribution on this set satisfies Theorem 25 (see [29]). The value α =
O(logn) in Theorem 25 is the best possible for general n-point metrics: lower bounds of Ω(logn) can be
proved even for “simple” graphs like the square grid [6] and treewidth-2 graphs [86].

6.2 An Application: Approximating Buy-at-Bulk Network Design

Theorem 25 can be used to give a randomized O(logn)-approximation algorithm to the minimum spanning
tree problem on any graph: i.e., given any edge-weighed graph G = (V,E), the algorithm outputs a random
spanning tree of G whose expected cost is at most O(logn) the cost of the MST. If G is a complete graph
with metric edge-weights, this algorithm simply applies Theorem 25 and returns a random tree drawn from
the distribution. If G = (V,E) is not a complete graph, this random tree returned may contain edges not in
E, and one needs to replace these edges by paths in the underlying graph. Let us give this algorithm and its
proof in the context of a more general problem, the buy-at-bulk network design problem.

The (uniform) buy-at-bulk problem is the following: the input consists of a graph G = (V,E) with edge
lengths we, and a set of k terminal pairs (si, ti)∈V ×V for i∈ {1,2, . . . ,k}, and a concave function g : Z≥0→
R≥0 such that the cost of routing t paths on an edge e incurs a cost of we · g(t). The goal is to find a path
Pi between si and ti for each i: if te is the number of paths using edge e, the (uniform) buy-at-bulk objective
function seeks to minimize the total cost ∑e∈E we · g(te). (The “uniform” indicates that the cost functions
for different edges are all multiples of the same function g(·), and hence proportional to each other—see
Section 7.2 for a discussion on the “non-uniform” problem.)

Note that the concave cost function causes us to prefer solutions where many paths use the same edges.
The problem is NP-hard (since the convex function g(t) = 1(t≥1) captures the Steiner forest problem), and
the best approximation guarantee known for the problem is via probabilistic embeddings into trees.
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Theorem 26 ([11]). The (uniform) buy-at-bulk problem admits a randomized algorithm that returns a solu-
tion with expected cost at most O(logn) times the optimum.

Proof. Most approximation algorithms using probabilistic embeddings into trees have proofs that resemble
this one: we first show that given any solution on the graph G of cost Opt, there is a solution on the random
tree T of “low” expected cost Opt ·O(logn). Of course, we then find the best solution on T , which costs no
more, and then show that any solution on T can be translated back to the graph G without an increase in cost,
thus completing the proof.

The case of the buy-at-bulk problem is trivial if the input graph G is a tree: choosing the unique shortest
paths between terminals is the optimal solution in this case. To solve the problem when G is not a tree, apply
Theorem 25 to the shortest-path metric (V,dG) to obtain a random dominating tree T = (V,E ′) with edge-
lengths w′e′ such that the expected distance dT (x,y) in the tree is at most O(logn) · dG(x,y) for all x,y ∈ V .
For any edge e′ = uv ∈ E ′, fix a shortest u,v-path Qe′ = Quv. Now, for any terminal pair (si, ti), consider
the unique path 〈si,u1,u2, . . . ,ul, ti〉 in the tree T , and define the path Pi to be the concatenation of the paths
Qsiu1 ,Qu1u2 , . . . ,Qul−1ul ,Qulti .

We claim the cost of the final solution on G is at most the cost of the solution on the tree. Indeed, let Xe

be the set of pairs whose paths use the graph edge e ∈ E, and let Ye′ be the set of terminal pairs whose paths
use the tree edge e′ ∈ E ′: the final cost is

∑
e∈E

we ·g(|Xe|)≤ ∑
e∈E

we · ∑
e′∈E ′:e∈Qe′

g(|Ye′ |) (19)

= ∑
e′∈E ′

g(|Ye′ |) · ∑
e∈E:e∈Qe′

we (20)

≤ ∑
e′∈E ′

g(|Ye′ |) ·w′e′ , (21)

which is the cost of the optimal solution on T . Note that the inequality (19) followed from the concavity of
the function g(·), and inequality (21) follows from the fact that the tree T is a dominating tree for the metric
(V,dG) and that Qe′ is a shortest path in G.

