Stochastic Steiner Trees without a Root

Anupam Guptaand Martin P&

! Dept. of Computer Science, Carnegie Mellon UniversitytsBiirgh PA 15213.
anupang@s. cmu. edu
2 DIMACS center, Rutgers University, Piscataway, NJ. Sufggbby ONR grant
N00014-98-1-0589 (while at Cornell University) and NSFrgraIA 02-05116 (at DIMACS).
nmpal @cm org

Abstract. This paper considers the Steiner tree problem in the modelaf
stage stochastic optimization with recourdénis model, the focus of much re-
cent research [1-4], tries to capture the fact that manystfucture planning
problems have to be solved in the presence of uncertairdythet we have make
decisions knowing merely market forecasts (and not thegeeset of demands);
by the time the actual demands arrive, the costs may be hifyleeto inflation.

In the context of the Stochastic Steiner Tree problem on phgta = (V, E),
the model can be paraphrased thus: on Monday, we are givesbalplity dis-
tribution 7 on subsets of vertices, and can build some subBsetof edges. On
Tuesday, a set of terminal3 materializes (drawn from the same distribution
We now have to buy edgdsr so that the sef/y; U E+ forms a Steiner tree on
D. The goal is to minimize the expected cost of the solution.

We give the first constant-factor approximation algoritlunthis problem in this
paper. This is, to the best of our knowledge, the fipgt )-approximation for
the stochastic version ofreon sub-additive problefrin fact, algorithms for the
unrootedstochastic Steiner tree problem we consider in this pamepawerful

enough to solve the Multicommodity Rent-or-Buy problenegrtiselves a topic
of much recent interest [6-8].

1 Introduction

Real world planning problems often have a significant conepbf uncertainity. For
instance, when designing networks, the precise demandrpsatand future costs of
building capacity are often unknown to begin with, and ongctme clear as time
progresses. However, with our increasing ability to calitatistical data, and the de-
velopment of sophisticated and realistic forecast modbés paradigm of stochastic
optimization has gained much traction. Indeed, we can nawtaisolve a wider class
of problems: given not a single input, but a distribution ovguts, we want to find a
solution that is good in expectation (taken with respedaiéorandomness in the model).

3 In a sub-additive problem, ifi and B are instances, then the union of their solutions is also
a feasible solution to the instancé U B; this is not true for Steiner trees. The results [1, 3,
5] only hold for sub-additive problems, and solve stocl@aSteiner tree for the case when the
tree must contain a specified roat



In this paper, we study the problem of connecting a grouprofiteals by a Steiner
tree in a stochastic setting. In the classical Steiner treblpm, we are given an undi-
rected grapldé: = (V, E') with edge costs,, and a group of terminals= {¢1,t2, ..., };
the goalis to find a subsét’ of edges of minimum cost that connects all these terminals.
We consider this problem when the grogiis not deterministically given in advance;
instead, it is given by a random varialifewith Pr[I" = ¢] being the probability that we
will be required to build a network that connects a particglaupg C V' of terminals.

As sketched in the abstract, we work the model of two-stagehsistic optimization
with recourse.

— In the first stagewe assume to have (some) knowledge of the distributionef th
random variabld". Armed with this information, we construct a netwdrR C E
of edges bought as the fighticipatorypart of the solution.

— In the second stageve learn a groug C V' of terminals that is a realization of
the random variablé’. We have to purchase an additiomaigmentingset F'*(g)
of edges to ensure th#&t’ U F''(g) connects the terminals gf The problem is
interesting when the edges bought in the second stage hagher lcost (due to
inflation, or because the second phase has to be built onrebtare). We use > 1
to denote thénflation factorby which the edges are more expensive.

Our goal is to minimize the expected cost of the two-stagetiwl. If we define:(F) =
> ccr Ce, and denote the first and second stage solutihs £ andF* : 2V — 2%
to minimize

c(F°) 4+ Er[o - ¢(FY(I))]. (1.1)

Our results. The main quantitative result of this paper is the following:

Theorem 1. There is al2.6-approximation algorithm for the two-stage stochastic-(un
rooted) Steiner tree problem.

