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require quality of service guarantees. The emergence of very high capacity opticalnetworks has enabled the move towards providing users with their own virtualprivate networks (VPNs). Several networks are accommodated on the underlyinghigh capacity optical network by splitting the available bandwidth among them.Although this approach helps in providing QoS to applications and users, faulttolerance becomes a very critical issue: failure of a single high capacity link candisrupt many VPNs that use the link.One way to provide VPN over optical networks is using MPLS [9]. Surviv-ability issues of IP over optical networks are discussed in [24] and [12], andrestoration in MPLS tunnels are discussed in [19] and [20]. In many cases thespeed and the capacity of the links do not allow, unlike the Internet, to rely onthe routing protocol to successfully reroute traÆc on alternate routes after thefailure. Thus, one needs to provision the network in advance to handle failures.This places two constraints on these networks: 1) resources for re-routing traÆcshould be reserved at the same time the sub-networks are provisioned, and 2)the routing protocol should be simple both for the regular routing and when afault occurs.For the reasons mentioned above, there has been much recent interest inobtaining algorithmic solutions for problems of guaranteeing resilience againstfailures. A variety of failure and recovery models have been proposed. It is notfeasible to give even an overview of all the models and their intricacies, hencewe mention only a few high level assumptions that we make in this paper. Theprecise model is given later in this section. One central assumption we makeis the single link failure assumption, that is we assume that at most one linkcan fail at any particular time. This is a common assumption that seems towork reasonably well in practice. Further, the resulting optimization problemsare already hard and it is useful to obtain insight into this case.Clearly, resilience against single edge failures can be built into the networkby providing backup paths, which are used when an edge failure occurs on theprimary path. However, note that these backup paths could intersect each otherand share the same amount of bandwidth, provided they are used for the failuresof di�erent edges in the network. This multiplexing is one of the factors thatmakes this problem especially diÆcult; we shall spell out some of the others aswe explain the models and our results.Finally, most of our results are for an uncapacitated network. In other words,we assume that capacities of the underlying network are unlimited and thereis a cost on each edge per unit of bandwidth. Although this assumption is nottrue for any practical network, we make it for two reasons. First, we believe itis a reasonable approximation since the capacities of the underlying network areusually much larger than the capacity of any single VPN. Second, the capacitatedversions are much harder in theory and we believe that the domain in which theyare hard does not apply to real settings. For example, the disjoint paths problemis notoriously hard for small capacities, but it is much easier if the capacities ofthe edges are suÆciently large compared to the individual demands. See [6, 11,17] for similar assumptions.



We consider several network design problems with the above assumptions.Though our problems have similarities to traditional network design problems,they also di�er in some respects. Our contributions include providing models andbuilding upon existing techniques to give algorithms for these new problems. Wehope that our techniques and ideas will be useful in related contexts.The �rst problem we consider is that of Backup Allocation. In this prob-lem, we are given an already provisioned (primary) network, and we want toreserve backup capacity on the edges of the underlying network so that all thedemand can be routed even in the case of an edge failure. At this point, we pointa requirement of the network: the restoration has to be handled locally; i.e., ifedge e = (i; j) carrying u(e) bandwidth fails, there must be a single path P (e)in the backup network between i and j with capacity at least u(e), which standsin for the edge e.Local restoration is important for timing guarantees, otherwise it could taketoo much time before other portions of the network are aware of a failure at e; itis also useful since it does not require any of the other paths being currently usedin the network to be changed or rerouted. It is imperative that there is a singlepath between u and v that routes all of u(e); having a backup network that isable to push the right amount of \ow" would not suÆce. This is necessary inoptical networks, where splitting the traÆc is not feasible. This is also the reasonthat the traÆc between two hosts in the originally provisioned network is routedon a single path. (As an aside, the reader curious about the actual mechanismsof eÆcient local restoration of paths is pointed to the literature on MPLS [9].)The second problem we consider is that of Primary and Backup Alloca-tion. In this paper we consider two cases of the problem. In the �rst case, weare given speci�cations of the traÆc to be handled, and we want to provisionboth the primary as well as the backup network. The second case is related to anonline version of the problem, where demands arrive one by one. Here, we must�nd both a primary path and a backup path between a pair of terminals fs; tg,but where some of the edges may have already been chosen as part of a backuppath for previous demands. Since we are allowed to share those edges betweenbackups of di�erent pairs of terminals, we model this by allowing di�erent costsfor an edge depending on whether it is a part of a primary or a backup path.1.1 Models and resultsWe now give detailed and precise formulations of the problems studied andresults obtained in this paper.Backup Allocation: In this paper, we look at (undirected) base networksG = (V;E) with edge costs ce. In backup allocation, we are given a provisionednetwork Gp = (V p; Ep), with each edge e 2 Ep having provisioned capacityup(e). The objective is to �nd an edge set Eb � E (which could intersect withEp) and backup capacities ub for these edges, so that for each e = (u; v) 2 Ep,there is a path P (e) 2 Ebnfeg between its endpoints u and v on edges of capacityat least up(e). This path P (e) can be used to locally restore e lest it fail.