Finally, it remains to show that if there is a solution in G of cost Opt, there is a solution of expected cost
at most Opt ·O(logn) on the random tree T . The argument is similar in spirit to the one above. Suppose
the solution in G is given by the paths P∗i = 〈si,v1,v2, . . . ,v`, ti〉. For each edge e = uv ∈ E, consider the
tree path Re = Ruv. Now, define the path P′i on the tree for (si, ti) to be the concatenation of the paths
Rsiv1 ,Rv1v2 , . . . ,Rvl−1vl ,Rvlti ; note that this path P′i may be non-simple. If Ae be the set of paths P∗i using the
graph edge e, and Be′ be the (multi-)set of paths P′i using the tree edge e′, then the expected tree cost is

E

[
∑

e′∈E ′
g(|Be′ |) ·w′e′

]
≤ E

[
∑

e′∈E ′
∑

e∈E:e′∈Re

g(|Ae|) ·w′e′

]
(22)

≤ ∑
e∈E

g(|Ae|) ·E

[
∑

e′∈E ′:e′∈Re

w′e′

]
(23)

≤ ∑
e∈E

g(|Ae|) ·O(logn) ·we, (24)

where the last inequality follows from the guarantees of the probabilistic tree embedding. This completes
the proof of the O(logn)-approximation guarantee.

Using the deterministic extension mentioned in the discussion after Theorem 25, one can obtain a deter-
ministic algorithm for uniform buy-at-bulk by enumerating the O(n logn) trees in the support of the distri-
bution D , solving the problem on each, and returning the best solution amongst them.

22



The paper of Awerbuch and Azar [11] shows how to extend the algorithm to handle a slightly more
general buy-at-bulk problem, where the terminal pairs (si, ti) also have demand values di ∈ Z≥0, and the
cost function for the edges g : Z≥0→ R≥0 can be any subadditive function (that is, any function satisfying
g(x1) + g(x2) ≤ g(x1 + x2)). Andrews [8] showed that an O(log1/4−ε n) approximation algorithm for the
(uniform) buy-at-bulk problem, for any ε > 0, would imply that NP⊆ ZT IME(npoly logn). Given the hardness
results, the special cases of single-sink buy-at-bulk problem (where all the flow goes to a single sink) has
been considered, and constant-factor approximation algorithms are known [80, 157, 85]. Recently, variants
of the buy-at-bulk problems with higher connectivity requirements (e.g., where each client requires two
edge-disjoint paths to the root, and the cost incurred at an edge is a concave function of the number of paths
using this edge) have also been studied—e.g., see [10, 35].

A different direction of research considers the case when the function g(·) is not given up-front, and the
goal is to find paths Pi that are good for all concave functions g(·), even when the adversary choosing the
function is allowed to look at the paths. Goel and Estrin [70] gave an algorithm for single-sink instances
that outputs paths which are simultaneously an O(logn) approximation for all concave functions g(·). Gupta
et al. [82] extended this result to give an algorithm that outputs paths for each pair of vertices, such that
regardless of the demand values duv between the vertex pairs and the subadditive cost function g(·), the
solution given by this set of paths is an O(log2 n) approximation.

6.3 Extensions and Other Applications

The idea of embedding arbitrary metric spaces into distributions over trees has had a major impact on ap-
proximation algorithms for problems on metric space. In some cases, the algorithms obtained by randomly
reducing to the problem on trees are still the best algorithms known for the problem: this is true for the
buy-at-bulk problem, as well as the Group Steiner tree [69], the min-communication spanning tree prob-
lem [167]. For other problems (such as the k-median problem [28]), these tree embeddings have given us
a general technique to obtain a first-cut approximation algorithm, which have then been improved upon by
other problem-specific techniques.

