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Abstract

The Traveling Salesman Problem (TSP) is a canoni-
cal NP-complete problem which is known to be MAX-
SNP hard even on Euclidean metrics (of high dimen-
sions) [40]. In order to circumvent this hardness, re-
searchers have been developing approximation schemes
for low-dimensional metrics [4, 39] (under different no-
tions of dimension).

However, a feature of most current notions of metric
dimension is that they are “local”: the definitions
require every local neighborhood to be well-behaved
What if our metric looks a bit more realistic: it has a few
“dense” regions, but is “well-behaved on the average”?

We give a global notion of dimension that we call
the correlation dimension (dimC), which generalizes
the popular notion of doubling dimension: the class
of metrics with dimC = O(1) not only contains all
doubling metrics, but also some metrics containing
uniform metrics of size

√
n (but no larger). We first

show that we can solve TSP (and other optimization
problems) on these metrics in time 2O(

√
n); then we take

advantage of the global nature of TSP (and the global
nature of our definition) to give a (1+ε)-approximation
algorithm that runs in sub-exponential time: i.e., in
2O(nδε−4 dimC )-time for every constant 0 < δ < 1.

1 Introduction

Distance functions are ubiquitous, arising as distances
from home to work, round-trip delays between hosts
on the Internet, dissimilarity measures between docu-
ments, and many other applications. As a simplifying
assumption, theoreticians often assume that the dis-
tance function in question satisfies the triangle inequal-
ity and hence is a metric.

However, some problems remain hard even when
the underlying distance function is a metric, an exam-
ple of which is the Traveling Salesman Problem (TSP).
Papadimitriou and Yannakakis [35] showed that TSP
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is MAX-SNP hard in general for metrics whose dis-
tances are either 1 or 2. Indeed, even for more struc-
tured metrics such as Euclidean metrics, Trevisan [40]
showed that the problem remains MAX-SNP hard if the
Euclidean dimension is unbounded. On the other hand,
Arora [4] gave the first PTAS for TSP on low dimen-
sional Euclidean metrics. A natural and basic question
that arises in the study of metric spaces is: How do we
quantify the complexity of metric spaces? More specif-
ically, which classes of metric spaces admit efficient al-
gorithms for TSP? It is not surprising that metrics in-
duced by special classes of graphs admit efficient TSP
algorithms. For instance, for graphs with bounded tree
widths, Arnborg and Proskurowski [3] gave a dynamic
program that solves TSP on the induced metrics exactly
in linear time. For metrics induced by weighted pla-
nar graphs, the best known algorithm is by Klein [24],
who gave a (1 + ε)-approximation algorithm that runs
in linear time O(c1/ε2

n), where c > 0 is some constant.
Grigni [18] gave QPTAS’s for metrics induced by minor-
forbidding graphs and bounded-genus graphs.

The above examples were situations where the
simplicity was in the representation: one can ask if
there are some parameters that capture the complexity
of metric spaces. For Euclidean metrics, the underlying
dimension is such a good candidate. However, not all
metrics are Euclidean, and a general metric embeds
into L2 with distortion as large as Ω(log n) [32], even
with no restriction on the number of dimensions. A
question one can ask is: are there other parameters
that can capture the intrinsic algorithmic complexity
of an abstract metric space (i.e., independent of its
representation)? What is the intrinsic dimension of
M = (V, d)?

Building on a definition of [6], researchers con-
sidered the doubling dimension dimD(M) of a metric
M [19]: this concept generalized the notion of dimension
in geometric spaces, i.e., dimD(Rd, `p) = Θ(d). Dou-
bling dimension proved to be a very useful parameter:
in the past three years, many algorithms have since been
developed whose performance (run-time, space) can be
given by functions F (|V |,dimD(M)), which give better
quantification than those obtained for general metrics.
For instance, Talwar [39] gave a (1 + ε)-approximation
algorithm for TSP such that for metrics with doubling
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Figure 1: Very simple examples of metrics with low
correlation dimension.

dimension dimD(M) at most k, the algorithm runs in
time 2( k

ε log n)O(k)
. While this result is potentially worse

for large dimensions, it is much better for well-behaved
metrics, and arguably having this extra parameter to
work with allows us to develop more nuanced algo-
rithms.