In Section 3, we describe an O(1) approximation algorithm for this problem.We �rst examine the uniform capacity case, that is when up(e) = 1 for alle 2 Ep. This special case is similar to the Steiner network problem [23, 15, 18],in that it prescribes connectivity requirements for vertex pairs, except that nowthere is a forbidden edge for each pair. We give an algorithm to handle thisin Section 2, and then use scaling to handle the general case with non-uniformprimary capacities.Primary and Backup Allocation: The most common model for specifyingtraÆc characteristics is the point-to-point demand model, where a demand matrixD = (dij) gives demands between each pair of terminals, and the objective isto �nd the cheapest network capable of sustaining traÆc speci�ed by D. In theuncapacitated case which is of interest here, allocating the primary can be donetrivially by routing ow on shortest-paths between the terminals.Considering that good estimates are often not known for the pairwise de-mands in real networks, DuÆeld et al. [10] proposed an alternate way to specifytraÆc patterns, the so-called VPN hose model. In its simplest form, each ter-minal i is given a threshold b(i), and a symmetric demand matrix D = (dij)is called valid if it respects all thresholds, i.e., if Pj dij � b(i) for all i. Theprimary network is speci�ed by a vector up indicating the bandwidth allocatedon the various edges, and also paths Pij on which all the ow between terminals(i; j) takes place unsplittably. Feasibility of a solution implies that for each validdemand matrix (dij), Pi<j dij �(Pij) � up;where �(P ) is the characteristic vector of P , and the sum is a vector sum. Provi-sioning the primary network in the hose model was studied in [16], where amongother results, an optimal algorithm was given when the provisioned network wasrequired to be a tree; it was also shown that this tree is a 2-approximation forgeneral networks (without the tree restriction).These are just some ways to specify the traÆc requirements; given a primarynetwork, the backup network is de�ned just as before. In this paper, we showthat if there is a �-approximation algorithm for allocating the primary, thereis an O(� logn) approximation for both primary and backup allocation. Thesimple two-stage algorithm that achieves this �rst allocates the primary primarynetwork Gp using the �-approximation algorithm, and then uses the algorithmof Section 3 to �nd a near-optimal backup network for Gp.Tree networks: Simplicity, along with good routing schemes and error recovery,make trees particularly attractive. This prompted [16] to give an algorithm forprimary allocation in the VPN hose model which outputs the optimal tree (whichis within a factor 2 of the optimal network). However, when some edge e in thistree fails and is locally restored by P (e), the new network may no longer bea tree. For some applications, and also for simplicity of routing schemes, it isconvenient that the network remains a tree at all times, even after restoration.In Section 5, we study the problem of allocating backup while retaining the treetopology of a given primary network. We show that this problem is hard to



approximate within 
(logn). We also give a backup allocation algorithm whosecost is O(log2n) times the optimal cost of primary and backup allocation.The Online Problem: In practical applications, the demands often appearin an online manner, i.e., new demands for both primary and backup pathsbetween pairs of nodes arrive one by one. Here we need to solve the primary andbackup allocation problem in the point-to-point demand case, i.e., when thereis a single source-sink pair in the network with a given demand. Concretely, thegoal is to construct both a primary path and a set of backup edges that can beused for restoring a failure of any of the primary edge. As explained before, abackup edge can be used to back up more than one primary edge, and hencesome edges may have already been paid for by being on a previous backup path.We model this by allowing di�erent primary costs and backup costs for an edge,depending on the purpose for which we will use this edge. Clearly, the primarycost of an edge should be at least as high as the backup cost. We present asimple 2-approximation algorithm for this case. We then present two naturallinear programming formulations of the problem and show that one formulationdominates the other for all instances. Note, that we are considering the localoptimization problem that needs to be solved each time a new demand arrives,and do not aim at performing the usual competitive analysis where the onlinealgorithm is compared to the best o�ine solution.Related Work: There have been several papers on (splittable) ow networksresilient to edge-failures; see, e.g., [6, 7, 11]. The papers [19, 20] formulate the on-line restoration problem as an integer program, and give some empirical evidencein favor of their methods. The paper of [17] considers backup allocation in theVPN hose model and gives a constant-factor approximation when accountingonly for the cost of edges not used in the primary network. The paper [1] looksat the problem of limited-delay restoration; however, it does not consider thequestion of bandwidth allocation.The problem of survivable network design has also been investigated exten-sively (see, e.g.,[2] and the references therein). Most of this work has been focusedon obtaining strong relaxations to be used in cutting plane methods. In fact, thelinear programs we use have been studied in these contexts, and have been foundto give good empirical performance. For more details on these, and on polyhe-dral results related to them, see [3{5, 8]. In contrast to most of these papers, wefocus on worst-case approximation guarantees, and our results perhaps explainthe good empirical performance of relaxations considered in the literature. Ourmodels and assumptions also di�er in some ways from those in the literature.We are interested in local restoration, and not necessarily in end-to-end restora-tion. This allows our results to be applicable to the VPN hose model as well,in contrast to the earlier literature, which is concerned with the point-to-pointmodel. We also focus on path restoration as opposed to ow restoration. On theother hand, we do consider a simpler model and limit ourselves only to the caseof uncapacitated networks.