The idea of embedding a metric into a distribution over trees can be extended to embedding the shortest-
path metric of a graph G into a distribution over its subtrees. Specifically, given a graph G = (V,E) with
edge lengths we, one can consider the set ST(G) of spanning trees of G (with the same edge-lengths we):
note that this is a subset of the set DT(V,dG), where dG is the shortest-path metric for G—we now consider
a variant of Definition 24 where one α-probabilistically embeds the graph metric dG into dominating tree
metrics, but the support of the distribution is restricted to ST(G). The results of [1, 54] show that any graph
metric O(lognpoly loglogn)-probabilistically embeds into its spanning trees, thus almost matching the result
in Theorem 25 up to poly loglogn factors. (It remains an interesting open question to remove these lower-
order factors.) These results have been useful in a number of network design contexts, including a result
of Chekuri et al. [33] on non-uniform buy-at-bulk problems to be discussed in the next section, and online
algorithms for k-connectivity problems [83].

Other techniques from metric embeddings have been useful in other contexts as well: e.g., well-padded
tree embeddings [82] have been used for oblivious network design problems, and the similar maximum-
gradient embeddings [122] have proved useful for the fault-tolerant facility location problems. Arora’s tech-
niques for polynomial-time approximation schemes for the traveling salesman problem have been extended
to arbitrary metric spaces of low doubling dimension via embeddings into distributions of low-treewidth
graphs [158].
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7 Matching Based Augmentation

A particularly simple technique with wide applicability to connectivity problems is that of matching-based
augmentation. Given a problem where some set of terminals desire connectivity to each other, one may be
able to efficiently solve a “partial” connectivity problem that reduces the number of connected components
by a constant factor. Iterating this process then gives a solution to the original connectivity problem, with an
approximation guarantee that is related to the number of rounds of this process. In Section 7.1, we will see
how such an idea gives an O(logn)-approximate MST; subsequently, we will see an advanced application of
this problem to the (non-uniform) buy-at-bulk problem in Section 7.2.

7.1 Approximate MST via Matching Based Augmentation

Start with a metric space (V,d) and define V0 = V . We first find a min-cost near-perfect matching M0 (which
leaves at most one node unmatched) on the nodes V , where the cost of matching two nodes (u,v) is the
distance d(u,v) between them. For each matched pair, pick one of the nodes and add them to the set V1;
also add in the unmatched node, if any. Find a min-cost near-perfect matching M1 on V1; pick one of the
newly matched vertices (and the unmatched vertex, if any) and form V2, and continue until |Vt |= 1 for some
t. Return the set of edges T = ∪t−1

j=0M j.

Theorem 27. The above algorithm returns a tree of cost at most O(logn)-times that of the MST.

Proof. To show that the set of edges output by the algorithm is a tree, we inductively claim that for any i, all
nodes in V \Vi are connected to some node in Vi using the edges in ∪ j<iMi. Indeed, this is true when i = 0;
moreover, any node in Vi \Vi−1 is dropped because it is connected to the other node using an edge from Mi−1.
Since we stop when we have a single node, all other nodes are connected to this node, and hence to each
other. Moreover, the number of edges added is precisely n−1, and hence we have a spanning tree.

Since the number of rounds is at most O(logn), it suffices to show that the cost of each matching Mi

is at most d(T ∗), the cost of the MST T ∗. To make the argument simpler, assume there are 2k nodes in
Vi. The Euler tour C of the MST T ∗ has cost at most 2d(T ∗), twice the cost of the MST. Each node in Vi

may appear at several places: we choose one of these positions arbitrarily. If we rename these nodes to be
{x0,x1, . . . ,x2k−1,x2k = x0} in the order we encounter them as we go around the tour, then by the triangle
inequality, ∑

2k−1
i=0 d(xi,xi+1) ≤ 2d(T ∗). Hence, one of the sums ∑

k−1
i=0 d(x2i,x2i+1) or ∑

k−1
i=0 d(x2i+1,x2i+2) is

at most half that value, i.e., d(T ∗). But this is a valid matching of the nodes in Vi, and hence the min-cost
perfect-matching has cost at most the weight of the MST, which proves the theorem.