Despite its popularity, doubling dimension has some
drawbacks: perhaps the biggest one is being that a space
with low dimD cannot have “large dense clusters”.1

This strict definition makes it difficult to use it to model
real networks, which tend to be well-behaved “on the
average”, but often have a few regions of “high density”.
We define a new notion of dimension, the correlation
dimension which captures the idea of being “low-
dimensional on average”. We give structural results as
well as algorithms for spanners and TSP for metrics
with low correlation dimension. Our definitions are
inspired by work on the correlation fractal dimension
in physics [17] and in databases [8].
Our Results and Techniques. Given a finite metric
M = (V, d), let B(x, r) denote the ball around u of
radius r. The correlation dimension is defined as the
smallest constant k such that∑

x∈V |B(x, 2r)| ≤ 2k ·
∑

x∈V |B(x, r)|,(1.1)

and moreover, this inequality must hold under taking
any net of the metric M . (A more formal definition
is given in Section 2.) Note that this definition is
an “average” version of the bounded-growth rate used
by [36, 23], and hence should be more general than that
notion. We show that in fact, correlation dimension is
even more general than doubling dimension:

Theorem 1.1. (Correlation Generalizes Dou-
bling) Given a metric M , the correlation dimension
is bounded above by a constant times the doubling di-
mension.

Moreover, correlation dimension is strictly more general
than doubling dimension: adding a clique of size O(

√
n)

1More precisely, the doubling dimension is defined so that any

set that is almost equilateral in a metric of dimension dimD can

only have 2dimD points in it; the precise definition of doubling
appears in Section 2.

to a doubling metric does not change its correlation di-
mension by much, but completely destroys its doubling
dimension. (Some examples are given in Figure 1. One
can be convinced that each of these example metrics has
“low complexity on average,” which is precisely what
correlation dimension tries to capture.)

The following theorems show the algorithmic poten-
tial of this definition.

Theorem 1.2. (Embedding into Small
Treewidth Graphs) Given any constant 0 < ε < 1
and k, metrics with correlation dimension at most k
can be embedded into a distribution of graphs with
treewidth Õk,ε(

√
n) and distortion 1 + ε.

This immediately allows us to get 2Õ(
√

n)-time algo-
rithms for all problems that can be solved efficiently
on small-treewidth graphs, including the traveling sales-
man problem. Moreover, Theorem 1.2 is tight, since
metrics with bounded dimC can contain O(

√
n)-sized

cliques.
However, we can do much better for the TSP

despite the presence of these O(
√

n)-sized cliques (or
other complicated metrics of that size); we can make
use of the global nature of the TSP problem (and
the corresponding global nature of dimC) to get the
following result.

Theorem 1.3. (Approximation Schemes for TSP)
Given any metric M with dimC(M) = k, the TSP can
be solved to within an expected (1 + ε)-factor in time
2O(nδε−k) for any constant δ > 0.

Hence, given constants ε, k, the algorithm runs in sub-
exponential time. (Recall that sub-exponential time
is ∩δ>0DTIME(2nδ

).) As we will see later, the best
exponent in the expression above that we can show is
(ε−12

√
log n log log n)4k.

While metrics with bounded correlation dimension
cannot in general have (1 + ε)-stretch spanners with
a linear number of edges, we can indeed get some
improvement over general metrics.

Theorem 1.4. (Sparse Spanners) Given any 0 <
ε < 1, any metric with correlation dimension k has a
spanner with O(n3/2ε−O(k)) edges and stretch (1 + ε).
Moreover, there exist metrics with dimC = 2 and for
each of which any 1.5-stretch spanner has Ω(n3/2) edges.

1.1 Related Work Many notions of dimension for
metric spaces (and for arbitrary measures) have been
proposed; see the survey by Clarkson [11] for the
definitions, and for their applicability to near-neighbor
(NN) search. Some of these give us strong algorithmic
properties which are useful beyond NN-searching. For



instance, the low-growth rate of a metric space requires
that for all x ∈ V and all r, |B(x, 2r)| is comparable
to |B(x, r)|. This was used in [36, 23, 22] to develop
algorithms for object location in general metrics, and
in [26, 2], for routing problems.

A large number of algorithms have been developed
for doubling metrics; e.g., for NN-searching [29, 30,
9, 20, 12, 11], for the TSP and other optimization
problems [39], for low-stretch compact routing [39, 10,
38, 1, 41, 28], for sparse spanners [10, 20], and for other
applications [25, 31]. Many algorithms for Euclidean
space have been extended to work for doubling metrics.

For Euclidean metrics, the first approximation
schemes for TSP and other problems were given by
Arora [4] and Mitchell [33]. See, for example [13, 5, 14,
27], for subsequent algorithms. The runtime of Arora’s
algorithm [4] was O(n(log n)O(

√
k· 1ε )k−1

), which was im-
proved to 2( k

ε )O(k)
n + O(kn log n) [37]. For (1 + ε)-

approximation for TSP on doubling metrics, the best
known running time is 2( k

ε log n)O(k)
[39]. Here, the pa-

rameter k is the doubling dimension or the Euclidean
dimension in the corresponding cases.

Finally, the concept of correlation fractal dimen-
sion was studied by Belussi and Faloutsos [8, 34] for
estimating the selectivity of spatial queries; Faloutsos
and Kamel [16] also used fractal dimension to analyze
R-trees.