2 Constrained Steiner Network ProblemRecall that our model assumes the following: when link e = (u; v) fails, thebackup path for (u; v) locally replaces e, i.e, any path that used e now uses thebackup path in place of e without altering the rest of the path. Given provisionednetwork Gp, the Backup problem seeks to �nd a set of edges such that for each(u; v) 2 Gp there is a backup path that does not use (u; v) itself. Note thatwe can share edges in the backup paths for di�erent edges. If all the capacitiesare the same, this is similar in spirit to traditional network design problems.Motivated by this we study a variant of the Steiner network problem that isdescribed below.In the Steiner network problem we are given an undirected graph G = (V;E)and cost function c : E ! R+ . We are given a requirement rij 2 Z+ for pairs ofvertices (i; j) 2 V . (We can assume that rij = 0 for pairs (i; j) for which there isno requirement.) The goal is to select a minimum cost set of edges E0 � E suchthat there are rij edge-disjoint paths between i and j in E0. In a seminal paper,Jain [18] gave a 2-approximation for this problem, improving upon the earlier2Hrmax approximation [23] where rmax is the largest requirement.For our application, we add the constraint that for pairs of vertices (i; j),E0 � f(i; j)g must support rij edge-disjoint paths between i and j. Note thatthough we are not allowing the edge (i; j) to be used in connecting i and j,(i; j) could be used in E0 to connect some other pair (i0; j0). We will refer to theSteiner network problem as the SN problem, and our modi�ed problem as theCSN (constrained SN) problem.We show that any �-approximation algorithm for SN can be used to solvethe CSN problem with an additional loss of a factor of 2 in the approximationratio. The algorithm is simple and is given below.{ Let I1 be the instance of SN with requirement r onG. Solve I1 approximately,and let E0 be the set of edges chosen.{ De�ne a new requirement function r0 as follows. For (i; j) 2 E0 such thatrij > 0, set r0ij = rij + 1, else set r0ij = rij .{ Let I2 be the instance of SN on G with requirement function r0 and withthe cost of edges in E0 reduced to zero. Let E00 be an approximate solutionto I2. Output E00 [ E0.It is easy to see that the above algorithm produces a feasible solution. Indeed,if (i; j) 62 E0 then E0 � f(i; j)g contains rij edge-disjoint paths between i andj. If (i; j) 2 E0 then E00 contains rij + 1 edge-disjoint paths between (i; j), andhence E00 � f(i; j)g contains rij edge-disjoint paths.Lemma 1. The cost of the solution produced is at most 2�opt where � is theapproximation ratio of the algorithm used to solve SN.Proof. It is easy to see that opt(I1) � opt, and hence c(E0) � �opt. We claimthat opt(I2) � opt. Indeed, if A � E is an optimal solution to I , then A [ E0is feasible for requirements r0. Therefore, c(E00 �E0) � �opt(I2) � �opt, andc(E00 [ E0) � 2�opt.



2.1 Integrality Gap of LP Relaxation for CSNWe used the algorithm for the Steiner network problem as a black box in ob-taining the above approximation ratios. Consider the following integer linearprogramming formulation for CSN, where xe is the indicator variable for pickingedge e in the solution. For compactness we use the following notation to describethe constraints. We say that a function �x on the edges supports a ow of f be-tween s and t if the maximum ow between s and t in the graph with capacitieson the edges given by �x is at least f .min Pe cexe (IP1)s.t. �x 2 f0; 1gjEj supports rij ow between (i; j) in E � f(i; j)g for all i; jWe relax the integrality constrains to obtain a linear program (LP1), and claimthat the integrality gap is at most 4, the same as the approximation guaranteefor the algorithm above. Jain [18] showed that the integrality gap of the naturalcut formulation for SN is 2. The following linear programming relaxation (LP2)for SN is ow based and is equivalent to the cut formulation, and hence itsintegrality gap is also 2.min Pe cexe (LP2)s.t. �x 2 [0; 1]jEj supports rij ow between (i; j) in E for all i; jNote that the optimal solutions to (LP2) for the instances I1 and I2 cost nomore than an optimal solution to (LP1) for I . This, combined with the fact that(LP2) has an integrality gap of at most 2, gives the following result.Lemma 2. The integrality gap of (LP1), the LP for the CSN problem is upperbounded by 4.3 Backup AllocationIn this section we show an O(1) approximation for the problem of computing thecheapest backup network for a given network. Let G = (V;E) be the underlyingbase network and let Gp = (V p; Ep), a subgraph of G, denote the primarynetwork. We are also given a real valued function up on the edge set E thatgives the primary bandwidth provisioned on the edges. Our goal is to �nd anedge set Eb � E and a function ub : Eb ! R+ such that Eb backs up the networkGp for single link failures. Note that we are working in the uncapacitated casewhich implies that we can buy as much bandwidth as we want on any edge ofE and the cost for buying b units of bandwidth on edge e is b � ce, where ce isthe cost of e.Let upmax = maxe2Ep up(e). Our algorithm for backup allocation given belowis based on scaling the capacities and solving the resulting uniform capacityproblems separately.