7.2 An Application: A Non-Uniform Buy-at-Bulk Problem

An elegant use of these matching-based ideas appears in a paper by Meyerson, Munagala, and Plotkin [124],
who gave an O(logn) approximation for the following buy-at-bulk problem. The single-sink non-uniform
buy-at-bulk problem (also known as the cost-distance problem) is the following: we are given a graph G =
(V,E), where the edges have both a buying cost cB : E→R≥0 and a renting cost cR : E→R≥0. We are given
a root vertex r ∈V , and a subset of terminals R⊆V : the goal is to define a path Pv from each terminal v ∈ R
to the root r (hence it is a “single-sink” problem), with the cost of the solution being

cost({Pv}v∈R) = ∑
e∈∪v∈RPv

cB(e)+ ∑
v∈R

∑
e∈Pv

cR(e). (25)

One can think of the buying cost as being a fixed charge we pay for using the edge (regardless of the number
of paths using it), and the renting cost as being an incremental charge paid for every path using the edge. The
cost function for each edge is an affine function fe(x) = cB(e)+ cR(e) · x, and hence is a concave function
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in the number of paths x using the edge. Importantly, the cost functions for different edges are allowed to
be unrelated to each other—hence the use of “non-uniform” to refer to this problem. (One can consider a
variant of the non-uniform buy-at-bulk problem where the concave cost functions on each edge are not just
affine functions ae + bex, but are allowed to be arbitrary concave function; however, the general concave
functions case can be reduced the affine functions case with only a constant factor loss in the approximation,
and hence we will focus on the affine functions case.)

The non-uniformity, where different edges have different functions, is in contrast to the “uniform” prob-
lem formulation in Section 6.2 where the cost functions were all multiples of some fixed concave function
g(·). This non-uniformity in the cost function makes buy-at-bulk harder: for instance, while the single-
sink uniform buy-at-bulk problem admits constant-factor approximations [80], the single-sink non-uniform
buy-at-bulk problem is Ω(log logn)-hard to approximate unless NP admits O(nlog loglogn)-time deterministic
algorithms [42]. On the other hand, the best approximation guarantee known for the single-sink non-uniform
problem, with a proof based on random matching-based augmentations, is the following.

Theorem 28 ([124]). The single-sink non-uniform buy-at-bulk problem admits a randomized O(log |R|)-
approximation algorithm.

Proof. Let us first give the algorithm: for simplicity, we assume that the number of terminals k = |R| is a
power of 2. To begin, all the terminals are marked active, and define A1 = R. The algorithm proceeds in
rounds i = 1,2, . . .: at the beginning of each round i, we ensure that the size of the active set Ai is |Ai|= k

2i−1 .
In round i, if |Ai|> 1, we find a perfect matching Mi of the vertices in Ai, and also paths between each of

these matched pairs (using a procedure described later). If u and v are matched in Mi and the path between
them is Qi

uv ⊆ E, we randomly choose one of u or v to mark as inactive: say this vertex is u. The path Pu

from the (now inactive) terminal u to the root is defined to be Qi
uv concatenated with the path Pv for v that

we will construct in future rounds. This concludes round i; the set Ai+1 is now defined to be the terminals
that are still active. It remains to specify how to find the matching Mi: for this, we define edge lengths
`i(e) = cB(e)+ 2i−1 · cR(e) for each edge e ∈ E, and define Qi

uv to be a shortest path between u,v ∈ Ai with
edge-lengths `i(·). We then find a matching Mi of the active set Ai that minimizes

Li = ∑
(u,v)∈Mi

length of the path Qi
uv.

