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ABSTRACT
Consider the following problem of serving impatient users:
we are given a set of customers we would like to serve. We can
serve at most one customer in each time step (getting value
vi for serving customer i). At the end of each time step, each
as-yet-unserved customer i leaves the system independently
with probability qi, never to return. What strategy should
we use to serve customers to maximize the expected value
collected?

The standard model of competitive analysis can be applied
to this problem: picking the customer with maximum value
gives us half the value obtained by the optimal algorithm,
and using a vertex weighted online matching algorithm gives
us 1− 1/e ≈ 0.632 fraction of the optimum. As is usual in
competitive analysis, these approximations compare to the
best value achievable by an clairvoyant adversary that knows
all the coin tosses of the customers. Can we do better?

We show an upper bound of ≈ 0.648 if we compare our
performance to such an clairvoyant algorithm, suggesting
we cannot improve our performance substantially. However,
these are pessimistic comparisons to a much stronger adver-
sary: what if we compare ourselves to the optimal strategy
for this problem, which does not have an unfair advantage?
In this case, we can do much better: in particular, we give
an algorithm whose expected value is at least 0.7 of that
achievable by the optimal algorithm. This improvement is
achieved via a novel rounding algorithm, and a non-local
analysis.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems; G.2.2 [Discrete Mathematics]: Graph the-
ory—Graph algorithms
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1. INTRODUCTION
The presence of impatient users is a common phenomenon

in many contexts, and in this paper we initiate an algorithmic
investigation of impatience. In particular, we consider the
following problem of serving impatient users: we are given a
set of n customers we would like to serve. At each time step,
we look at the customers still in the system and choose one
of them to serve: if we serve customer i, we get a value of vi.
This customer, once served, departs from the system—we
serve each customer only once. Moreover, the customers
are impatient: at the end of each time step, each customer
still in the system may “time out”. We model this timing-
out process in a stochastic way. After every timestep each
customer i decides to stay in the system independently with
probability pi, and leaves, never to return, with the remaining
probability 1− pi. (Hence, customer i remains in the system
Ti ∼ Geom(pi) time steps, or fewer, if she was served earlier.)
Our goal: to devise a strategy for serving customers, so
that we (approximately) maximize the expected total value
obtained.

Not only is this problem interesting in its own right, it also
focuses attention on a new set of unexplored problems lying
in the intersection of queueing theory/stochastic processes
and approximation algorithms. It combines elements from
both disciplines: the population evolves according to a nat-
ural stochastic process, but the values vi and probabilities
pi are chosen in a worst-case fashion and not drawn from
some underlying distribution themselves. To the best of
our knowledge, this problem has not been studied in either
literature. However, we believe that the problem is worth
studying as it tries to answer a very basic question: what
shall we do next when options can disappear? How shall we
trade-off the probability of timing-out of the client with its
value? Should clients with high value and low impatience
be served before clients with low value and high impatience?



We show in this paper that this question does not have a
straight forward answer, and even understanding the case
when all clients are identical is non-trivial.

From an algorithmic point of view, such a problem natu-
rally lends itself to investigation in the competitive analysis
framework, where we compare ourselves to an all-knowing
“clairvoyant” adversary who knows the values of the timeouts
Ti. A simple online algorithm is to ignore the probabilities
pi, and serve the remaining customer with the highest value
vi, and it is easy to show this is 1

2
-competitive even against

the clairvoyant adversary (see Section 2 for proofs of claims
in this paragraph). An example with two equal clients shows
that in the case of non-stochastic adversarial timeouts, this
greedy approach cannot get more then 1

2
of the optimum.

However, even in our much weaker stochastic model greedy
is not better—we give an upper bound example of 1

2
+ ε,

for any ε > 0. We can do something better: we can model
this process as an online bipartite matching problem with
customers on one side, and time steps on the other, where
at each timestep we only need to know which customers
are still in the system: using the optimal results of Aggar-
wal et al. [1] for vertex-weighted online matching, we get a
(1− 1/e)-competitive algorithm.

However, these results make an unfair comparison to a
clairvoyant adversary. Instead, we would like to level the
playing field, and compare our algorithm to the best algo-
rithm of its class. This would not be a concern if we could
get much better competitive ratios against clairvoyant adver-
saries. However, our first result shows that this is not the
case, even for the simplest setting where all the customers
are identical.

Theorem 1.1 There exist instances with n identical cus-
tomers, where the optimal algorithm gets at most 0.648 . . .+ε
times the value obtained by the optimal clairvoyant algorithm

w.p. 1− e−Ω(ε2n).

However, if we compare ourselves to the optimal non-
clairvoyant algorithm, our next result shows how to obtain a
better approximation.

Theorem 1.2 There is a randomized algorithm that for any
instance I, obtains an expected value of at least (1− 1/(2e−
2)) ≥ 0.709 times an LP relaxation, and hence at least 70.9%
of the non-clairvoyant optimum.

Our algorithm is based on rounding a linear-programming
relaxation of the problem. The näıve rounding of the LP
solution gives only a (1− 1/e)-approximation. The improved
approximation is based on a novel rounding algorithm that
moves LP value between the rounds, and hence avoid lower
bounds on a purely local analysis.