{ Let Epi = fe 2 Ep j up(e) 2 [2i; 2i+1)g. For all e 2 Epi , round up up(e) to2i+1.{ For 1 � i � dlogupmaxe, independently backup Epi .Let Ebi be the edges for backing up Epi and ubi be the backup bandwidthon Ebi . Note that rounding up the bandwidths of Epi causes the the backupallocation problem on Epi to be a uniform problem. The lemma below statesthat solving the problems separately does not cost much in the approximationratio.Lemma 3. Let � be the approximation ratio for the uniform capacity backupallocation problem. Then there is an approximation algorithm for the backupallocation problem with ratio 4�.Proof. Let Er� be an optimal solution for backup allocation, with ur� beingthe bandwidth on Er�. For 1 � i � dlogupmaxe construct solutions Er�i , wheree 2 Er�i with capacity ur�i (e) = 2i+1 if ur�(e) � 2i. ClearlyPi ur�i (e) � 4ur�(e),and so Pi c(Er�i ) � 4c(Er�). However, note that Er�i is a feasible backup forEpi , since every edge in Er� of bandwidth at least 2i lies Er�i with bandwidth2i+1. Hence, for each i, using the approximation algorithm for the uniform casefor Epi would give us a solution with cost at most �c(Er�i ). This completes theproof.However, the backup allocation problem for the uniform bandwidth casecan be approximated to within � = 4. Given a set of edges Ep with uniformbandwidth up(e) = U that need to be backed up, the problem can be scaled sothat up(e) = 1 for e 2 Ep. This is just a problem of �nding, for (i; j) 2 Ep, apath between i and j that does not use the edge (i; j) itself, which in turn isthe problem described in Section 2 with rij = 1 for (i; j) 2 Ep. Combining thiswith Lemma 3, we get a 16-approximation algorithm for the backup allocationproblem.The ratio of 4� can be improved to e� by randomness: instead of groupingby powers of 2, grouping can be done by powers of e (with a randomly chosenstarting point). This technique is fairly standard by now (e.g., [21, 13]) and thedetails are deferred to the �nal version.Theorem 1. Given any Gp, there is a 4e ' 10:87-approximation for the backupallocation problem for Gp.3.1 Integrality Gap of an LP relaxationWe showed an O(1) approximation for the backup allocation problem. We nowanalyze the integrality gap of a natural LP relaxation for the problem and showthat it is �(log n). This will allow us to analyze an algorithm for simultaneousallocation of primary and backup networks in the next section. The LP formu-lation uses variables ye which indicate the backup bandwidth bought on edge e.



We relax the requirement that the ow uses a single path.min Pe ceye (LP3)s.t. �y supports upe ow between (i; j) in E � feg for all e 2 Epye � 0We now analyze the integrality gap. Recall the de�nition of Epi as the set ofedges in Ep such that up(e) 2 [2i; 2i+1). As before we round up the bandwidthof these edges to 2i+1. Let xe(i) = minf1; ye=2ig. Note that xe(i) 2 [0; 1]. Weclaim the following.Proposition 1. The variables xe(i) are feasible for the uniform bandwidth backupallocation problem induced by Epi where the bandwidths are scaled to 1.From the analysis in Section 2.1 it follows that the integrality gap of (LP1),the LP for the uniform bandwidth problem is at most 4. Hence we can �nd asolution that backs up the edges in Epi with cost at most 4Pe ceye. Since we haveto only look at dlogupmaxe values of i, there is a solution that backs up all edges inEp with cost at most 4 logupmax Pe ceye. We can make the upper bound on theintegrality gap O(log n) via a simple argument. We set xe(i) = 0 if ye=2i � 1=n3,otherwise we set xe(i) = minf1; (1 + 1=n)ye=2ig. It is straightforward to arguethat Proposition 1 still holds for the variables xe(i) de�ned in this modi�edfashion. The cost goes up by a (1 + 1=n) factor. Each edge e participates in thebackup of at most O(log n) groups Epi , hence the overall cost is at most O(log n)times the LP cost. This gives us the following theorem.Theorem 2. The integrality gap of (LP3) is O(minflogn; logupmaxg).The following theorem shows that our analysis is tight.Theorem 3. The integrality gap of (LP3) is 
(log n).Proof. We construct a graph G with the required gap as follows. The graphconsists of a binary tree T rooted at r with some additional edges. The costof each edge in T is 1. The additional edges go from leaves to the root andeach of them is of cost d, where d is the depth of T . Primary bandwidth isprovisioned only on the edges of T and is given by up(e): for an edge e at depthd(e), up(e) = 2d=2d(e). Backup bandwidth allocation de�ned by the followingfunction ub(e) is feasible for (LP3): ub(e) = 1 for each edge e that goes from aleaf to the root and ub(e) = up(e) for each edge of T . It is easy to check that thecost of this solution is O(d2d). We claim that any path solution to the backupof T in G has a cost of 
(d22d). To prove this claim we observe that in anypath backup solution the number of edges from the leaves to the root of backupcapacity 2d�i is at least 2i. This follows since there are 2i edges of capacity 2d�iin T each of which could fail and each of them requires a backup edge from aleaf in its subtree to the root. The subtrees are disjoint and hence these back upedges cannot be shared. We set d to be logn to obtain the desired bound.