Finally, if i = log2 k + 1 and there is only one active vertex v, we define Pv to be a shortest path from v to
the root r in (V,E) where the edge lengths are again `i(e) = cB(e)+ 2i−1 · cR(e) = cB(e)+ k · cR(e). This
completes the definition of the paths for every vertex in R.

The proof the theorem follows from two claims: firstly, that the cost of the solution is at most ∑i Li, the
sum of the lengths of all the paths over all the O(logk) stages, and secondly, that E[Li] for each stage is at
most Opt. The former claim is not difficult to verify, and we focus on the latter. To begin, note that the
probability that a terminal u ∈ R belongs to Ai is exactly 2−(i−1). Consider an optimal solution {P∗v | v ∈ R
with cost cost({P∗v }) = OPT , and define E∗ = ∪v∈RP∗v to be the edges used by these paths. Consider the
random set of paths {P∗v | v ∈ Ai} used by only the vertices active in stage i: their union E∗i = ∪v∈AiP

∗
v

connects Ai to the root, and has total length `i(E∗i ) = ∑e∈E∗i (cB(e) + 2i−1cR(e)). For an edge e ∈ E∗, its
expected contribution to this length `i(E∗i ) is

Pr[e ∈ E∗i ]× (cB(e)+2i−1cR(e))≤ cB(e)+ ∑
v∈R:e∈P∗v

Pr[v ∈ Ai]×2i−1cR(e)

= cB(e)+ ∑
v∈R:e∈P∗v

cR(e).

Summing over all edges in E∗, we get that `i(E∗i ) ≤ ∑e∈E∗ cB(e)+ ∑v∈R ∑e∈P∗v cR(e) = Opt. Hence, E∗i is a
subgraph of expected length at most Opt that connects all terminals in Ai to the root. In turn, this implies
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the existence of a tree Ti spanning Ai∪{r} with expected length at most Opt; the Euler tour of this tree thus
has expected weight at most 2Opt. Now, just as in the proof of Theorem 27, we can infer the existence of a
perfect matching on Ai of expected total length at most half the cost of this tour, i.e., at most Opt. Similarly,
we can infer that the weight of a path connecting any vertex in Ai is at most Opt. These two bounds show
that the expected length of the paths in each round i is at most Opt, thus completing the proof.

The paper of Meyerson et al. [124] considered a slightly more general problem where each terminal i
wants to send di ∈ Z≥0 units of flow to the sink, and the cost of using an edge e to send x > 0 units of flow is
then cB(e)+ x · cR(e); the proof above can be extended to this more general problem. The derandomization
for the algorithm above was given by Chekuri et al. [34].

The results for the single-sink problem have only recently been extended to the general (multiple-sink)
case: a poly-logarithmic approximation algorithm has been given by Chekuri et al. [33]. Andrews [8] has
shown that the general non-uniform buy-at-bulk problem is hard to approximate better than Ω(log1/2−ε n).

7.3 Extensions and Other Applications

The name “matching-based augmentation” comes from the survey by Ravi [142]. Perhaps the first applica-
tion of the matching-based heuristic was for Christofides’ 3

2 -approximation algorithm for the metric traveling
salesman problem: we first find a minimum spanning tree (whose cost is at most the cost of the optimal TSP
tour), and then we find a matching on the odd-degree nodes (whose cost is at most half the cost of the optimal
tour, using an argument akin to those above). Matching-based augmentation ideas were also used in a series
of works on finding trees with small degree and diameter [120, 141, 144].