Earlier Notions of Correlation Dimension
The concept of correlation fractal dimension [17] was
used by physicists to distinguish between a chaotic
source and a random source; while it is closely related to
other notions of fractal dimension, it has the advantage
of being easily computable. Let us define it here, since
it may be useful to compare our definitions with the
intuition behind the original definitions.

Consider an infinite set V . If σ = {xi}i≥1 is a
sequence of points in V , the correlation sum is defined
as Cn(r) = 1

n2 |{(i, j) ∈ [n]×[n] | d(xi, xj) ≤ r}| (i.e., the
fraction of pairs at distance at most r from each other).
The correlation integral is then C(r) = limn→∞ Cn(r),
and the correlation fractal dimension for σ is defined
to be limr→0 limε→0

log C((1+ε)r)−log C(r)
log(1+ε) . Hence, given a

set of points, the correlation fractal dimension quantifies
the rate of growth in the number of points which can
see each other as their range-of-sight increases. In the
next section, we will define a version of this definition
for finite sets.

2 Correlation Dimension: Definition and
Motivation

Given a finite metric M = (V, d), we denote the number
of points |V | by n. For radius r > 0, we define the ball

B(x, r) = {y ∈ V | d(x, y) ≤ r}. Given U ⊆ V , define
BU (x, r) = B(x, r) ∩ U . Recall that a subset N ⊆ V
is an ε-cover for V if for all points x ∈ V , there is a
covering point y ∈ N with d(x, y) ≤ ε. A subset N ⊆ V
is an ε-packing if for all x, y ∈ N such that x 6= y,
d(x, y) > ε. A subset N ⊆ V is an ε-net if it is both an
ε-cover and an ε-packing. A set N ⊆ V is a net if it is
an ε-net for some ε.

Inspired by the definitions mentioned in Section 1.1,
we give the following definition:

Definition 2.1. (Correlation Dimension) A met-
ric M = (V, d) has correlation dimension dimC(M) at
most k if for all r > 0, the inequality∑

x∈N |BN (x, 2r)| ≤ 2k ·
∑

x∈N |BN (x, r)|(2.2)

holds for all nets N ⊆ V .

In other words, we want to ensure that the average
growth rate of the metric M is not too large, and the
same holds for any net N of the metric. Recall that
the doubling dimension dimD(M) is the least k such
that every ball B(x, r) of radius r can be covered by at
most 2k balls of radius r/2 [19]. The strong doubling
dimension2 is the least k such that

|B(x, 2r)| ≤ 2k|B(x, r)|(2.3)

for all x ∈ V and radius r. We know that the strong
doubling dimension is no more than 4 dimD [19]. It
follows directly from the definition (2.3) that the cor-
relation dimension is no more than the strong doubling
dimension; more surprisingly, the following result is true
as well. We give its proof in the full version.

Theorem 2.1. For any metric space M , dimC(M) ≤
O(dimD(M)).

Hence the class of bounded correlation dimension met-
rics contains the class of doubling metrics. The con-
verse is not true: metrics with bounded dimC can be
much richer. Consider, for instance, the unweighted 2-
d grid with dimD = dimC = O(1). Now attaching an
unweighted clique (or, say, a metric with all distances
between 1 and 2) on O(

√
n) vertices to one of the ver-

tices of the grid: one can verify that the induced metric
still has dimC = O(1), but the dimD jumps to 1

2 log n.
The reader wondering about why the bounded

average growth property (2.2) is required to hold for
every net of M in Definition 2.1 is referred to the full
version for detailed discussion: loosely, the definition
becomes too inclusive without this restriction.

2This quantity has been described as the KR-dimension in [19];
we use this name due to [9] to keep matters simple.



A very useful property of correlation dimension is
that it still has “small” nets. (Of course, since we allow
large cliques, they cannot be as small as for doubling
dimension):

Lemma 2.1. (Small Nets) Consider a metric M =
(V, d) with dimC(M) ≤ k. Suppose S is an R-packing
with diameter D. If we add more points to S and obtain
an R-net N for (V, d), then the size of the packing
satisfies |S| ≤ (2D/R)k/2 ·

√
|N |.

Proof. Observe that |S|2 ≤
∑

x∈N |BN (x,D)|. By ap-
plying the definition of correlation dimension repeat-
edly, we have for each integer t ≥ 0,∑

x∈N |BN (x, D)| ≤ 2kt
∑

x∈N |BN (x,D/2t)|.(2.4)

Setting t = dlog2(D/R)e gives the required result. 2

Hence, given any metric with dimC = O(1), any
near-uniform set in the metric has size at most O(

√
n),

and hence λ, the doubling constant [19] of this metric
is also O(

√
n).

At this point, it is worthwhile to mention that
because property (2.2) is required to hold for every net
of M in Definition 2.1, it is hard to approximate the
correlation dimension of a given metric.

Theorem 2.2. Given a metric M = (V, d) with n
points, it is NP-hard to distinguish between the cases
dimC(M) = O(1) and dimC(M) = Ω(log n).