Note that while the stochastic Steiner tree problem has lbeasidered in previous
papers [1, 3, 5], their model is subtly but significantly difint. All these works make
the crucial assumption that the there i$ix@d rootr, and the goal is to connect the
groupg to the rootr. This assumption, while a trifling detail in the determimistase,
turns out to make a big difference in the stochastic settigyiring us to develop new
techniques. For example, a fact used in one way or anothdr pyezious results was
that the first stage solutioR® in the rooted case can be assumed to be a connected
tree containing the root; this is just not true in the unrdatase: in fact, insisting on
a connected first stage network may cost arbitrarily mora tha optimum solution.
Indeed, our result is the first approximation algorithm giver a problem that is not
sub-additive, and requires us to interpret and use cosirghideas in a novel way.

A note on the distributions. The distributionr of the random variablé” is an object
whose size may be exponentialli¥|, but there are ways to cope with this fact. There
may be succint representationsmafin the independent decisiomaodel, each vertex

v € V independently has a probability of being included inl”, which gives us a easy-
to-represent product distribution. In teeenariomodel, the distributionr is given by
an explicit list of pairgg;, p;), with ). p; = 1, herep; is the probability that the group



g; appears. Note that the algorithm is now allowed to run in tpog/nomial in the
length of the list. In thesampling oraclemodel, the distributionr can be arbitrary; the
algorithm accesses it only through a sampling oracle. Upquest, the oracle outputs
a groupg that is drawn from the distribution (or equivalently, is a realization of the
random variabld™). Our algorithm works in the most general, sampling oractelet.
(We can also handle the case when the inflation parameigrandom as well; for
simplicity of exposition, we defer that discussion to thafiversion of the paper.)

Related work. As already mentioned, several papers studieddb&d versiorof the
stochastic Steiner tree problem. Immorlica et al. [1] giv@(dog n) approximation in
the independent decisions model, while [3] and [5] give tamsapproximation algo-
rithms for the oracle and scenario models respectivelyg&aand Minkoff [9] and
Hayrapetyan et al. [10] study thmaybecasproblem, where one is to output a single
treeT, to minimize the expected size of the smallest subtreE spanning a random
set of terminals. While technically this is also a stoclagtdbblem, the recourse action
is fixed, and the only randomness present is in the objeaiivetion.

Gupta et al. [3] give a simple boosted sampling frameworlotovert an algorithm
for a deterministic minimization problem to an algorithm fis stochastic counterpart.
Their framework relies crucially on two ingredients: thaeateninistic version of the
problem at hand has to sebadditiveand have an approximation algorithm that admits
astrict cost sharing function. Since the unrooted Steiner treelenots not sub-additive
(i.e., if T} is a solution for terminal sej;, andT; for go, thenT; U T> may not be a
solution forg; U g2), we cannot apply their techniques directly here.

The general area of stochastic optimization is studiedihe@vthe operations re-
search community, dating back to the seminal works of DgifZi] and Beale [12] in
the 1950s; the books [13, 14] and monograph [15] could sesvateoduction for the
interested reader. Much of the work related to combinatopémization problems in
this area has been concerned with finding and characterigtignal solutions either
for restricted classes of inputs or with algorithms withpotynomial running times
guarantees. Recently, there has been some work on takiatipsal to stochastic lin-
ear programs and rounding those to obtain approximaticoriéthgns for the stochastic
problems [4]; however, it is not clear how to apply those teghes to the Steiner tree
problem.

The Boosted Sampling Framework.Gupta et al. [3] propose thBoosted Sampling
framework of Figure 1.1 to solve any two-stage stochastiblem /7 where the sel”
of demand points is stochastic.

One would naturally expect that in the case of stochastio&téree, the determinis-
tic algorithm of Step 2 would build a Steiner tree on the sé¢ohinalsg; UgaU- - -Ug, .

In fact, if the support of” was on sets that all contained the fixed repthe analysis
of [3] shows that this is enough to obtain an 3.55-approxiomaigorithm for stochastic
Steiner tree.

Unfortunately, building a Steiner tree fails in the unrabtase. For an example,
consider two groupg; andgs that are very far apart relative to their diameter; assume
thatPr[I" = g;] - o is large. In this case, the optimum solution must connectaghe
groupg; in the first stage to avoid high second stage cost, but it shoat build a
link betweeng; and g> (to make Fy spang; U go) if it wants to avoid a high first



1. Boosted Samplingfake|o ] independent sampleg, g2, . . ., g|»| from the sampling oracle
for I

2: Building First Stage SolutiontUse an algorithmA to find a solution to theleterministic
equivalentof the problemiI on the groupg, g, .., 9| - Use this solution as the first
stage solution to the stochastic problem.