1.1 Some Important Notation
In the paper, we will use “items” instead of “customers”

or “users”, and “picking items” will represent “serving users”.
Again, the value of item i is vi, its survival probability is pi.
Time begins with t = 0, and hence the probability of i being
alive at time t (a.k.a. round t) is pti. A clairvoyant algorithm
is one that knows the coin tosses of all the items (and hence
when the item dies/disappears), a non-clairvoyant or online
algorithm does not know in time t which items will be survive
to round t+ 1.

1.2 Related Work
There has been a significant body of work on stochas-

tic optimization in the operations research community (see,
e.g., [3]). The work from a worst-case analysis and approx-
imation algorithms viewpoint is more recent, less than a
decade old, starting with the work on two-stage stochastic
covering problems [8, 16, 11, 17]. A prominent class of prob-
lems deals with situations where the input is given a set
of random variables, the distributions of which are known
up-front, but the actual realizations are only revealed upon
the algorithm probing them; examples of these are stochastic
knapsack [7] and stochastic matching [4]. The challenge in
these problems is the hidden stochastic information, whereas
our problem is a full-information problem, where the chal-
lenge is to cope with the stochastic departure of the clients,
and the associated loss in value.

A line of work relevant to our problem is that on online
bipartite matching, where vertices on one side are given
up front, and vertices on the other side (and the edges be-
tween them) are revealed online. This started with the
paper of Karp et al. [14] showing that this problem admits
a (1− 1/e)-competitive randomized algorithm, and this is
the best possible. Aggarwal et al. [1] show the same optimal
approximation guarantee for the case where the known ver-
tices have weights, and one wants to maximize the weight of
matched nodes. (The connection between this problem and
our work is sketched in Section 2.) Better results are known
for the case where each arriving vertex is an i.i.d. draw from
a known distribution [10] or when the unknown vertices are
chosen by an adversary but appear in random order [13, 15].

Another extensively studied related problem is online
bounded-delay buffer management, which can be cast as
vertex-weighted bipartite matching where each vertex is con-
nected to a contiguous set of vertices on the other side. In
contrast to our model (a) items arrive over time instead of
all in the first step and (b) the deadline of items are known
instead of being modelled by a (known) probability distri-
bution. In particular, Chin and Fung [6] prove an upper
bound of 4/5 on the competitive ratio of any randomized
algorithm for this related problem. On the positive side,
Chin et al. [5] gave a (1− 1/e)-competitive randomized on-
line algorithm for this related problem. Jeż [12] also gives a
(1− 1/e)-competitive randomized algorithm using different
techniques. This later algorithm and proof can be easily
adapted to handle our problem, even if items are not all
available from the start but arrive online.

Our problem also bears some similarities to problems of
serving clients with fixed service times and with impatient
customers, that have been studied in the queuing theory and
stochastic processes literature [2, 18]. However, the problems
studied there have a different flavor, i.e., clients wait in
fixed-order queues, but leave the queue according to some
distribution. In such models one is interested in analyzing
the average queuing time in the steady state of the system,
and not the value collected from customers. The question of
whom to serve next is not studied in these models.

2. SIMPLE SOLUTIONS

Lemma 2.1 The greedy algorithm that always picks the item
with highest value is 1

2
-competitive against a clairvoyant

adversary, and even against a non-clairvoyant adversary it
does not do better.



Proof. We first observe that the value of the items picked
by the clairvoyant adversary and not picked by the greedy
algorithm cannot be higher then the total value gained by
the greedy algorithm. This is because in every step, in which
the adversary picks such an item, the greedy algorithm picks
an item with at least the same value. Hence, v(opt) ≤
v(opt \ alg) + v(alg) ≤ 2v(alg), where alg is the set of items
picked by the greedy algorithm, opt is the set of items picked
by the adversary, and v(S) denotes the total value of items in
set S. For the upper bound, consider two items with p1 = 1,
v1 = 1 + ε and p2 = 0, v2 = 1. The greedy algorithm collects
1 + ε value, while an optimal non-clairvoyant algorithm
collects 2 + ε.

As the above proof shows, the greedy algorithm is non-
optimal with respect to a non-clairvoyant adversary, even for
two items. The following is easy to show.

Lemma 2.2 The optimal online strategy for two items with
values v1 and v2 and survival probabilities p1 andp2 is to pick
item i maximizing qivi = (1− pi)vi.

What this lemma says is that for two items we should min-
imize the expected lost value, which seems to be a reasonable
strategy. One could hope that it is actually the optimal one.
However, as the following theorem shows, it can perform
arbitrarily bad (proof in Appendix A).

Theorem 2.3 The strategy of always picking an item max-
imizing qivi = (1 − pi)vi does not guarantee a constant
competitive ratio with respect to a non-clairvoyant adversary.

Call an algorithm ordering-based if, for every instance, it
follows a fixed ordering of items, i.e. it picks items in a fixed
order, skipping over the ones that are no longer alive. An
interesting consequence of the proof of Theorem 2.3 is the
following.

Corollary 2.4 There is no ordering-based algorithm that is
optimal with respect to a non-clairvoyant adversary.

Proof. Consider any instance with all pi 6= 0. For any pair
of items (v1, p1), (v2, p2) it is possible, that at some point
they are the only two items left (unless one of them is always
picked in the first round). Therefore, any optimal ordering-
based algorithm needs to always pick the item with highest
(1 − pi)vi first. It follows that if there existed an ordering
based optimal algorithm, it would need to pick items in order
of decreasing (1− pi)vi (except for, perhaps, the first item).
The example used in the proof of Theorem 2.3 shows that
this strategy is not optimal.