We note that the primary network in the above proof is valid for both thepoint to point demand model and the VPN hose model. That the former is trueis clear: every edge implicitly de�nes a point to point demand between its endpoints of value equal to the primary bandwidth allocated to the edge. To seethat the above primary network is valid in the VPN hose model consider theleaves of T as demand points, each with a bandwidth bound of 1.4 Simultaneous Primary & Backup AllocationIn this section we examine the problem of simultaneously building a primarynetwork and the backup network of minimum overall cost. We have alreadyseen an O(1) approximation algorithm to provide backup given the primarynetwork. We adopt a natural two-phase strategy where we build the primarynetwork �rst and then build a backup network for it. If � is the approximationguarantee for the problem of building the primary network then we obtain anO(� logn) approximation for building the primary and backup networks. Forthe two primary networks of interest, namely the pairwise demand model andthe VPN hose model, we have O(1) approximation algorithms for building theprimary network, hence we obtain an O(log n) approximation for the combinedproblem.An O(log n) approximation: We analyze the two-stage approach for primaryand backup allocation. Let Gp be the subgraph of G that is chosen in this�rst step. We provide backup for this network using the algorithm describedin Section 3. To analyze this algorithm we use the LP relaxation (LP3) forthe backup allocation problem. In the following lemma we will be using extracapacity on the edges of provisioned network itself. Note that this is allowed.Lemma 4. Let up be any solution to the primary problem. Let up� and ur� bethe primary and backup in some optimal solution. Then, up + up� + ur� is afeasible solution for (LP3), the LP relaxation for the backup of up.Proof. We assume that the solution up is minimal. Let e = (i; j) be such thatup(e) > 0. Since we have a minimal solution it implies that there exists sometraÆc between terminals that requires at least up(e) ow on e. Let the ow pathsthat use e in that traÆc be P1; P2; : : : ; Pk and let fi be the ow on Pi. In thegraph Gp, let X be the set of terminals that are connected to i if the edge (i; j)is removed from the paths, and let Y be those terminals that are connected toj. Let Ph connect terminal xh to terminal yh where xh 2 X and yh 2 Y . Weneed to argue that in the graph with out the edge (i; j), we can a send a owof value up(e) from i to j with capacities de�ned by up + up� + ur�. We do thisas follows. We send ow fi from i to each xi using capacities up(e). Since theoptimum solution is resilient against single edge failures, for 1 � i � k, theremust exist ow paths that can route a ow of fi units from xi to yi, none ofwhich use the edge (i; j). Since Pi fi = up(e), it follows that we can route aow of up(e) from i to j without using (i; j) in the capacitated graph de�ned byup + up� + ur�.



Theorem 4. The two-stage approach yields an O(� logn) approximation to thecombined primary and backup allocation problem where � is the approximationratio for �nding the primary allocation.Proof. Let P be the cost of the primary allocation and B the cost of backupallocation in the two stage approach. From the approximation guarantee on�nding P , we have P � �opt. From Lemma 4, it follows that there is a feasible(LP3) relaxation for the backup allocation problem of value at most P + opt,hence at most (�+1)opt. From Theorem 2, the backup solution we obtain is atmost O(log n) times the LP value. Hence, B = O(� logn)opt and the theoremfollows.Corollary 1. There is an O(log n) approximation for the combined primaryand backup allocation problems for the pairwise demand model and the VPNhose model.It turns out that the two-stage approach loses an 
(log n) factor even if the�rst step obtains a primary network of optimum cost; the example in the proofof Theorem 3 demonstrates this.5 Backup for Tree NetworksIn this section, we consider the case when the provisioned network T is a tree.Furthermore, we require that when an edge e fails, the network T � feg+ P (e)also be a tree. We show that �nding a minimum cost backup network in thiscase is at least as hard as the group Steiner problem [14] on trees, which in turnis 
(log n)-hard. We also give an algorithm whose approximation ratio is withinconstant factors of the approximation ratio for the group Steiner problem ontrees, which at most O(log2 n) due to Garg et al. [14].There is a slight di�erence in the manner in which we de�ne the approxima-tion ratio in this section. Let T = Gp = (V p; Ep) be the provisioned networkas usual, and let Eb be the backup edges, with up and ub be the primary andbackup bandwidths as usual. We shall consider the cost of the solution to bePe(up(e) + ub(e)), and our approximation will be with respect to this measure.The problem turns out to be hard, even when the measure of goodness is takento be Pe ub(e). We omit the proof of the following theorem.Theorem 5. The tree backup problem is at least as hard as the group Steinerproblem on trees.5.1 Approximation AlgorithmLet T = (V;E) be the already provisioned tree. When an edge e fails, it splitsT into two components, and P (e) must be a path between these two compo-nents which is internally node disjoint from the tree T . We must reserve enoughbandwidth on the edges in the graph such that the tree formed thus can supporttraÆc between the demand nodes.