3: Building Recourse:Once the groug of required terminals materializes, useamgmenting
algorithm Aug 4, to augment the first stage solution to a valid solution thisBeasg.

Fig. 1.1.Algorithm Boost-and-Sample(I7)

stage cost. On the other hand, if the two groups are intessgdn the same region
of the graph, the optimum solution may benefit from link shgrand hence build a
single Steiner tree spanning both groups. Hence it seemsahad suggest that the
algorithm.4 should build a forest ensuring that each group lies withingls connected
component; different groups may or may not be in the same ooet. As it turns
out, building aSteiner Foresbn the groupg; is a suitable deterministic equivalent of
stochastic unrooted Steiner tree; however, proving tlgjgires a lot more work.

To this end, we have to show that the main theorem of [3] whithtes the per-
formance of the boosted sampling framework to the notiostaétnesé of certain
cost-sharing functions can be proved in our case, even thougproblem is not sub-
additive. The proof of this is simple, and we will sketch itSection 2. We then define
the cost-shares in Section 3, and prove them to be strict in 4.

2 Notation and preliminaries

Let G = (V,E) be an undirected weighted graph with weigthson the edges. A
networkis simply a subset of the edges. We say that a netwoik feasiblefor (or
connectya group of terminalg = {¢1, t2, ..., tx}, if all the terminals ofy lie in the
same connected componentof The cost of a network’ is simply the sum of costs
of its edges; that i8(F') = > .y ce.

In the Steiner Foresproblem, given a weighted undirected gra@hand a list of
groups of terminal® = {g1,¢2,...,9,} With eachg; = {t;1,...,t, }, we want to
construct a network’ of minimum cost that is feasible for each grogpFor a se® of
terminal groups, leSols(D) denote the set of networks that are feasible for each of the
groupsinD, and letOPT (D) be the network itbols(D) of minimum cost. An algorithm
A is ana-approximation algorithm for the Steiner Forest problenfioi any setD of
terminal groups, it finds a netwotp € Sols(D) of cost at mosty cost(OPT(D)).

Given a groupy of terminals and an existing netwofk C F, the goal of araug-
menting algorithmis buy a set of extra edges’ so thatF U I’ is a network that
connects the groug. For instance, given a netwoik, € Sols(D) that connects each

4 This concept will shortly be defined in Definition 2. Loosedycost sharing function is a
scheme to charge the cost of a solution to the participatinggs, and strictness relates the
cost of the edges bought in the second stage to the groupsshare



of the groups irD, and a new group ¢ D, the augmenting algorithrug 4, seeks to
find a set of edges” of minimum cost so thak’, U F’ € Sols(D U {g}).

Definition 1. A cost-sharing functioq is a function that, for any instancg>, D) of
the Steiner forest problem, assigns a non-negative realbeund(G, D, g;) to every
participating groupg; € D.

We shall drop a reference to the graghif clear from the contextNote that the cost
sharing function assigns shares to groups, and not to thiwiehgial terminals.

Since the above definition is so general, let us specify saoepties of these func-
tions that we would like to get. A cost-sharing functignis competitive if
> gep§(D,g) < cost(OPT(D)) holds for any Steiner forest instan¢g, D). Thus,
competitive cost-shares serve as a lower bound on the ctist optimal solution. The
following notion is crucial to the development of the pagerd implicitly places lower
bounds on the cost-shares themselves.

Definition 2. A cost sharing functiog is 8-strict with respect to an algorithr, if
there exists an augmenting algoritthag 4, such that for any set of demand groups
and any groupy ¢ D,

cost(Aug 4(A(D),g)) < BE(D + g, g). (2.2)

Remark 1.There is a fine distinction between the notion of strictnessige here and
strictness as defined in [7, 3]. In [7], strictness was defordy for augmentations with
groups of size 2; in this paper, we allow for groups of largees However, the strict-
ness in [3] is stronger than our notion, and allows for migdtigroup augmentations;
the question of proving strictness by this definition rersapen despite much effort.