As mentioned in the introduction, it is possible to be
(1− 1/e)-competitive in the case when items are allowed to
arrive at arbitrary timesteps. Even the following stronger
statement holds.

Lemma 2.5 Against a clairvoyant adversary, there is a (1−
1/e)-competitive algorithm even in the case of adversarial
arrivals and departures of items.

This follows by [1], when we observe that our model can be
interpreted as a vertex weighted bipartite matching problem,
where vertices on one side correspond to time rounds, whereas

vertices on the other side correspond to items. Moreover,
since the algorithm in [1] does not need to know the values
of the items before timesteps in which it can be picked, this
reduction also works when the items arrive online.

3. AN UPPER BOUND AGAINST CLAIRVOY-
ANT ADVERSARIES

Let us consider the case where there are n items, each
with the same survival probability p = k−1

k
for an integer

value k to be chosen later. (This parameter k will lie in
[n/2, n].) We will show that the best clairvoyant algorithm
can pick ≈ k(1 + ln n

k
) items with high probability. Since

all items are identical, there is only one reasonable non-
clairvoyant algorithm, which is to pick one of the remaining
items at each time, and we show that this algorithm gets
≈ k(ln(1 + n

k
)) items, again with high probability. Hence,

the competitive ratio against the clairvoyant adversary is
ln(1 + n

k
)/(1 + ln n

k
), which is minimized for k ≈ n/1.84,

taking on value 0.64842 . . . This shows that the (1 − 1/e)-
competitiveness given by the reduction to vertex-weighted
online matching cannot be significantly improved unless we
compare to a non-clairvoyant optimum.

3.1 Clairvoyant Algorithms
First, let us give a lower bound on the performance of a

clairvoyant algorithm, which knows when the items die, and
hence can choose items accordingly.

Theorem 3.1 For any k ∈ [n/2, n], and any constant ε ∈
[0, 1], there exists a clairvoyant adversary that can pick (1−
ε)(k − 1)(1 + ln(n/k)) items with probability at least 1 −
n e−Ω(ε2k).

Proof. Let e1, . . . , en be the items in the order in which
they die, i.e., e1 dies first and en dies last. Ties between
items dying in the same step are broken arbitrarily. Define
` = n− k(1− ε)p(1 + ln(n/k)). At step t ∈ [0, n− d`e], pick
item et+d`e (if alive). If all these items are alive, we can
collect at least n − ` items. It remains to show that, with
high probability, all items we are trying to pick are indeed
alive at the time we pick them.

Fix any step 1 ≤ t ≤ n − `. We need an upper bound
on the probability of the bad event that at least t+ ` items
died in steps 0, . . . , t− 1. Let Xi be the indicator r.v. for the
ith item dying in the first t steps, and let X =

∑n
i=1Xi. It

has expectation E [X] = n(1− pt), and we are interested in
Pr [X ≥ t+ `]. Equivalently, defining β := t+`

E[X]
− 1, we wish

to upper bound Pr [X ≥ (1 + β)E [X]]. To apply a Chernoff
bound, we would like bounds for β and E [X].

Claim 3.2 β · E [X] ≥ εpk = ε(k − 1), for k ≤ n.

Proof. Substituting for β, ` and E [X] = n(1− pt) we get

β · E [X] = t+ `− E [X]

= t+ n− k(1− ε)p(1 + ln(n/k))− n(1− pt)
= t+ npt − kp(1 + ln(n/k)) + εkp(1 + ln(n/k))

≥ ln(−1/(n ln p))− 1

ln p
− kp(1 + ln(n/k))

+ εkp(1 + ln(n/k))

≥ εkp(1 + ln(n/k)) ≥ εkp ,



where the third line follows from the fact that t + npt is
minimized for t = ln(−1/(n ln p))/ ln p; the fourth line uses
−1/k = p − 1 ≥ ln p ≥ 1 − 1/p = −1/(kp), where we
replace ln p in the denominator by −1/kp and the ln p in the
numerator by −1/k. The last inequality follows from k ≤ n.

Since E [X] = n(1 − pt) ≤ n the claim also implies β ≥
ε(k − 1)/n ≥ ε/4 (for n ≥ 4).

We can now apply a Chernoff bound to get the desired
upper bound on Pr [X ≥ t+ `], which is the probability that,
in step t, we can pick the designated item.

Pr [X ≥ t+ `] = Pr [X ≥ (1 + β)E [X]] ≤ exp

(
−β

2E [X]

2 + β

)
≤ exp

(
−βε(k − 1)

2 + β

)
≤ exp

(
−ε

2(k − 1)

8 + ε

)
,

where the last inequality follows since β ≥ ε/4. Taking a
union bound over the failure probability of at most n steps,
completes the proof of Theorem 3.1.

3.2 Non-Clairvoyant Algorithm
Since the items are identical and each dies in a memoryless

way, there is only one non-clairvoyant algorithm: pick an
arbitrary item at each step. We now give bounds on its
performance. Recall that p = k−1

k
for some k ∈ Z. Here, we

no long require that k ≥ n
2

.