Our basic strategy is the same as in Section 3: Let Ei be the set of edges inT on which the bandwidth up lies in the interval [2i; 2i+1). Let upmax lie in theinterval [2s; 2s+1). Our algorithm will proceed in stages | in the ith stage, wewill \protect" the edges in Es+1�i. When we have already protected the edgesin Ei+1; : : : ; Es by reserving bandwidth on some edges, we contract edges inEi+1 [ : : : [ Es. This will not a�ect our performance by more than a constant,since the bandwidth we may later reserve on some edge e in this set will be atmost Pj�i 2i+1 � 4up(e). Let Ti and Gi be the resulting tree and base graphafter the contraction. We shall now consider protecting the edges in Ei, usingthe edges of Gi.The procedure has a few conceptual steps, so let us describe these here, withthe intent of convincing the reader. The proofs closely follow the ideas mentionedhere, but are omitted due to lack of space.{ It can be seen that the edges of Ei form a \spider"; i.e., there is a root r, anda collection of paths fPigki=1 which meet at r but are otherwise node-disjoint.This is because of the structure of the VPN trees as given in [16], where theallocated demand on the edges from the root to the leaves is non-increasing.{ The graph Gi can be transformed into a graph G0i of which Ti is a spanningtree. All non-Ti edges go between vertices of Ti. This can be done so thatthe backup solutions for Ti in Gi and in G0i can be translated between eachother with only a constant factor di�erence in cost.This transformation is based on the following idea: we consider the backupedges for Ei which do not belong to Ti; these must form a tree (else wecould drop one of the edges). Take an Eulerian tour of this tree and considerthe subpaths between consecutive nodes in Ti; these can be replaced by newedges with the appropriate weight, and all other vertices can be disposedo�. Note that the optimal solution in this new instance will be at mosttwice the optimal solution before, since the Eulerian tour counted every edgetwice. One has to take care that there may be backup edges in Ti itself, andaccounting for these requires a slightly more complicated argument, whichwe omit here.{ We now have a simpler problem: a graph G0i, with a spanning tree Ti inwhich we need to �nd a tree backup for the edges of Ei, which form a spider.Let ri be the root of Ti, and let Pj 's be the paths of the spider. Also letTi;j be the subtree of Ti hanging o� Pj . (See Figure 1 for a picture.) Call anon-tree edge a back edge if both its end points belong to the same tree Ti;j ,and a cross edge otherwise. For example, the edge eb is a back edge, and eca cross edge in the �gure. Now each edge e of Ei has a savior edge sav(e)which is used to connect the two components formed if e fails. A crucial factis that if a cross edge from Ti;j to Ti;j0 is a savior for some edge e in Pj , thenit is a savior for all edges on Pj which are above e. Hence, �xing the lowestedge e in Pj whose savior is a cross edge implies that all edges above it arealso saved by that same savior edge, and all edges below it on Pj must besaved by back edges. The cost Q(e) of saving the rest by back edges depends
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eFig. 1. The tree Ti, with tree edges shown in solid lines and non-tree edges in dottedones.on the portion of Ti attached to these edges and the back edges between thisportion; note that this is entirely independent of the rest of the problem.Suppose we know, for each edge e 2 [jPj , the cost Q(e). (We shall dischargethis assumption later.) Then the cost of backing up all the edges in Eiconsists of the following: for each Pj , picking the single cross edge (say goingto Ti;j0) which is going to be savior (and reserving 2i+1 capacity on it), andreserving 2i+1 capacity on the edges in Ti;j0 from the other end of this edgeto the root ri. Of course, we have to add the cost of saving the edges thatwere not saved by these cross edges to the solution.{ We now claim that this can be modeled as a minor variant of the groupSteiner tree problem with vertex costs. Each vertex v 2 Ti which is theendpoint of some cross edge e from Ti;j is belongs to the group Sj and hasa \cost" 2i+1ce +Q(e0), where e0 is the lowest edge in Pj that can be savedby e. (Note that Sj must be a multi-set, with the vertex v occurring severaltimes in Sj with various costs, if there are several such cross edges.) As apedantic aside, there may be no such cross edge, and so ri also belongs toSj with cost equal to saving Pj entirely with back edges. This is done forevery vertex and every value of j. Now the objective is to �nd the minimumcost subtree of Ti that contains the root and hits every group Sj at leastonce, where we also have to pay for the vertex of Sj picked in the tree. It isfairly easy to see that this can be transformed into a regular group Steinertree problem, and the algorithm of Garg et al. [14] then gives us a O(log2 n)approximation.{ There is one more assumption to be discharged: we have to show how tocompute all the Q(e). We will not be able to do this optimally, but we give aconstant factor approximation for this as well. Since these are independentproblems, let us consider the case when we want to �nd the cost of backingup P1 using only back edges. We would like to just use the Eulerian trickdone above to reduce the problem to edges only between vertices of P1, andthen �nd the least cost augmentation. The technical problem that arisesis that that the optimal solution could be using edges in Ti;j � Pj , and