Given all these definitions, we can now state the the follgwireorem, which can
be derived from the proof of [3, Theorem 3.1].

Theorem 2. Suppose thatl is ana-approximation algorithm for deterministic Steiner
forest. Then, the boosted sampling algorithm of Figure 4 dni(« + 3)-approximation
algorithm for unrooted stochastic Steiner tree wheneverdlis a cost-sharing function
¢ that is 3-strict with respect to4 and single group augmentations.

The proof of this theorem is simple, and closely follows thguanents in the aforemen-
tioned paper; we defer the simple details for the final versithe paper.

3 The Algorithm A and the Cost Shares

In this section we review the Steiner forest algorithm of, @lthough the algorithm
of Becchetti et al. [6] would serve our purpose equally wbth algorithms are ex-
tensions of the algorithm of Agarwal, Klein, and Ravi (AKR)], and Goemans and
Williamson (GW) [17], and are designed to “build a few extdges” over and above the
AKR-GW algorithms, while keeping the overall cost of thewgan within a constant
factor of the cost of the optimum. We also describe our chating method.

Recall that we are given a gragh = (V, E) and a setD of groupsg;, ..., gn
of terminals, where each group = {ti1,%i2,...,tik,} C V. Before defining our
algorithm, we review the LP relaxation and the correspogdif dual of the Steiner
forest problem that was used in [17]:



min ) cexe (SF-LP) max . ¢ys (SF-DP)
z(6(5)) = f(S) VSCV Y scviecs(s) Us < Ce (3.3)
Te Z 0 Ys 2 07

where f(S) is equal tol if S separateg; for somei (that is, if bothS N g; and
(V —5) N g; is nonempty), and i§ otherwise. Note that variableg for setsS that
do not separate any group are not contributing to the dualctiisg function, they still
play an important role in our algorithm.

We now describe a general way to define primal-dual algostiion the Steiner
forest problem. As is standard for the primal-dual approtahalgorithm with maintain
afeasible (fractional) dual, initially the all-zero duahd a primal integral solution (a set
of edges), initially the empty set. The algorithm will termate with a feasible Steiner
forest, which will be proved approximately optimal with tdeal solution (which is
a lower bound on the optimal cost by weak LP duality). The atgms of [16,17]
arise as a particular instantiation of the following al¢fom. Our presentation is closer
to [16], where the “reverse delete step” of Goemans and &Miltion [17] is implicit;
this version of the algorithm is more suitable for our anislys

Our algorithm has a notion dfme, initially O and increasing at a uniform rate.
At any point in time, some terminals will bectiveand othersnactive All terminals
are initially active and eventually become inactive. At groynt of time, the vertex set
is also partitioned intelusters which can again be either active or inactive. In our
algorithm, a cluster will be one or more connected companéair.t. the currently
built edges). Initially, each vertex is a cluster by itsalfid the active clusters are just
the terminals. We will consider different rules by which derds and clusters become
active or inactive, which we describe shortly. To maintaiaideasibility, whenever the
constraint (3.3) for some edgeetween two clusterS andS’ becomes tight (i.e., first
holds with equality), the clusters areergedand replaced by the clustétuU S’. We
raise dual variables of active clusters until there are ncersach clusters.

We have not yet specified how an edge can get built. Towarsleifd, let us define a
(time-varying) equivalence relatidR on the set of terminals. Initially, all terminals lie
in their own equivalence class; these classes will only eeiith time. When two active
clusters are merged, we merge the equivalence classesasfia# terminals in the two
clusters. Since inactive terminals cannot become actingrtile ensures that all active
terminals in a cluster are in the same equivalence classe(fiat if an active cluster
merges with an inactive one, this merging of equivalencesela does not happen.)

We build enough edges to maintain the following invariamg:terminals in the same
equivalence class are connected by built edges. Thisglealds at the beginning, since
the equivalence classes are all singletons. When two adtigters meet, the invariant
ensures that, in each cluster, all active terminals lie iararmon connected component.
To maintain the invariant, we join these two components hyiregla path between
them. Building such paths without incurring a large costriggde but somewhat subtle;
Agrawal et al. [16] (and implicitly, Goemans and Williamsfiv]) show how to do
this. We refer the reader to [16] for details of this procedunstead of repeating it



here. Specifying the rule by which clusters are deemedeotivnactive now gives us
two different algorithms:

1. Algorithm GW(G, D): Aterminalt,; € g; is active if the current cluster containing
it does not contain the entire grogp A cluster is active as long as it contains at
least one active demand. This implementation of the algoris equivalent to the
algorithms of Agrawal et al. [16] and Goemans and WilliamEb#].