The proof of Theorem 2.2 involves a reduction from
the maximum independent set [21] problem, and is
given in the full version. Observe that this result rules
out any non-trivial approximation of the correlation
dimension; however, this does not necessarily rule out
using correlation dimension for the design of algorithms.
In particular, the algorithms we design do not require us
to know the correlation dimension of the input metric
up-front; while the TSP approximation algorithm of
Section 5 seems to require this information at first
glance, this issue can be resolved using standard “guess-
and-double” ideas.

3 Sparse Spanners

We begin our study of metrics with small correlation di-
mension with a simple construction of sparse spanners;
this will also serve to introduce the reader to some of the
basic concepts we will use later. In this section, we show
that metrics with bounded correlation dimension ad-
mit (1+ε)-stretch spanners with Oε(min{n1.5, n log ∆})
edges, where ∆ = maxx,y d(x,y)

minx,y d(x,y) is the aspect ratio of the
metric. This should be contrasted with a trivial lower
bound for general metrics: any spanner with stretch less
than 3 for Kn,n requires Ω(n2) edges.

Theorem 3.1. (Sparse Spanner Theorem)
Given a metric M = (V, d) with dimC(M) ≤ k,
and ε > 0, there exists a (1 + ε)-spanner with
ε−O(k) min{n1.5, n log ∆} edges.

The algorithm for constructing sparse spanners for
metrics with bounded correlation dimension is the same
as that for doubling metrics in [10]; the proofs, of course,
are different, and are deferred to the full version.

Note that for metrics with bounded doubling di-
mension, one can get a (1+ε)-spanners with O(nε−O(k))
edges [10, 20]. However, we show that such a result is
not possible with bounded correlation dimension, and
that the upper bound in Theorem 3.1 is indeed tight.

Theorem 3.2. (Lower Bound on Sparsity)
There exists a family of metrics with bounded cor-
relation dimension such that for each metric, any
1.5-stretch spanner has at least Ω(n1.5) edges.

4 Algorithms for Metrics with Bounded
Correlation Dimension

Having defined the notion of correlation dimension,
and having seen a simple warm-up (obtaining sparse
spanners), we now turn to devising algorithms for metric
spaces, whose performance is parameterized by the
correlation dimension of the underlying metric space.
This task is complicated by two issues:
(1) Global versus Local Properties. The notion
of correlation dimension is global, in the sense that
while there may be pockets of “high-complexity” in
a metric with low dimC , the complexity is “low on
the average”. One should compare this to previous
notions of dimension like doubling, where the metric was
well-structured in every region and at every scale, and
thus local arguments would usually suffice to give good
algorithms. In sharp contrast, we are forced to develop
algorithms that take into account this global averaging.

As an example, consider the TSP: suppose the input
graph consists of a max-SNP hard (1, 2)-TSP instance
on

√
n nodes, which is attached to one vertex of a unit

grid. If we want to obtain a (1 + ε) approximation to
TSP, our algorithm would have to cluster the graph into
the “easy” part (the grid), and the “complicated” part
(the (1, 2)-TSP instance), and perhaps run a (Q)PTAS
on the former part and a constant approximation algo-
rithm on the latter part. Of course, the input metric
with dimC = O(1) may not have such an obvious clus-
tering.
(2) Doubling results may not be applicable. As
noted in the discussion after Lemma 2.1, metrics with
dimC = O(1) cannot have near-uniform sets of size
ω(
√

n), and hence their doubling dimension is at most
1
2 log2 n + O(1). Hence, while we can conceivably use



results for doubling metrics, most of the current results
are no longer interesting for that range of doubling
dimension: e.g., the results for TSP have a running
time of exp{(ε−1 log n)O(dimD)}, and hence plugging in
dimD = 1

2 log2 n does worse than n!, the running time
for an exact algorithm. Again, our algorithms will try
to avoid this simple-minded reduction to doubling, even
though they will rely on many ideas developed in the
doubling metrics literature.
In the rest of the paper, the two main algorithmic results
we present are:
(1) Weak TSP Approximation & Embedding
into Small Treewidth Graphs. We first show how to
solve the TSP on metrics with low correlation dimension
within (1 + ε) in time 2

√
n·(ε−1 log n)O(dimC )

. As a by-
product, we also get Theorem 1.2: a random embedding
of the original metric into a graph with treewidth√

n · (ε−1 log n)O(dimC). Details of this result appear in
Section 4.1.