doing this trick naively could result in our paying several times for thisreservation, when paying once would have suÆced. We can however showthat we pay for no such edge more than twice, and hence the cost of themin-cost augmentation is o� by a factor of at most 2. Of course, we can onlycompute the augmentation within a factor of 2 of optimal, and hence we cancompute Q(e) within a factor 4 of optimal.6 The Online Optimization ProblemIn this section we consider a unit-capacity MPLS primary and backup allocationproblem which is motivated by the online problem of choosing the best primaryand backup paths for demands arriving one by one. Suppose that we are givensource and destination vertices, denoted by s and t, respectively. The goal isto simultaneously provision a primary path p from s to t and a backup set ofedges q of minimum overall cost. Since we are dealing with a single source-sinkpair we can scale the bandwidth requirement to 1, hence all edges have unitcapacity, i.e., the primary and backup edge sets are disjoint. We require thatfor any failure of an edge e 2 p, q [ p � feg contains a path from s to t. Wecall this problem SSSPR (Single Source Sink Provisioning and Restoration).Note that this requirement is slightly di�erent from the backup model discussedearlier in the paper; here, we do not insist on local restoration. The backup edgestogether with the primary edges are required to provide connectivity from s tot. This problem is in the spirit of the work of Kodialam and Lakshman [19, 20].As explained before, we model the online nature of the problem by using twodi�erent costs. Formally, there are two non-negative cost functions associatedwith the edges: cost function c1 denotes the cost of provisioning a primary edgethe primary, and cost function c2 denotes the cost of an edge when used as abackup edge. We assume that c1(e) � c2(e) for all edges e 2 E.Let p be a primary path from the source s to the destination t. The followingprocedure due to Suurballe [22] computes a minimum cost backup set of edgesfor a given primary path p. The idea is to direct the edges on the path p in the\backward" direction, i.e., from t to s and set their cost to be zero. All otheredges are replaced by two anti-symmetric arcs. For each edge e which is replacedby arcs a and a�, the cost of both a and a� is set to c2(e). We now computea shortest path q from s to t. It can be shown that the edges of q that do notbelong to p de�ne a minimum cost local backup [22].A 2-approximation algorithm for the SSSPR problem can be obtained asfollows. First, �nd a shortest path p from s to t with respect to the c1-costfunction. Then, use Suurballe's [22] procedure to compute an optimal backup qto the path p with respect to the c2-cost function. We show below that p and qtogether induce a 2-approximate solution.Theorem 6. The two stage approach yields a 2-approximation to SSSPR.Proof Sketch. Let opt be the cost of an optimal primary and backup solutionand let P =Pe2p c1(e) be the cost of p and Q =Pe2q c2(e) be the cost of q. It



is clear that P � opt since we �nd the cheapest primary path. We next arguethat Q � opt. Consider Suurballes [22] algorithm to �nd the optimum backuppath for p. As described earlier, the algorithm �nds a shortest path in a directedgraph obtained from G and p. We can express the computation of this shortestpath as a linear program L in a standard way { essentially as a minimum costow computation of sending one unit from s to t. The main observation is thatany primary path p0 and a q0 that backs up p0 yield a feasible solution to linearprogram L. We omit the formal proof of this observation but it is not diÆcultto see. In particular, this holds for the set of edges of p� and q�, where p� isan optimal primary path and q� is a set of edges that back up p�. Therefore, itfollows that Q �Pe2p�[q� c2(e) �Pe2p� c1(e) +Pe2q� c2(e). Here is where wecrucially use the assumption that c2(e) � c1(e) for all e. Hence, Q � opt andthe theorem follows.Although we provide an approximation algorithm, we note that it is notknown whether the problem is NP-hard or not.6.1 Linear Programming Formulations for SSSPRWe provide two linear programming relaxations of SSSPR. The �rst formulationis based on cuts and the second formulation is based on ows. We show that thesecond formulation dominates the �rst one on all instances.A cut in a graph G is a partition of V into two disjoint sets V1 and V2. Theedges of the cut are those edges that have precisely one endpoint in both V1 andV2. Let T be a subgraph of G which is a tree. A cut (V1; V2) of G is a canonicalcut of G with respect to T if there exists an edge e 2 T , decomposing T into T1and T2, such that T1 � V1 and T2 � V2.Let p be a primary path from the source s to the destination t. It follows fromSuurballe's [22] procedure that a set of edges q is a backup to a path p if it coversall the canonical cuts of p. This leads us to the following linear programmingformulation which is based on covering cuts. For an edge e, let x(e) denote theprimary indicator variable and let y(e) denote the backup indicator variable.min Pe2E c1(e) � x(e) + c2(e) � y(e) (Cut-LP)s.t. Pe2C(x(e) + y(e)) � 2 for all fs; tg-cuts CPe2C x(e) � 1 for all fs; tg-cuts Cx(e) + y(e) � 1 for all e 2 Ex(e); y(e) � 0 for all e 2 EIt is not hard to see that the value of an optimal (fractional) solution toCut-LP is a lower bound on the value of an optimal integral solution to SSSPR.We now present a second linear programming formulation of SSSPR which isbased on ows. Our formulation relies on the following lemma.Lemma 5. Let p be a primary path from s to t and let q be a set of backup edges.Replace each edge from p and q by two parallel anti-symmetric unit capacity arcs.Then, two units of ow can be sent from s to t.