8 Other Ideas and Techniques

Directed Problems. While we have focused on undirected graphs in this chapter, most of the above prob-
lems can also be posed for directed graphs. Generally, directed variants of the problems discussed are harder
than their undirected counterparts, with the exception of the minimum spanning tree problem, whose directed
variant—the min-cost arborescence problem—can be solved using a primal-dual algorithm [51]. Halperin
and Krauthgamer [88] proved that an O(log2−ε n) approximation algorithm for directed Steiner tree for some
constant ε > 0 would imply that NP has randomized quasi-polynomial time algorithms; on the positive side,
if there are k terminals to be connected to the root, the best known algorithm for the problem gives an ap-
proximation ratio of ε−3kε and runs in time nO(1/ε) [27]. The directed Steiner forest problem is hard to
approximate better than Ω(2log1−ε n) for any ε > 0, via a reduction from the Label Cover problem [49]; the
current best algorithms gives an approximation guarantee of O(k1/2+ε) [32] and nε ·min{n4/5,m2/3} [57]
(note that these two results are incomparable since k could be as large as Θ(n2)).

Flow-Equivalent Trees and Oblivious Routing. The existence of the “flow-equivalent” Gomory-Hu trees
for single-commodity flows has been long known. Its counterpart for multicommodity flows was proved
by Räcke [19, 136]: he showed that for some parameter β = O(poly logn), given any capacitated graph
G = (V,E,u) there exists a capacitated tree TG = (V ′,E ′,u′) such that any traffic matrix that can be feasibly
routed in G can be feasibly routed in TG, while any traffic matrix that can be routed in TG can be routed in
the graph G with edge-congestion β (that is, the flow in G violates the edge capacities by at most a β factor).
The current best value of β = O(log2 n log logn) is given by Harrelson et al. [89]. At a high level, this result
allows us to reduce problems on finding cuts in graphs (which are often challenging) to finding them in trees,
where the problems are much simpler. For example,

In a subsequent paper [137], Räcke extended his definition to distributions over trees: instead of con-
structing a single tree from the graph G, he proved that there existed distributions over trees such that (a)
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any traffic matrix feasibly routable in the graph could also be routed in each of the trees in the distribution’s
support, and (b) if for each tree T belonging to the support of the distribution, the traffic matrix DT could be
feasibly routed in the tree T , then the “average” traffic matrix ET [DT ] could be routed in the graph with con-
gestion at most β = O(logn). This definition may remind the reader of Definition 24: interestingly enough,
Räcke used distance-preserving tree embeddings to prove his result, which shows that this factor β obtained
in the congestion result and the distance-preservation factor α obtained in Theorem 25 are exactly the same!
Räcke’s paper surveys many of the problems whose approximation guarantees can be improved using his
results: e.g., the results can be used to get an O(logn)-approximation for min-bisection (improving on the
earlier O(log3/2 n) of Feige and Krauthgamer [56].
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[53] F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Approximating connected facility location problems via
random facili ty sampling and core detouring. In Proceedings, ACM-SIAM Symposium on Discrete Algorithms,
pages 1174–1183, 2008.

[54] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng. Lower-stretch spanning trees. SIAM J. Comput., 38(2):608–
628, 2008.

[55] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics.
J. Comput. System Sci., 69(3):485–497, 2004.

[56] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection. SIAM J. Comput.,
31(4):1090–1118, 2002.

[57] M. Feldman, G. Kortsarz, and Z. Nutov. Improved approximating algorithms for directed steiner forest. In
Proceedings, ACM-SIAM Symposium on Discrete Algorithms, pages 922–931, 2009.

[58] L. Fleischer. A 2-approximation for minimum cost 0, 1, 2 vertex connectivity. In Proceedings, MPS Conference
on Integer Programming and Combinatorial Optimization, pages 115–129, 2001.

29



[59] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms for minimum-cost
vertex connectivity problems. J. Comput. System Sci., 72(5):838–867, 2006.

[60] L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canad. J. Math., 8:399–404, 1956.

[61] A. Frank. Packing paths, circuits and cuts - a survey. In B. Korte, L. Lovasz, H. J. Promel, and A. Schrijver,
editors, Paths, Flows and VLSI-Layout, volume 9 of Algorithms and Combinatorics, pages 47–100. Springer,
1990.

[62] A. Frank. Increasing the rooted-connectivity of a digraph by one. Math. Programming, 84(3):565–576, 1999.
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