2. Algorithm Timed(G, D, T'): This algorithm takes as an additional input a function
T : V — R>( which assigns atopping timeo each vertex. (We can also viély
as a vector with coordinates indexed®y) A vertex is active at timer if j € D
andr < T(j). (T is defined for vertices not i for future convenience, but such
values are irrelevant, and can be imagined to be seffto the rest of the paper.)
As before, a cluster is said to be active if at least one deriraids active.

To get a feeling forTimed(G, D, T'), consider the following procedure: run the
algorithmGW(G, D) and setT’p(j) to be the time at which vertex becomes inac-
tive during this execution. (If ¢ D, thenTp(j) is set to zero.) Since a vertex stays
active for exactly the same duration of time in the two algons GW(G, D) and
Timed(G, D, Tp), the two algorithms clearly have identical outputs. Sintylaf for
eacht;; € g; we setl'(t;;) = maxy y¢q4, da(t,t'), we we obtain the recent algorithm
of Kbnemann et al. [18].

It turns out that thélimed algorithm gives us a nice principled way to essentially
force theGW algorithm to build additional edges: run tfiémed algorithm with a vec-
tor of demand activity times that is larger than what is ratyrinduced by theGW
algorithm.

The Algorithm A: The algorithmAlgorithm A(G, D) that we use to build the first
stage solution is

1: RunGW(G, D), and letT(v) be the time at whiclky becomes inactive.

2: RunTimed(G, D, vTp)—the timed algorithm with the above time veciiés scaled
up by a parametey > 1—and output the resulting foresty.

(A technical point: wheny > 1, algorithm A may raise the dual variables of vertex
sets that do not separate any group, and hence do not cdettdbthe value of the
dual objective function. However, this will not hinder ouradysis. The fact thaf’p is

a feasible Steiner network fdp is easily verified, using the fact that the terminals of
each group became inactive at the same flfnéy;) (equal tol’p (t;;) for anyt;; € g;)
wheng; became connected, and that 1. We now define the cost shargs

The Cost Sharest: We want the cost share of a grogpof users to account for the
growth of components that grow solely because they con@mibals fromg;. Let
a(gi, 7) be the number of active clusters in the executio®®df(G, D) that contain a
terminal fromg; butdo notcontain any active terminals outsige We define the cost
share ofy; to be

£(D.gi) = / algs, 7) dr, (3.9)



where the integral is over the entire execution of the athori Note that the cost shares
defined by Equation (3.4) do not account for the full cost efdiual solutiony, as the
cost of growth of clusters with active demands from more thraamgroup more than one
active demand is not reflected at all. We could fix this by divgcthe cost of growing
mixed clusters among participating groups in some way; keweve do not see how
to use this to improve our approximation ratio.

Augmentation Algorithm Aug_4: A practical augmenting algorithiug 4, would sim-

ply contract all edges af’p, and then find an approximate Steiner tree on the terminals
of ¢ in this contracted grap&f/ F'p. However, in order to bound the second stage cost,
we build a specific Steiner tree grin G/ Fp, and argue that the cost tfistree can be
bounded by3 (D + g, g) for somes € R. The construction of this tree is implicit in
the proof of Theorem 4, and can be found efficiently in polyradtime if required. In

the following, we letAug 4, be the algorithm that constructs this implicit tree. Ourmai
technical result is thus the following.

Theorem 3. For anyy > 2, Ais a«a = (v + 1)-approximation for the Steiner network
problem, and is a8 = (4v/(y — 2))-strict cost sharing method with respect to the
algorithms. A andAug 4.

Proof. The fact that4 is a(y + 1)-approximation can be proved along the lines of [6,
Lemma 3.1] (We postpone the details to the full version ofiaper). The proof of
strictness (Theorem 4) is the analytical heart of this pagpet is given in the following
section.