This leads us to the following bidirected ow relaxation. We replace each edgeby two parallel anti-symmetric unit capacity arcs. Denote by D = (V;A) thedirected graph obtained. The goal is to send two units of ow inD from s to t, onefrom each commodity, while minimizing the cost. Denote the two commoditiesby blue and red, corresponding to primary and backup edges, respectively. Thecost of the blue commodity on an arc a (obtained from edge e) is equal to c1(e).The cost of the red commodity on an arc a (obtained from edge e) is de�ned asfollows. Suppose there is blue ow on arc a� of value f . Then, red ow on a upto value of f is free. Beyond f , the cost of the red ow is c2(e).min Pe2E c1(e) � f1(e) + c2(e) � f2(e) (Flow-LP)s.t. �x supports a unit ow (f1) between s and t�y supports a unit ow (f2) between s and tf1(e) � max(f1(a); f1(a�)) for all e = (a; a�)f2(e) � max((f2(a)� f1(a�)); 0) + max((f2(a�)� f1(a)); 0)for all e = (a; a�)x(a) + y(a) � 1 for all a 2 Ax(a); y(a) � 0 for all a 2 AGiven a solution to the SSSPR problem, Lemma 5 tells us how to obtaina two-commodity ow solution from it. We claim that the cost of the two-commodity ow solution is equal to the cost of the solution to the SSSPR prob-lem. Notice that the blue ow costs the same as the blue edges in the SSSPRsolution. The cost of the red ow is zero on arcs which are obtained from blueedges. On other edges, the cost of the red ow and the cost of the SSSPR solu-tion are the same. Therefore, the value of an optimal (fractional) solution to theFlow-LP is a lower bound on the value of an optimal integral solution. We nowprove that Flow-LP dominates Cut-LP.Theorem 7. For any instance of the SSSPR problem, the cost of the optimalsolution produced by Flow-LP is at least as high as the cost of the optimal solutionproduced by Cut-LP.Proof. We show that given a feasible solution to Flow-LP, we can generate afeasible solution to Cut-LP without increasing the cost. Consider edge e 2 Ewhich is replaced by two anti parallel arcs a and a� in Flow-LP. Without lossof generality, we can assume that at most one of ff1(a); f1(a�)g is non-zeroand at most one of ff2(a); f2(a�)g is non-zero. De�ne x(e) = f1(e) (or x(e) =f1(a) + f1(a�)) and y(e) = min(f2(e); 1� f1(e)). We show that fx(e); y(e)ge2Ede�nes a feasible solution for Cut-LP. Let the x-capacity (y-capacity) of a cut bethe sum of the variables x(e) (y(e)) taken over the edges e belonging to the cut.Clearly, the x-capacity of all fs; tg-cuts is at least one, since ow f1 in D sendsone unit of ow from s to t. It remains to show that the x-capacity togetherwith the y-capacity of all fs; tg-cuts is at least two.Consider a particular fs; tg-cut C. Decompose ow function f1 in D intoow paths, each of ow value ". Let n(k) denote the number of ow paths in the



decomposition that use precisely 2k+1 edges from C. Clearly,P1k=0 n(k) �" = 1,and so the contribution of ow f1 in D to the x-capacity of C isP1k=0(2k + 1) � n(k) � " = 2 1Xk=0 k � n(k) � "+ 1Xk=0 n(k) � "= 2P1k=0 k � n(k) � "+ 1:Suppose P1k=0 k � n(k) � " < 1=2, otherwise we are done. The red ow inD, f2, can send for \free" ow of value at most P1k=0 k � n(k) � " using arcsbelonging to cut C. (For each arc a carrying blue ow of value ", red ow ofvalue " can be sent on a� for free.) Therefore, the red ow must send ow ofvalue at least 1 �P1k=0 k � n(k) � " using capacity \paid" for by f2. (Note thatfor this ow we have y(e) = f2(e) for all edges e.) Hence, the y-capacity of C isat least 1�P1k=0 k �n(k) � ", yielding that the capacity of cut C (x-capacity andy-capacity) is 1 + 2P1k=0 k � n(k) � "+1�P1k=0 k � n(k) � " � 2, thus completingthe proof.Integrality Gap: It is not hard to show that a fractional solution to both for-mulations can be rounded to an integral solution while increasing the cost by atmost a factor of 2. The proof is along the lines of the proof for the combinatorial2-approximation algorithm presented earlier.We also have an example of an instance where there is a (multiplicative)gap of at least 5=4 between the optimal solution to Flow-LP and any integralsolution.AcknowledgmentsWe would like to thank Rajeev Rastogi for providing us a copy of [17], and foruseful discussions.References1. A. Bremler-Barr, Y. Afek, E. Cohen, H. Kaplan and M. Merritt. Restoration byPath Concatenation: Fast Recovery of MPLS Paths. In Proceedings of the ACMPODC '01; also in Proceedings of the ACM SIGMETRICS '01 conference (2-pagePoster). 2001.2. A. Balakrishnan, T. Magnanti, and P. Mirchandani. Network Design. AnnotatedBibliographies in Combinatorial Optimization, M. Dell'Amico, F. MaÆoli, and S.Martello (eds.), John Wiley and Sons, New York, 311-334, 1997.3. A. Balakrishnan, T. Magnanti, J. Sokol, and Y. Wang. Modeling and Solving theSingle Facility Line Restoration Problem. Working Paper OR 327-98, OperationsResearch Center, MIT, 1998. To appear in Operations Research.4. A. Balakrishnan, T. Magnanti, J. Sokol, and Y. Wang. Telecommunication LinkRestoration Planning with Multiple Facility Types. To appear in Annals of Op-erations Research, volume "Topological Network Design in Telecommunications"edited by P. Kubat and J. M. Smith.
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