To prove these results, we adopt, adapt and extend
the ideas of Arora [4] and Talwar [39]. Observe that all
the previous proofs use “O(1)-padded decompositions,”
and metrics with small dimC may not admit such
good padded decompositions, since padding is a local
property, and our metric may have some dense regions.
We show how to get around this requirement: we
use known padded decompositions with poorer padding
guarantees. Moreover, we will see that we also need to
carefully alter the boundaries of clusters to serve our
purpose.
(2) (1 + ε)-Approximations in Sub-exponential
Time. The ideas we use for the previous algorithm are
still fairly local, and hence do not fully use the power
of having small correlation dimension. In Section 5, we
show how to improve our partitioning scheme, and use
an improved global charging scheme to get our main
result Theorem 1.3: an approximation scheme for TSP
that runs in sub-exponential time.

4.1 An Algorithm for TSP in Time 2Õ(
√

n) Given
an ε ≤ 1, we consider randomized (1+ε)-approximation
algorithms for TSP on a metric M = (V, d) on n points
and dimC = k. Let OPT be the cost of the optimal
TSP.

As is well-known, we can assume the aspect ratio
is n/ε (see, e.g., [4, 39]), Moreover, we assume that
ε > 1/n, or else we can solve it exactly in 2O(ε−1 log ε−1)-
time. We use the following main ideas, which were also
used in obtaining known (Q)PTAS’s for TSP [4, 39]:
(a) We find a good probabilistic hierarchical decompo-
sition into clusters with geometrically decreasing diam-
eters, (b) we choose small set of portals in each cluster
in this decomposition by taking a suitably fine net of

the cluster, and force the tour to enter and leave the
cluster using only these portals, i.e., the tour is portal-
respecting. The main structure lemma shows that the
expected cost of the best portal-respecting tour is at
most (1 + ε) times its original cost. Finally, (c) we find
the best portal respecting tour using dynamic program-
ming in a way similar to those used by Arnbourg and
Proskurowski [3] and Arora [4]. For a cluster C, if there
are only B portals among all its child clusters, the time
to build the table for C is at most BO(B) = 2O(B log B).
Since the total number of clusters is poly(n), total run-
time is poly(n)2O(B log B). Note that for doubling met-
rics, since each cluster had only 2O(dimD) child clusters,
each with O(ε−1 log n)O(dimD) portals, the runtime is
quasi-polynomial [39].

The main problem that we face is that while we can
ensure the number of portals in any single cluster are at
most ≈ O(

√
n) using Lemma 2.1, each cluster may have

as many as
√

n child clusters, and hence the size B of the
union of portals for all the child clusters may be close
to Θ(n). To take care of this problem, we need to find
a new partitioning and portaling scheme, such that the
union of the portals in each cluster and in all its child
clusters has size only Õ(

√
n); clearly this will require

us to do the partitioning and portal-creation steps in a
dependent fashion, with each step guiding the other.

4.2 A Partitioning and Portaling Algorithm
In this section we give a concrete construction of a
probabilistic hierarchical decomposition and portaling
scheme such that both the padding parameter and the
number of child portals for each cluster are small.

Observe that if the child portals of each cluster
form a packing, then using the bounded correlation
dimension assumption and Lemma 2.1, we can show
that B is small for each cluster. If we use a standard
hierarchical decomposition (e.g. one by Bartal [7] or
FRT [15]) and choose an appropriate net for each cluster
to be its portals, then the child portals of a cluster need
not be a packing, because portals near the boundary
of different clusters might be too close together. We
resolve this by using Bartal’s decomposition [7] a second
time. After obtaining a standard decomposition, we
apply the decomposition technique again to make minor
adjustment to the boundaries of clusters. Here is
the main result that describes the properties of the
hierarchical decomposition and portaling scheme.

Theorem 4.1. (Main Partition-&-Portal Theorem)
Given a metric (V, d) with dimC = k, and a parameter
β ≤ 1, there is a polynomial-time procedure that returns
a probabilistic hierarchical partition of the metric with

(A1) The diameter of a height-i cluster is guaran-
teed to be at most Di + βDi−1, where Di = 4i.



(A2) The probability of (u, v) being separated at
height i is at most O(log2 n)× d(u,v)

Di
.

Moreover, each cluster C is equipped with a set of
portals U(C) such that the following properties hold:

(B1) For each non-root cluster C at height-i, the set
of portals U(C) forms a β Di-covering of C.

(B2) Moreover, the set of portals in C and all its
children form a (β/4) Di−1-packing.

4.2.1 The Randomized Partitioning and Por-
taling Algorithm Consider the metric (V, d) with unit
minimum distance, and hence the aspect ratio being
the diameter ∆ of the metric. (Moreover, ∆ ≤ n/ε,
as noted before.) Let H := 4, and L := dlogH(n/ε)e.
Set DL := ∆, and Di−1 := Di/4, as discussed before.
We will give a hierarchical decomposition of (V, d) such
that for each height-i cluster cluster C, the set U(C) of
portals is a is a βDi-covering of C and its child portals
is a 1

4βDi−1-packing, as described in the statement of
Theorem 4.1.