Theorem 3.3 For small enough ε > 0

Pr

[
alg ≥ logp

k − 1

n+ k − 1
+ εk

]
≤ e−Ω(ε2k)

and

Pr

[
alg ≤ logp

k − 1

n+ k − 1
− εk

]
≤ e−Ω(ε2k).

Proof. Consider the following process. We start with a bin
of n balls marked alive and p

1−p = k − 1 balls marked dead.

In each step, we first mark a single alive ball as dead. (If
there are no alive balls to mark at the beginning of a step, we
put an additional dead ball into the bin, and call it an extra
dead ball.) After this, each ball in the bin (alive or dead) is
removed from the bin with probability 1− p, independently
of each other and of past events. Let At, Dt and Et be the
number of alive balls, (non-extra) dead balls and extra dead
balls, respectively, after t steps. Note that A0 = n, D0 = p

p−1
and E0 = 0.

Consider now two sequences of random variables: Bt =
At + Dt and Ct = Dt + Et. We can use At to model the
behaviour of the optimum online algorithm for identical items
as follows: we have E [alg] = E [T ], where T = min{t | At =
0}. Note that whenever At > 0, we have Et = 0, and so
Bt > Ct. Therefore

T ≤ min{t | Et > 0} = min{t | Ct > Bt},

and it is this last expression that we are going to bound.
First consider Bt. This does not include the extra balls, so

for each of the B0 = n+ k − 1 original balls, the probability
of surviving t rounds is pt independent of other balls, giving
us E [Bt] = ptB0. By a Chernoff bound, for any 0 < ε < 1,
and any value λ ≥ E [Bt], we get

Pr [Bt ≥ (1 + ε)λ] ≤ e
−ε2λ

3 . (3.1)

Now consider Ct. Here, a single new ball is added at the
beginning of each step, and then each ball is removed with
probability 1− p. Since C0 = D0 = p

1−p , we have E [Ct] =

p(1 + E [Ct−1]) = C0 by a simple induction. Moreover, each
Ct is actually a sum of C0 + t independent (but not identical)
{0, 1} r.v.s: C0 for the balls initially in the bin, and a single
variable for each new ball. Again using a Chernoff bound,
we get for any 0 < ε < 1

Pr [Ct ≤ (1− ε)E [Ct]] = Pr [Ct ≤ (1− ε)C0] ≤ e
−ε2C0

2 .
(3.2)

To get an estimate of min{t | Ct > Bt}, let us first identify
t0 such that E [Ct0 ] = E [Bt0 ]. This is just

p

1− p =

(
n+

p

1− p

)
pt0 .

Using p = 1− 1
k

, we get p
1−p = k − 1 and consequently

t0 = logp
k − 1

n+ k − 1
.

Consider now t ≥ dt0 + 3kεe, where ε > 0 is small. We have

E [Bt] = B0 p
t ≤ (k − 1)p3kε = (k − 1)

(
1− 1

k

)3kε

≤ (k − 1)e−3ε ≤ (k − 1)(1− 2ε)

for small enough ε. We now use the concentration bound for
Bt from (3.1) to get

Pr [Bt ≥ (1− ε)(k − 1)] ≤ Pr [Bt ≥ (1 + ε)(1− 2ε)(k − 1)]

≤ e
−ε2(1−2ε)(k−1)

3

and that for Ct from (3.2) with C0 = k − 1 to get

Pr [Ct ≤ (1− ε)(k − 1)] ≤ e
−ε2(k−1)

2 .

This implies that

Pr [min{t | Ct > Bt} > t0 + 3kε] ≤ e−Ω(ε2k)

and gives us the first claim.
An analogous reasoning leads to the second one.

Using the fact that ln p ≤ −1/(kp) = −1/(k − 1), we infer
that the algorithm gets at most (1 + ε)(k − 1) ln(1 + n/k)
items with high probability. And combining with the result of
Theorems 3.1, the competitive ratio of the algorithm versus
the clairvoyant adversary is at most

min
k∈[n/2,n]

(1 + ε)(k − 1) ln(1 + n/k)

(1− ε)(k − 1)(1 + ln(n/k))

= min
α∈[1,2]

(1 + ε) ln(1 + α)

(1− ε)(1 + lnα)
≤ 0.64842 . . .+ 3ε.

This is very close to the (1− 1/e) = 0.63212 . . . competitive-
ness, which shows we cannot improve the result substantially
against clairvoyant adversaries. In the next section, however,
we show that against the non-clairvoyant optimum, we can
do significantly better.

4. AN LP-BASED ALGORITHM
Our algorithm is based on writing an LP relaxation for

the problem which captures all non-clairvoyant algorithms,
and then rounding it to guide the choices of the algorithm.



4.1 LP formulations and basic properties
Consider the following linear program LPx(I) for a given

instance I = (v, p).

max
∑
i,t

xitvi (LPx(I))

subject to
∑
t

xit/p
t
i ≤ 1 ∀i∑

i

xit ≤ 1 ∀t

xit ≥ 0

To begin, we claim this linear program is a feasible relax-
ation of the problem.

Lemma 4.1 For any instance I of the problem, we have
opt(I) ≤ optLP (I), where opt(I) is the expected value of
the optimal non-clairvoyant algorithm, and optLP (I) is the
optimal value of LPx(I).