4 Proving strictness

Our analysis follows a fairly natural line of analysis thasialso used in [7]. We start
by fixing a setD of demand groups, and a groygp¢ D. To prove strictness of our
cost shares, we compare two executions of@heé algorithm: the inflated algorithm
A(G, D) on the set of group® that results in the foredfp, and the uninflated algo-
rithm GW(G, D + g) which is responsible for computing the cost shgf® + g, g).

Recall that we have to show thatcan be connected i, with cost at most
O((D + g,9)).- We prove this in the following theorem, which also impligite-
scribes the augmenting algorittvug 4. In the rest of the discussion, we will assume
thaty > 2.

Theorem 4. There is a treeF” in the graphG/Fp that spans all terminals of and
has cost at mosty /(v —2) £(D + g, g). The treeF” can be constructed in polynomial
time.

The main difficulty in proving Theorem 4 arises from the fdwttthe two execu-
tions A(G, D) andGW(G, D + g) may be very different. Hence it is not immediately
clear how to relate the cost of augmenting the forgstproduced by the former by the
cost shar& (D + g, g) computed by the latter. To make a direct comparison possible
we work through some transformations that allow us to find apirey between dual
variables in these two executions. In the grand finale, welywe a tredl that spans



terminals ofg, and show that a /4 fraction of its edges is covered by dual variables
corresponding to the cost sharegfwhich will complete the proof. Let us introduce
some time vectors to facilitate this comparison.

— LetTp be the time vector obtained by runni6§V(G, D). Recall that is the for-
est constructed byimed(G, D, vTp); we also letRp be the equivalence relation
constructed by the latter algorithm.

— Let T'py, be the time vector generated by the executti(G, D + ¢) and let
T = T'p+4(g) be the time when the terminals gfjot connected in this execution.

— Let T be the vector obtained by truncatingp;, at time 7. That is,
T'(v) = min(7, Tp14(v)) forv € V. (The intuition forT" is loosely this: we do not
care about time aftgr has been connected, and this truncation captures thi¥ fact.

— Finally, letT"_, be the vectof” with g “taken out”, thatisT_,(v) = T'(v) if v ¢ g,
andT_,(v) = 0if v € g. Let R_, be the equivalence relation constructed by the
executionTimed(G, D,yT—,).

A side-by-side comparison of the executidi\&/(G, D) andGW(G, D + g) shows
that for allv € V,
Tp(v) = T—4(v); (4.5)

the simple inductive proof is omitted. Hence, we will use fheest constructed by
Timed(G, D,yT-,) as a proxy for the foredtp created byTimed(G, D, yTp); intu-
itively, sinceZ_, is smaller thari’p, it should also produce a forest with fewer edges.
We will make this intuition precise in Lemma 1 below.

To state the lemma in a general form that will be useful laterneed some more
notation. For two weighted graplisandG’ on the same vertex sk, we writeG’ < G
if the shortest path distance between any pair of vertice$ifuG’ is no more than their
distance inG. For a graptlG = (V, E) and aset’ C (V x V), the graptG’ = G/F'is
acontractionof GG, and is obtained by adding a zero-cost edg€ inetween every pair
(u,v) € F. SinceR C V x V, we can defingZ/R in the same way. It immediately
follows that if G’ is a contraction of7, thenG’ < G. For time vectors, lef” < T’
denote coordinate-wise inequality (and hence we can eib) asi’_, < Tp).

Lemmal ([7]). Let G < G’ be two weighted graphs anfi < T’ be two time
vectors. Then, for the equivalence relatioRsand R’ produced by the executions
Timed(G, D, T) andTimed(G’, D, T’), it holds thatR C R’.

A Simpler graph H: We now define a simpler grapi = G/R_,; this graphH will
act as a proxy forZ/Fp in the following sense. For two vertices v connected by
a zero-cost path i/, we know thatu andv are connected by a path ifip. This is
because the inequalif_, < Tp» used with Lemma 1 implies th&®_, C Rp; now
the invariant maintained by the algorithfimed implies that there is a path connecting
uandv in Fp wheneveru,v) € Rp.

Thus, to prove Theorem 4, it suffices to exhibit a tfeie H that spans all terminals
of g, and has cost at most//(v — 2)¢(D + g, g). By the properties of the grapt, it
then follows that the network U F’p is feasible for the group.