1. Let PL = {V } and U(V ) = ∅.

2. For i = L− 1 down to 0,

For each height-(i + 1) cluster C ∈ Pi+1,

(a) Apply Bartal’s probabilistic decomposition [7]
on cluster C, using n as an upper bound on the
number of points in C, such that the diameter
of each resulting sub-cluster is at most Di.
This induces an initial partition P̃i on C.

(b) Boundary Adjustment using Bartal’s decom-
position [7]

i. Note that U(C) is a 1
4βDi+1-packing and

Di+1 = 4Di. Augment U(C) to a βDi-
net Û(C) of C. Let Z be the set of points
z in C that has no point in Û(C) ∩ P̃i(z)
within distance βDi.

ii. Let W := Z, X := C, and U(C) := ∅.
iii. While W is non-empty,

A. Pick any point u from W . Let r :=
βDi/4 ln n. Pick z ∈ [0, 1

4βDi] ran-
domly from the distribution p(z) :=

n
n−1 ·

1
r e−z/r. Let B := B(u, 1

4βDi +
z).

B. If B contains some point c in Û(C),
then all points in B ∩X are moved to
the height-i cluster currently contain-
ing c, otherwise, add u to U(C), and
move all points in B∩X to the height-
i cluster currently containing u.

C. Remove points in B from both X and
W .

iv. Let the new partition on C be Pi. For
each new height-i cluster C ′, let U(C ′) :=
C ′ ∩ (Û(C) ∪ U(C)).

4.2.2 Properties of the Decomposition Scheme
The proofs of the following results are given in the full
version.

Lemma 4.1. (Correctness) For i < L, for any
height-(i + 1) cluster C produced by the Decomposition
Algorithm, then (1) for any child cluster C ′ of C, the
set U(C ′) is a βDi-covering of C ′, and (2) the union of
U(C ′)’s, over all the child clusters C ′ of C, is a 1

4βDi-
packing.

Lemma 4.2. (Separation Probability) For each
level i, Pr[(u, v) separated by Pi] ≤ O(log2 n)d(u,v)

Di
.

In the following lemma, we use the definition of
correlation dimension to bound the number of child
portals in a cluster.

Lemma 4.3. (Small Number of Child Portals)
Suppose the metric space (V, d) has correlation di-
mension at most k. For all clusters C, the union of
U(C ′) over all child clusters C ′ of C has size at most
(16/β + 4)k/2

√
n.

4.3 The First TSP Algorithm Using the parti-
tioning and portaling scheme described in Section 4.2
and the dynamic program as described in [4], we have
an algorithm for approximating TSP.

Theorem 4.2. (The First TSP Algorithm)
There is a randomized algorithm for metric TSP, which
for metrics with dimC = k, returns a tour of expected
length at most (1 + ε)OPT in time 2((log n)/ε)O(k)√n.

Proof. Since the aspect ratio of the metric is at most
n/ε, the height of the decomposition is L = O(log n

ε ).
By Theorem 4.1, each edge (u, v) of the optimal tour
is cut at height-i with probability αd(u,v)

Di
with α =

O(log2 n), in which case it suffers a length increase of
O(β Di) to make it portal-respecting.

We set β := O( ε
Lα ) to ensure that the total increase

in length is at most αβ L = εd(u, v). Summing over all
edges of OPT implies that the the expected length of
this tour (and hence the length of the optimal portal-
respecting tour) is at most (1 + ε)OPT.

We need to also bound the running time of the
dynamic program: recall that an upper bound B for



the number of portals in each cluster and its children
would imply a BO(B) runtime.

By Lemma 4.3, it follows that B ≤ (16/β +
4)k/2

√
n. Hence, the running time of the algorithm is

nL · 2O(B log B) = exp{(ε−1 log n)O(k)
√

n}, as required.
2

4.4 Embedding into Small Treewidth Graphs
Observe that our probabilistic hierarchical decomposi-
tion procedure actually gives an embedding into a distri-
bution of low treewidth graphs. Suppose we are given a
particular hierarchical decomposition together with the
portals for each cluster. We start with the complete
weighted graph consistent with the metric, and delete
any edge that is going out of a cluster but not via a
portal. If the number of child portals for each cluster is
at most B, then the treewidth of the resulting graph is
at most B. From the padding property of the decompo-
sition, the expected distortion of the distance between
any pair of points is small. Using the same parameters
as in the proof of Theorem 4.2, we have the following
theorem.

Theorem 4.3. (Embedding into Small
Treewidth Graphs) Given any constant 0 < ε < 1
and k, metrics with correlation dimension at most k
can be embedded into a distribution of graphs with
treewidth ((log n)/ε)O(k)

√
n) and distortion 1 + ε.

5 A Sub-Exponential Time (1 + ε)-
Approximation for TSP

In the previous section, we saw how to get a (1 +
ε)-approximation algorithm for TSP on metrics with
bounded correlation dimension, essentially using the
idea of random embeddings into small treewidth graphs.
The approach gives approximations for any problem on
metric spaces which can be solved for small-treewidth
graphs: however, it is limited by the fact that the

√
n-

lollipop graph metric has bounded correlation dimen-
sion, and randomly (1 + ε)-approximating this graph
requires the use of graphs with large treewidth.