Proof. Given any non-clairvoyant algorithm A with ex-
pected total value of V ∗ on I, we can obtain a feasible
solution to LPx(I) with the same objective value. To do
this, set xit to the probability that the algorithm A picks
item i in round t. Since xit are probabilities,

∑
i xit ≤ 1.

Also, define yit to be the probability of picking item i in
round t conditioned on item i being alive in round t: hence
xit = yit · pti. Since the algorithm can pick i in at most one
round, we get

∑
t yit ≤ 1. Finally, the expected value we get

is precisely
∑
it xitvi = V ∗.

As in the above proof, it will often be convenient to think
of the linear program in terms of the yit variables, so let us
record this equivalent LP (called LPy(I)) here:

max
∑
i,t

yitp
t
ivi (LPy(I))

subject to
∑
t

yit ≤ 1 ∀i∑
i

yitp
t
i ≤ 1 ∀t

yit ≥ 0

Lemma 4.2 The integrality gap of this LP is at least (1−
1/2e): i.e., for every constant ε > 0, there are instances
where opt(I) < (1− 1

2e
+ ε)optLP (I).

Proof. Consider the instance where we have n items, each
with vi = 1 and pi = 1

n
. By setting xi1 = 1

n
, xi2 = n−1

n2 and
all other xit = 0, we obtain a feasible solution to LPx(I) with
value 2− 1

n
. However, any non-clairvoyant algorithm can get

unit value in the first round, at most 1− (1− 1/n)n expected
value in the second round, and at most 1/n expected value
in all subsequent rounds. For large enough n, this is at most
2− 1/e+ ε, which gives us the claimed integrality gap.

This integrality gap example is interesting because it shows
that no “local” reasoning based on the LP relaxation (i.e.,
one that considers a single round at a time) can beat the
ratio of 1 − 1

e
with respect to non-clairvoyant algorithms.

Later on we show how to sidestep this problem. We show
how one can introduce interactions between rounds, and

impose additional structural constraints on the solutions to
LPx(I), which are not satisfied by the solution considered in
the above proof.

Finally, we note that LPx(I) does not capture clairvoyant
algorithms, which is a positive thing, otherwise due to the re-
sults of Section 3 we would not be able to obtain competitive
ratios better than 0.648 using this LP.

Theorem 4.3 There exists an instance I, such that the
expected total value of an optimal clairvoyant algorithm is
strictly larger than optLP (I).

Proof. Consider an instance with two items: one with v1 =
1, p1 = 0, and the other with v2 = 2, p2 = 1/2. Here, the
optimal clairvoyant algorithm picks item 2 in the first round
if and only if it dies before the second round, yielding a value
of 2.5. On the other hand, any solution to LPx(I) has an
objective value of at most 2. This is because we have x21 = 0,
x11 + x21 ≤ 1 and x21 + 2x22 ≤ 1 and the objective function
is the sum of the left hand sides of these two inequalities.

4.2 Randomized Rounding: the First Try
The basic approach to rounding LPx(I) could be to assign

each item i to round t using yit := xit/p
t
i’s as probabilities.

When the algorithm is run, in round t we choose the highest
value item that was assigned to this round (and is still alive).
The expected total value of such items is equal to

∑
i yitp

t
ivi,

exactly the contribution of round t to the objective function
of LPx(I). Of course, we may not be able to obtain this
much value—we can only pick one item each round, and
more than one item assigned to round t might still be alive
in round t. The following lemma gives some insight into the
performance of this strategy.

Lemma 4.4 Let n items have values v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
and let the i-th item be available with probability πi, inde-
pendently of other items, where

∑n
i=1 πi ≤ 1. Let X be the

value of the highest valued available item, and 0 if there are
no items available. Then

E [X] ≥ Pr [at least one item is available] ·
∑n
i=1 πivi∑n
i=1 πi

.

We will prove this lemma (in fact, a generalization of it)
shortly, but let us first point out its implications. Adding in
a zero value item vn+1 with a probability of being available of
πn+1 := 1−

∑n
i=1 πi, and using the fact that the probability

of at least one item being available is 1−
∏n+1
i=1 (1− πi) ≥

1 − exp(−
∑n+1
i=1 πi) = 1 − 1/e, Lemma 4.4 gives us the

following corollary.

Corollary 4.5 With vi, πi and X as defined in Lemma 4.4
we have E [X] ≥

(
1− 1

e

)∑n
i=1 πivi.

Theorem 4.6 The basic rounding scheme gives us expected
value

(
1− 1

e

)
· optLP (I), and hence (1− 1/e) times the ex-

pected value of the best non-clairvoyant algorithm. Moreover,
this ratio is tight.

Proof. To bound the competitive ratio, simply use Corol-
lary 4.5 with availability probabilities set to yitp

t
i. To show

that it is tight, consider an instance I with n identical items
and all vi = 1 and all pi = 1. One optimal solution to LPy(I)



is yit = 1
n

for all i = 1, . . . , n and t = 1, . . . , n. Rounding
this solution using the basic rounding scheme puts us in a
classic balls-and-bins scenario, where in expectation only a
≈
(
1− 1

e

)
fraction of the bins are non-empty which proves

the claim.

This means we need to work harder to get an improvement
over (1 − 1/e), which we will do in the next section. But
first, let us give the proof of Lemma 4.4.