Note that each equivalence classff ;, can also be thought of as a single (super)-
vertex of the grapl#; this view may be more useful in some contexts. To complede th



correspondence between the two views, let us extend thataefiof a time vector to
supernodes in the natural wayzit- is an equivalence class of the relatiBn 4, we let
T (w.) = max,,cc T (v;); this allows us to talk about running tiémed algorithm on
H with the vectorT'.

4.1 The treeT spanning terminals ofg

We will obtain the desired Steiner tree on the grgup H by considering the execution
of the algorithmTimed(H, D + ¢,T); we denote this execution k. Recall that the
time vectorT was defined to ensure that in the execufiomed(G,D + ¢,T) on the
original graphG, the terminals ofy eventually merge into a single equivalence class
of the respective relatioR. Since the grapli/ is a contraction of7, it follows from
Lemma 1 that the terminals gfmust end up in the same equivalence clas§,iand
hence in the same connected component of the forest cotestrog £. There is a
unique minimal tree that spans the terminalg @i this forest; lefT denote this tree.

SinceT was constructed by the executiépall of its edges must be fully tight with
the dual grown irf. Our plan of attack is to show that the dual variables cordmg
to the terminals of; account for a significant fraction of this dual, and hencecibst
share ofg must be large enough to pay forldg fraction of the tree. To pursue this
plan, we introduce the following notion of layers as in [#istterminology is just a
convenient way of talking about “dual moats”.

In an execution of an algorithm, layer (C, I) corresponds to an active cluster
C whose dual variablgc has been growing during the time intenial= |7, 72);
the thicknesof this layer is|I| = = — 71. A layering £ of an execution is a set of
layers such that, for every timeand every active cluster, there is exactly one layer
(C,I) € Lsuchthat € 1.

Lonely layers: A layer (C, I) is lonely, if it does not contain any active terminals ex-
cept terminals belonging tg. Thus, the cost share gfcan be expressed as the total
thickness of lonely layers in any layering ©fmed(G, D + ¢, T). Using Lemma 1, we
can argue that the total thickness of lonely layers in theeatken £ is no more than in
Timed(G, D + g,T) (see [7] for details). Hence the total thickness of lonefela in
the executiorf is a lower bound on the cost sharegof

We lower bound the thickness of lonely layers by arguing thathickness of non-
lonely layers intersectin@ is significantly smaller than the length @f since all of T
has to be covered, this leaves a considerable fraction dfébéo be covered by lonely
layers. Hence our overall goal can be reduced to giving aeupgaund on the thickness
of non-lonely layers that intersect the tfge

To get a hold on this quantity, we proceed to compare a lagéetiof the execution
E—recall thatf = Timed(H, D + g, T)—with a layeringl’ of its inflated counterpart
&' = Timed(H, D,~T_4). We construct a mapping that maps every non-lonely layer
¢ = (C,I) € Lto adistinct layer’ = (C’,~I) € L' that is~ times thicker. (Note
that lonely layers do not have a natural counterpart, astineinals ofg do not appear
at all in the executiorf’.) To ensure the existence of such a mapping, we align the
two layerings to satisfy the following property: (€,1) € £ and(C’,I’) € £’ with
~NINT # (,thenl’” = ~I. (l.e.,I’ = [ym,y72) and = [r1,72).) This condition



can easily be imposed by repeatedplitting layers of £ and £’ that is, replacing an
offending layer(C, [r1,72)) by two layers(C, [r,7)) and (C, [T, 72)) for a suitably
chosen: € [r, 72).

Mapping non-lonely layers af to layers of£’: Every non-lonely layet = (C, [11, 72))
must contain a termindl € C such that ¢ g, that was active in the intervét,, 72).
SinceT_, < Tp, the terminat must have been active in the interfgd, ) in the
executiorg’, and hence there is a unique layér= (C’, [yr1,y72)) such that € C".
We thus mag to ¢'. A layer/ may contain multiple active terminals outsigiein that
case, pick one of them arbitrarily.

The following two lemmas supply us with all the ammunitionwié need to finish
our argument. In the next lemma, E{(T) denote the vertex set of the trée

Lemma 2. The mapping from non-lonely layers 6fto layers of£’ is one to one; that
is, distinct layers ofZ map to distinct layers of’.