In this section, we get an improved approximation
for TSP using another useful observation. Consider
the bad examples in Figure 1: the contribution to
OPT due to the dense structure is much smaller than
that from the low-dimensional ambient structure. For
example, for the sub-grid with a (1, 2)-TSP instance
tacked onto it (Figure 1(b)), we can obtain a (1 + ε)-
approximation to TSP on the grid (which contributes
about Θ(n) to OPT), and stitch it together with a
näıve 2-approximation to the hard instance (which only
contributes Θ(

√
n) to OPT). Of course, this is a simple

case where the clustering is obvious; our algorithm

must do some kind of clustering for all instances.
Moreover, this indicates that we need to do a global
accounting of cost: the sloppy approximation of the
“hard” subproblem needs to be charged to the entire
OPT, and not just the optimal tour on the subproblem.

Here are some of the issues we need to address (most
of which are tied to each other), along with descriptions
of how we handle them:
(1) Avoiding Large Tables. The immediate hurdle
to a better runtime is that some cluster may have
Θ(
√

n) child portals and we have to spend
√

n
√

n

time to compute the tables. Our idea here is to set
a threshold B0 such that in the dynamic program,
if a cluster has more than B > B0 portals among
its children, we compute, in linear time, a tour on
C that only enters and leaves C once, but now we
incur an extra length of O(B × diam(C)) in the final
tour we compute. In the sequel, we call this extra
length the “MST-loss”. This step implies that we need
only spend min{O(B), 2O(B0 log B0)} time on any table
computation. The patching procedure used here is
reminiscent of the patching from [4], and is described
in Section 5.2.
(2) Paying for this Loss. In contrast to previous
works, the “MST-loss” due to patching cannot be
charged locally, and hence we need to charge this to
the cost of the global OPT. Using bounded correlation
dimension, we can charge all the MST-losses over the
entire run of the algorithm to εOPT.
(3) A Potential Charging Scheme. To be able to
charge MST-losses in a global manner, we look at the
hierarchical decomposition. The extra length incurred
for patching height-i clusters is proportional to the
number of child portals of the clusters to which patching
is applied. If the union of all the height-(i − 1) portals
in the decomposition satisfied some packing condition,
we could use Lemma 2.1 to bound the number of
them, and hence the total MST-loss at height-i of the
decomposition tree. However, the techniques developed
so far (in Section 4.1) can only ensure that the child
portals of a single cluster form a packing: we clearly
need new techniques.
(4) A New Partitioning & Portaling Procedure.
The method in the last section took a cluster C at
height-(i + 1), cut it up, and then adjusted the bound-
aries of the subclusters created at height-i to ensure that
the union of the portals in these subclusters formed a
packing. However, the portals in all the grand-children
of C (i.e., all the clusters at height-(i − 1) below C)
may not form a packing: hence we have to re-adjust the
boundaries created at height-i yet again. In fact, when
clusters at a certain level are created, the boundaries
for clusters in all higher levels have to be readjusted.



This can potentially increase the probability that a pair
of points are separated at each level. This is resolved
by ensuring that cluster diameters fall by logarithmic
factors instead of by constants.
(5) Avoiding Computation of Correlation Di-
mension. As given in Theorem 2.2, it is hard to ap-
proximate the correlation dimension of a given metric.
However, the algorithm can guess the correlation dimen-
sion k of the input metric. It starts from small values
of k and for each net encountered, it takes polynomial
time to verify the bounded average growth rate prop-
erty (2.2). Whenever property (2.2) is violated for some
net, we know the current estimation of the correlation
dimension is too small. The value of k is increased and
the algorithm is restarted. Since the correlation dimen-
sion is at most O(log n) and the running time is doubly
exponential in k, the extra time incurred for trying out
smaller values of k would not affect the asymptotic run-
ning time.

The general framework of using hierarchical decom-
position and portals to approximate TSP still applies
here. We give the properties of a more sophisticated
partitioning and portaling scheme in Section 5.1, and
analyze the MST-loss incurred from patching in Sec-
tion 5.2.

5.1 The Modified Partitioning and Portaling
Algorithm The main difference is that when a height-
i partition is performed, all higher height partitions are
modified, in order to ensure that all height-i portals
form a packing. Let H ≥ 4 be a parameter (possibly
depending on n) that will be determined later. Let
L := dlogH(n/ε)e. Set DL := ∆, the diameter of (V, d);
Di−1 := Di/H. As before, the diameter of a height-
i cluster is at most Di. The details of the modified
construction appear in the full version.
Properties of the Modified Decomposition
Scheme. The proofs of the following lemmas appear
in the full version.