4.2.1 Proof of Lemma 4.4
For the improved analysis in Section 4.3, it will be useful

to prove a slightly more general result. Let n items have
values v1 ≥ v2 ≥ · · · ≥ vn ≥ 0. Let Sj = {1, 2, . . . , j}. Fix a

downwards closed family of subsets I ⊂ 2[n]. Consider the
following process, which depends on the (vi, πi) values, and
the family I. Let the i-th item be available with probability
πi, independently of other items, and let A be the (random)
set of available items. Pick a subset of the available items
as follows: consider items in increasing order of indices, and
pick item i if (a) it is available and (b) if Si−1∩A, the subset
of available elements previously seen, lies in I. (For instance,
if I consists of all k-element subsets, then this process picks
the top k + 1 available elements with largest value—this is
the context in which we will use the following lemma.)

Lemma 4.7 Let V be the value and N be the cardinality of
the set picked by the above process. Then

E [V ] ≥ E [N ] ·
∑n
i=1 πivi∑n
i=1 πi

.

Proof. Define Bi as the event that (Si−1 ∩ A) ∈ I. Note
that i is picked with probability πi · Pr [Bi]. Moreover, we
have the monotonicity property that

Pr [Bi] ≥ Pr [Bj ] ∀i ≤ j,

since Sj−1 ∩A ∈ I ⇒ Si−1 ∩A ∈ I. Note that

E [V ]

E [N ]
=

∑n
i=1 viπiPr [Bi]∑n
i=1 πiPr [Bi]

. (4.3)

We first consider the case where, for some k, v1 = · · · = vk = 1
and vk+1 = · · · = vn = 0. We call these sequences of values
basic. In this case,

E [V ]

E [N ]
=

∑k
i=1 πiPr [Bi]∑n
i=1 πiPr [Bi]

=

∑k
i=1 πiPr [Bi]∑k

i=1 πiPr [Bi] +
∑n
i′=k+1 πi′Pr [Bi′ ]

≥
∑k
i=1 πiPr [Bi]∑k

i=1 πiPr [Bi] + Pr [Bk]
∑n
i′=k+1 πi′

≥
∑k
i=1 πiPr [Bk]∑k

i=1 πiPr [Bk] + Pr [Bk]
∑n
i′=k+1 πi′

=

∑k
i=1 πi∑k

i=1 πi +
∑n
i′=k+1 πi′

,

where the first inequality uses that Pr [Bk] ≥ Pr [Bi′ ] for all
i′ > k, and the second inequality uses the two facts that
(a) Pr [Bi] ≥ Pr [Bk] for all i ≤ k, and (b) reducing the
numerator and denominator by the same value causes the
fraction to decrease.

Let us look again at the inequality we proved for all basic
sequences vi:

E [V ] ≥

(
n∑
i=1

πivi

)
· E [N ]∑n

i=1 πi
,

Note that if we fix the πi, then the last term is a constant
and the other two: E [V ] and

∑n
i=1 πivi are linear in vi and

non-negative. Therefore, the inequality extends to all non-
negative linear combinations of basic sequences, and these
are exactly the non-increasing sequences of values.

Proof of Lemma 4.4: Use Lemma 4.7 with I = {∅}. Hence
the process picks the most valuable item, and the expected
size E [N ] is equal the probability that at least one item
appears. (We note that alternatively, Lemma 4.4 can be
proven via the concept of fair contention resolution due to
Feige and Vondrak [9].) �

4.3 Randomized Rounding: Second Time’s the
Charm

To improve on the previous analysis, the main idea is
the following. We want a rounding procedure that takes
advantage of a situation where none of the items assigned to
some round are picked because none survived. In this case
we allow picking, say, two items during the next round. (We
will actually pick one of these items in this round, “borrowing”
from the future.) We show that if we are allowed to take
two items in a round with constant probability, then we can
obtain more than a (1 − 1/e) fraction of the LP value in
expectation.

Note that conditioning on the event that in round t − 1
no item was picked changes the probabilities for items being
assigned to round t. However, we show that these events are
positively correlated. In other words, knowing that no item
was picked in round t− 1 can only increase the probability
that an item is assigned to round t and survives.

Another technical problem we face is that for some rounds
it may be the case that we always pick some item (e.g., this
happens in round 0). We artificially decrease the probabilities
of assigning items to such rounds to ensure that even in these
rounds, with constant probability, no item is picked.

4.3.1 The Algorithm
We first change the LP formulation slightly as follows:

we add the constraint that for a special item i′, xi′0 = 1.
By iterating over all items i, each time adding a constraint
xi0 = 1 to the linear program LPx(I), we select the best LP
solution among all the n solutions considered. This does not
alter the fact that the (new) LP optimum value is still an
upper bound for opt(I).

Before we present the rounding, here is a thought experi-
ment. The natural rounding algorithm would be to assign
item i to round t with probability yit, independently of the
other items. Let Yi,t be an indicator variable corresponding
to an item i being available in step t, i.e., i being assigned
to round t and not dying before round t. (Note that the
underlying sample space is given by the random allocations
of items to rounds, and by the randomness of the items coin
flips.) Also, let At = {

∑
i Yi,t = 0} be the event that there

are no items available in round t (they all either die before
this round, or are assigned elsewhere).