Lemma 3. Let{ = (C,I) € L be a non-shared layer, such the{(T) N C # ). Then,
for its corrsponding laye¢’ = (C’,vI) we have thal/ (T) N C # 0.

The proof of the former is in Appendix A; the latter followsm [7, Lemmas 4. 16 and
4.17].

4.2 The book keeping

Let L and N denote the total thickness of lonely and non-lonely layleas intersect the
treeT. Note that we count every layer only once, irrespective @ htany edges of’
it cuts. We can express the total length of the tree as

IT|=L+N +X, (4.6)

whereX represents the “extra” contributions of layers that irget¥ more than once.
(For example, if a lonely layer intersecfsin three edges, it is counted oncelirand
twice in X).

At any time instant-, consider all the active clusters in the executiothat have
a non-empty intersection with the tr&& We claim that any such clustér “carves
out” a connected portion of the tré that is,C' N T is a connected graph. Hence if
we construct a graph with a node for every cluster intemgdtiand an edge between
every pair of clusters connected by a direct path aldnthis graph will also be a tree.
The number of layers intersectifiyjis equal to the number of nodes in this graph; the
number of times each layer intersefitss equal to the degree of the corresponding
vertex in this graph. Since the average vertex degree ireagrat most 2, the number
of intersections is at any time bounded by twice the numbéaysrs intersectingl.
Integrating over the course of the executtjrwe obtain that

L+N+X <2(L+N). (4.7)

A non-lonely layer is considereavastedf ¢ intersectdT, but its image”’ does not.
According to Lemma 3, this happens onlifiis fully contained insidé’. Let W denote



the total thickness of wasted layers. The total thicknedayasrs of £’ intersectingl

is a lower bound on the length @f. Since the image of every non-lonely laykethat
intersectsT’ and is not wasted also intersedisand because images of distinct layers
do not overlap, we get the following lower bound on the lerajtft.

(N —W) < |T|. (4.8)

The final piece of our argumentis the following claim: for gviayer that is wasted,
there must be a lonely layer growing at the same time, anddi@he< L. To see this
claim, suppose that a non-lonely layer= (C, I) intersectsT but is wasted—hence
for its inflated image’ = (C’,~I), we haveV (T) C C’. Since/ intersectsT, there
must be a terminal € g such that ¢ C. We now claim that during the interva| the
terminalt must have been a part of a lonely cluster. Indeed, supposktbbe inside
a non-lonely layer; = (C1,I) with some other active termingl ¢ g¢. But then, by
Lemma 3, the inflated imagé = (C},~I) of this layer/; must contain some vertex
of T, and sincé/(T) C C’, the layers’ and¢} have a nonempty intersection. This is
possible only i’ and¢] are the same inflated layer, which contradicts Lemma 2, as the
clearly distinct layerg and/¢; would then map to the same lay&r= ¢}. Thus,

W< L. (4.9)

Combining the inequalities (4.6—4.9), we obt&n— 2)|T| < 4vL, thus proving
Theorem 4.
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A Additional Proofs

Lemma 2. The mapping from non-lonely layers 6fto layers ofL’ is one to one; that
is, distinct layers ofZ map to distinct layers of’.

Proof (Lemma 2)The lemma follows from the at first surprising fact ttia¢ execution
&’ never builds any edges (of non-zero lengthfieed, suppose that two layefs =
(Cy,I) andly = (Ca,I) of £ map to the same layeéf = (C’,~I). But this means
that there are two distinct active (super)-nodes of the lyddpthat are in the same
cluster, and hence by the invariant maintained by the glyori€’ must have built a
path between them.

The fact that two active clusters &1 never merge can be established by comparing
the executiong”’ (recall,£’ = Timed(H,D,~T_,)) andTimed(G, D, T_,) side by
side. It can be shown that both executions behave identirathat edges in both get
tight at the same time (see [7]).

Hence, suppose that two active cluster€immerge, each of them containing an
active (super)-terminabc, andwc, respectively (recall that each (super)-nage of
H corresponds to an equivalence classf the relationR _,). But this means that the
path between a pair of active verticesce C; andv € C; got tight in the execution
Timed(G, D,vT—,) as well, implying that: andv should be in the same equivalence
class ofR_,, and henc&’; andC> must be the same equivalence class, contradicting
the assumption thatc, andwc, are distinct. O