Lemma 5.1. The probability that a pair (u, v) of points
is separated by the height-i partition Pi is at most
(4t log n)L · d(u,v)

Di
= O(log n)L · d(u,v)

Di
.

Lemma 5.2. For each height i, the set Ui of height-i
portals is a 1

4βDi−1-packing and for each height-i cluster
C, the set Ui ∩ C of portals is a βDi-covering of C.

5.2 Handling Large Portal Sets via Patching
(1) Patching a single cluster. If a cluster C has
many child portals (say about

√
n portals), it is too

expensive to compute the entries corresponding to C.
In particular, computing the standard TSP table for
this cluster would require O(

√
n
√

n) = 2Õ(
√

n) time,

which in itself would dash all hopes of obtaining a sub-
exponential time algorithm. To avoid this, we do a two
step patching described in the following.

The first idea is simple: we can convert any given
tour such that it enters the cluster C through some
portal x, performs a traveling salesperson tour on points
in cluster C, and leaves cluster C through x, incurring
an extra length of BD. However, computing such a tour
within the cluster C requires work as well, and we need
to ensure that this computation can be done fast: if
cluster C has too many child portals, it would be too
expensive to compute the optimal tour inside C. Hence,
we need a second patching step. We defer the details
to the full version and state the result of the patching
process.

Proposition 5.1. Suppose cluster C has diameter D,
and that there are at most B child portals in the cluster
C. Then, given any tour on the vertices V , the tour can
be modified such that it enters and leaves the cluster C
through a single portal; moreover, such a tour within
cluster C can be computed in time O(B), from the
entries in the child clusters of C, such that the total
cost of patching cluster C is at most 2BD.

(2) Patching All Dense Clusters. We set a thresh-
old B0 and apply patching to all clusters having more
than B0 child portals. Using the fact that the correla-
tion dimension is bounded and from Lemma 5.2 that all
the portals in one level form a packing, we can bound
the cost of patching. We defer the details to the full
version and state the following result.

Lemma 5.3. Suppose the metric has correlation dimen-
sion at most k and patching is applied whenever a clus-
ter has more than B0 child portals. Then, the total extra
cost incurred by patching is at most L

B0
( 8H

β )k+1OPT.

5.3 The Second TSP Algorithm

Theorem 5.1. (Sub-exponential time algorithm
for TSP) For any metric with correlation dimension
k, we can give a randomized (1 + ε)-approximation for
TSP in time exp{(ε−12

√
log n log log n)4k} = 2Oε,k(nδ), for

any δ > 0.

Proof. We create a probabilistic hierarchical decompo-
sition, where the diameter at height-i is Di = Hi for
some parameter H ≥ 4. Hence the depth of the tree is
L := Θ(logH(n/ε)). As indicated above (and proved in
Lemma 5.1), the probability that (u, v) are separated at
level-i is at most αd(u,v)

Di
, with α = O(log n)L. More-

over, portals in clusters of diameter Di form a βDi-
covering and since there are L levels, the total increase



in the TSP length is O(α β L) OPT. To make this at
most ε/2, we set β = O(ε/Lα).

Finally, from Lemma 5.3, the length increase from
patching (the “MST-loss”) is L

B0
( 8H

β )k+1OPT. To make
this at most ε/2 as well, we set pick B0 such that
L
B0

( 8H
β )k+1 = ε/2.
The only parameter left to be chosen is H. Observe

that the running time depends on B0 and so H is chosen
to minimize B0. Note that B0 = (L

ε )k+2O(Hα)k+1.
Observe that Hα is the dominating term, and also that
as H increases, α decreases. It happens that in this case
the best value is attained when H = α. This is satisfied
when log H =

√
log n

ε log log n.
It follows that it suffices to set the threshold B0 =

ε−(k+1)22(k+1)
√

log n
ε log log n = (ε−1 · 2

√
log n log log n)3k,

recalling ε > 1
n . Hence, we obtain a tour with expected

length (1 + ε) times that of the optimal tour in time

nL·2O(B log B) = exp{(ε−1·2
√

log n log log n)4k} = 2Oε,k(nδ),

for any δ > 0.

6 Summary and Conclusions

We have considered a global notion of dimension, which
tries to capture the “average” complexity of metrics:
our notion of correlation dimension captures metrics
that potentially contain small dense clusters (of size up
to O(

√
n)) but have small average growth-rate. We

show that metrics with a low correlation dimension
do indeed admit efficient algorithms for a variety of
problems.

Many questions remain open: can we improve the
running time of our algorithm for TSP? A more open-
ended question is defining other notions of dimension
for metric spaces: it is fairly unlikely that one notion
can capture the complexity of metrics (both the local
complexity, as in doubling, as well as the global behav-
ior). Since one definition may not fit all situations, it
seems reasonable to consider several definitions, whose
properties can then be exploited under the appropriate
circumstances.
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