Now for the actual algorithm: we preprocess all the proba-
bilities so that for each round t we have Pr [At] ≥ Q, where



we set Q = 1
2(e−1)

≈ 0.2909 . . . More precisely, for each

round t we compute the greatest value of αt ∈ (0, 1] such
that Pr [At] =

∏
i(1 − αt yit p

t
i) ≥ Q. Next, we randomly

assign items to rounds so that item i is assigned to round t
with probability αtyit. (With probability (1−

∑
t αtyit), the

item i remains unassigned).
When the algorithm is run, in round t we consider the

available items in this round: those which were assigned to
this round by the random process and are still alive. Among
these, we pick the most valuable item. Moreover, for t > 0, if
more than one item is available, and if no item was picked in
round t− 1, we also pick the second most valuable available
item.

Note that this algorithm allows us to pick two items in
some rounds, which is not allowed by our model. However, we
can implement this as follows: if none of the items assigned
to round t survived, we pick the most valuable item that was
assigned to round t+ 1 and is still alive. Then, when round
t + 1 comes, we can pick an item again (if any survived),
effectively picking two items in this round. Note that in this
way we cannot do worse than actually picking two items in
round t+ 1. We might do better though, if the item picked
in round t were to die after that round. This brings us to
a subtle technical issue: To know whether we can pick two
items in round t + 2, we need to know if any of the items
assigned to round t+ 1 survived. However, we cannot know
this if we picked an item assigned to round t+ 1 in round t,
and then no other item survived until round t+1. When that
happens, we flip a coin for this item and declare it alive/dead
in round t+ 1 accordingly. We need to keep these technical
issues in mind when analyzing the rounding algorithm.

4.3.2 Analysis
To analyze the algorithm, we need the following improve-

ment over Lemma 4.4, where instead of picking the most
valuable item in the round, we pick the two most valuable
items (if possible). This is where we make use of the more
general Lemma 4.7.

Lemma 4.8 Let n items have values v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
and let the i-th item be available with probability πi, indepen-
dently of other items, where

∑n
i=1 πi ≤ 1. Let X be the sum

of the values of the two highest valued available item (or less
if there are fewer items available). Then

E [X] ≥
(

2− 3

e

) n∑
i=1

πivi.

Proof. To prove this, we use Lemma 4.7 with the family
I = {∅, {1}, {2}, . . . , {n}}, which ensures that we pick the
two most valuable items. In this case N = min(Y, 2), where
Y is the number of items available. It is easy to see that
E [N ] is maximized when all the πi’s are equal, in which case

E [N ] = Pr [Y ≥ 1] + Pr [Y ≥ 2]

= 2− 2Pr [Y = 0]− Pr [Y = 1]

= 2− 2

(
1− 1

n

)n
−
(

1− 1

n

)n−1

≥ 2− 3/e,

where the inequality holds for all n ≥ 1, which proves the
lemma. The last step follows from Lemma B.1 (see Ap-
pendix B).

Recall that Yi,t is the probability that item i is available
in round t (i.e., it is assigned to round t by the algorithm,
and is actually alive in that round); At is the event that no
items are available in round t.

Lemma 4.9 The following facts hold true for the variables
Yi,t and events At:

(a) (Yi,t | At−1) = (Yi,t | (Yi,t−1 = 0)),

(b) Pr [Yi,t = 1 | At−1] =
yi,tp

t
i

1−yi,t−1p
t−1
i

≥ Pr [Yi,t = 1],

(c) Yi,t for different items i are conditionally indepen-
dent on At−1.

Proof. Statement (a) is obvious, (b) follows from (a), and (c)
is easy to verify using (b) and its joint version saying that the
joint distribution of Yi,t and Yj,t conditioned on At−1 is the
same as their distribution conditioned on Yi,t−1 + Yj,t−1 = 0.

Theorem 4.10 The rounding algorithm of Section 4.3.1
achieves a value of at least (1− 1

2(e−1)
)LPx(I), i.e., at least

70.9% of the optimum.

Proof. By linearity of expectations we can analyze the con-
tribution of each round separately and it is enough to prove
that in each round we gain at least a 1 − Q fraction of
its contribution to the objective function of the LP. Let
LPt =

∑
i xitvi. We consider two cases, αt < 1 and αt = 1.

Case I: αt < 1. In this case we know that Pr [At] = Q,
and by Lemma 4.4 in round t we gain at least

(1−Pr [At])·
∑
i vi(αt yit p

t
i)∑

i(αt yit p
t
i)
≥ (1−Q)

αt LPt
αt

= (1−Q)LPt.

Case II: αt = 1. We infer that t > 0, since we know that
there exists an item i, such that xi,0 = 1, and consequently
α0 = 1 − Q. Therefore with probability Pr [At−1] we are
eligible to pick two items in round t (since we picked no items
in the previous timestep), and with probability 1−Pr [At−1]
we can pick only one item in round t. Let us denote by
X1 and X2 the value of the most valuable and second most
valuable item available in round t respectively. Note that
the expected gain of the algorithm in round t equals E [X1] +
E [X2|At−1] Pr [At−1]. As in our first approach, where we
can always only pick one item, Corollary 4.5 implies that
E [X1] ≥ (1 − 1/e)LPt. Moreover, by Lemma 4.8 we have
E [X1]+E [X2] = E [X1 +X2] ≥ (2−3/e)LPt. Observe, that
it suffices to show E [X2|At−1] ≥ E [X2], to prove that the
expected gain generated in round t is at least (1−Q)LPt,
since then

E [X1] + E [X2|At−1] Pr [At−1] ≥ E [X1] + E [X2] Pr [At−1]

= Pr [At−1] E [X1 +X2] + (1− Pr [At−1])E [X1]

≥
(

Pr [At−1]

(
2− 3

e

)
+ (1− Pr [At−1])

(
1− 1

e

))
LPt

=

(
Pr [At−1]

(
1− 2

e

)
+

(
1− 1

e

))
≥ LPt

(
Q

(
1− 2

e

)
+

(
1− 1

e

))
LPt = (1−Q)LPt .

Observe that by Lemma 4.9 when conditioning on At−1

the probability that a given item is available in round t is
increasing (property (b)) and the events of corresponding to
different items being available in round t are still independent



(property (c)). Therefore in order to prove E [X2|At−1] ≥
E [X2] we can use the coupling technique. By standard
arguments we can define an auxiliary probability space, such
that when a set of items S is available in round t and At−1

holds, then in the second probability space the set of available
items S′ is a superset of S. Therefore the second most
valuable item in S′ is at least as valuable as the second most
valuable item in S and consequently E [X2|At−1] ≥ E [X2].

Since both cases give us at least (1−Q)LPt, the theorem
follows.

5. CONCLUSIONS
The presence of impatient users is an important aspect

of many real-world processes, and we initiate an algorith-
mic investigation in this paper. In particular, we model the
problem of serving impatient users to maximize the expected
value accrued, where the impatience of the users is modeled
by each user leaving the system based on an independent
random Geometric random variable. The first approaches to
solving this problem give only a (1 − 1/e) ≈ 0.63 approxi-
mation, so our approach is to give a more careful rounding
process that gets within a 0.709 factor of the non-clairvoyant
optimum. We also show that any online algorithm can get
only 0.64 factor of the clairvoyant optimum, so our algo-
rithm’s comparison to the non-clairvoyant optimum is not
only fair but necessary. Several questions remain: can we
close the gap between our approximation algorithms and the
upper bounds? Can we give algorithms for the case of user
arrivals? (For this last problem, it is not difficult to adapt
the algorithm from [12] to give an improvement over 1− 1/e
when the survival probabilities are bounded away from 1.)
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APPENDIX
A. PROOF OF THEOREM 2.3
Proof of Theorem 2.3: Fix a large constant c. We will
define an instance, for which the algorithm that always picks
an item with the highest value of qivi, obtains in expectation
at most 2

c
of the value obtained by the optimum online

algorithm.
Take two sets of items: S1 contains n1 = n items, each

with value v1 = 1 and survival probability p1 = 1 − 1
k1

where k1 = n1/c2 . S2 contains n2 = n1/(2c) items, each with



value v2 = c and survival probability p2 = 1 − 1
k2

where

k2 = ck1 = cn1/c2 .
Consider first the algorithm which always picks an item

with the highest value of qivi. Note that this value is the
same for both sets, so by perturbing it slightly, we can make
the algorithm pick elements from set S1 until none are left.
How many elements will be picked from S1. By Theorem 3.3
w.h.p. they will end after about

logp1
n1

k1
≈ n1/c2 lnn

steps. Note that by this time, the expected number of
elements of S2 that are still alive is 1, so this algorithm does
not profit from these elements.

Consider now the algorithm that picks elements from S2

as long as possible. Using Theorem 3.3 again we get that it
picks about

logp2
n2

k2
≈ n1/c2 lnn

(
1

2
− 1

c

)
elements. For large c this is almost half of the elements
picked by the first algorithm, but the values of elements in
S2 are c, which gives the claim. �

B. EXPLANATION FOR THE PROOF OF
LEMMA 4.8

Lemma B.1 For all positive integers n

2

(
1− 1

n

)n
+

(
1− 1

n

)n−1

≤ 3

e
.

Proof. The claim can easily be verified for n = 1, 2. To
prove it for larger values of n we show that the left-hand side
of the claim is an increasing function of n for n ≥ 2. The
claim follows, since the right-hand side is the limit of the
left-hand side as n→∞.

Let us define x = 1
n

and let f(x) be the value of the
left-hand side of the claim. Then x ∈ (0, 1] and

f(x) = 2(1− x)
1
x + (1− x)

1
x
−1 = (1− x)

1
x

(
2 +

1

1− x

)
.

We need to show that f ′(x) < 0 for x ∈ (0, 1
2
]. By differenti-

ating we obtain

f ′(x) = (1− x)
1
x
−3x− 3 ln(1− x) + 2x ln(1− x)

x2(1− x)
.

By using the Taylor expansion

− ln(1− x) =

∞∑
n=1

xn

n

we see that the numerator in the expression for f ′(x) is equal
to

−x
2

2
+

∞∑
n=4

xn
(

3

n
− 2

n− 1

)
.

Since for n ≥ 4 we have

0 <
3

n
− 2

n− 1
≤ 0.1

we can upper-bound this expression by

−x
2

2
+

x4

10(1− x)
=
x2(x2 + 5x− 5)

10(1− x)
,

which is negative in the interval (0, 3
√

5−5
2

) ⊇ (0, 1
2
] and hence

f ′(x) is negative as well, which ends the proof.


