
Stochastic Steiner Trees without a Root

Anupam Gupta1 and Martin Pál2

1 Dept. of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213.
anupamg@cs.cmu.edu

2 DIMACS center, Rutgers University, Piscataway, NJ. Supported by ONR grant
N00014-98-1-0589 (while at Cornell University) and NSF grant EIA 02-05116 (at DIMACS).

mpal@acm.org

Abstract. This paper considers the Steiner tree problem in the model oftwo-
stage stochastic optimization with recourse. This model, the focus of much re-
cent research [1–4], tries to capture the fact that many infrastructure planning
problems have to be solved in the presence of uncertainty, and that we have make
decisions knowing merely market forecasts (and not the precise set of demands);
by the time the actual demands arrive, the costs may be higherdue to inflation.

In the context of the Stochastic Steiner Tree problem on a graph G = (V, E),
the model can be paraphrased thus: on Monday, we are given a probability dis-
tribution π on subsets of vertices, and can build some subsetEM of edges. On
Tuesday, a set of terminalsD materializes (drawn from the same distributionπ).
We now have to buy edgesET so that the setEM ∪ ET forms a Steiner tree on
D. The goal is to minimize the expected cost of the solution.

We give the first constant-factor approximation algorithm for this problem in this
paper. This is, to the best of our knowledge, the firstO(1)-approximation for
the stochastic version of anon sub-additive problem3 In fact, algorithms for the
unrootedstochastic Steiner tree problem we consider in this paper are powerful
enough to solve the Multicommodity Rent-or-Buy problem, themselves a topic
of much recent interest [6–8].

1 Introduction

Real world planning problems often have a significant component of uncertainity. For
instance, when designing networks, the precise demand patterns and future costs of
building capacity are often unknown to begin with, and only become clear as time
progresses. However, with our increasing ability to collect statistical data, and the de-
velopment of sophisticated and realistic forecast models,the paradigm of stochastic
optimization has gained much traction. Indeed, we can now aim to solve a wider class
of problems: given not a single input, but a distribution over inputs, we want to find a
solution that is good in expectation (taken with respect to the randomness in the model).

3 In a sub-additive problem, ifA andB are instances, then the union of their solutions is also
a feasible solution to the instanceA ∪ B; this is not true for Steiner trees. The results [1, 3,
5] only hold for sub-additive problems, and solve stochastic Steiner tree for the case when the
tree must contain a specified rootr.

In this paper, we study the problem of connecting a group of terminals by a Steiner
tree in a stochastic setting. In the classical Steiner tree problem, we are given an undi-
rected graphG = (V, E) with edge costsce, and a group of terminalsg = {t1, t2, . . . , tk};
the goal is to find a subsetE′ of edges of minimum cost that connects all these terminals.
We consider this problem when the groupg is not deterministically given in advance;
instead, it is given by a random variableΓ , with Pr[Γ = g] being the probability that we
will be required to build a network that connects a particular groupg ⊆ V of terminals.
As sketched in the abstract, we work the model of two-stage stochastic optimization
with recourse.

– In the first stage, we assume to have (some) knowledge of the distribution of the
random variableΓ . Armed with this information, we construct a networkF 0 ⊆ E
of edges bought as the firstanticipatorypart of the solution.

– In the second stage, we learn a groupg ⊆ V of terminals that is a realization of
the random variableΓ . We have to purchase an additionalaugmentingsetF 1(g)
of edges to ensure thatF 0 ∪ F 1(g) connects the terminals ofg. The problem is
interesting when the edges bought in the second stage have a higher cost (due to
inflation, or because the second phase has to be built on shortnotice). We useσ > 1
to denote theinflation factorby which the edges are more expensive.

Our goal is to minimize the expected cost of the two-stage solution. If we definec(F) =∑
e∈F ce, and denote the first and second stage solutionsF 0 ∈ E andF 1 : 2V 7→ 2E

to minimize
c(F 0) + EΓ [σ · c(F 1(Γ))]. (1.1)

Our results.The main quantitative result of this paper is the following:

Theorem 1. There is a12.6-approximation algorithm for the two-stage stochastic (un-
rooted) Steiner tree problem.

Note that while the stochastic Steiner tree problem has beenconsidered in previous
papers [1, 3, 5], their model is subtly but significantly different. All these works make
the crucial assumption that the there is afixed rootr, and the goal is to connect the
groupg to the rootr. This assumption, while a trifling detail in the deterministic case,
turns out to make a big difference in the stochastic setting,requiring us to develop new
techniques. For example, a fact used in one way or another by all previous results was
that the first stage solutionF 0 in the rooted case can be assumed to be a connected
tree containing the root; this is just not true in the unrooted case: in fact, insisting on
a connected first stage network may cost arbitrarily more than the optimum solution.
Indeed, our result is the first approximation algorithm given for a problem that is not
sub-additive, and requires us to interpret and use cost-sharing ideas in a novel way.

A note on the distributions. The distributionπ of the random variableΓ is an object
whose size may be exponential in|V |, but there are ways to cope with this fact. There
may be succint representations ofπ: in the independent decisionsmodel, each vertex
v ∈ V independently has a probabilitypv of being included inΓ , which gives us a easy-
to-represent product distribution. In thescenariomodel, the distributionπ is given by
an explicit list of pairs(gi, pi), with

∑
i pi = 1; herepi is the probability that the group

gi appears. Note that the algorithm is now allowed to run in timepolynomial in the
length of the list. In thesampling oraclemodel, the distributionπ can be arbitrary; the
algorithm accesses it only through a sampling oracle. Upon request, the oracle outputs
a groupg that is drawn from the distributionπ (or equivalently, is a realization of the
random variableΓ). Our algorithm works in the most general, sampling oracle model.
(We can also handle the case when the inflation parameterσ is random as well; for
simplicity of exposition, we defer that discussion to the final version of the paper.)

Related work. As already mentioned, several papers studied therooted versionof the
stochastic Steiner tree problem. Immorlica et al. [1] give aO(log n) approximation in
the independent decisions model, while [3] and [5] give constant approximation algo-
rithms for the oracle and scenario models respectively. Karger and Minkoff [9] and
Hayrapetyan et al. [10] study themaybecastproblem, where one is to output a single
treeT , to minimize the expected size of the smallest subtree ofT spanning a random
set of terminals. While technically this is also a stochastic problem, the recourse action
is fixed, and the only randomness present is in the objective function.

Gupta et al. [3] give a simple boosted sampling framework to convert an algorithm
for a deterministic minimization problem to an algorithm for its stochastic counterpart.
Their framework relies crucially on two ingredients: the deterministic version of the
problem at hand has to besubadditive, and have an approximation algorithm that admits
astrict cost sharing function. Since the unrooted Steiner tree problem is not sub-additive
(i.e., if T1 is a solution for terminal setg1, andT2 for g2, thenT1 ∪ T2 may not be a
solution forg1 ∪ g2), we cannot apply their techniques directly here.

The general area of stochastic optimization is studied heavily in the operations re-
search community, dating back to the seminal works of Dantzig [11] and Beale [12] in
the 1950s; the books [13, 14] and monograph [15] could serve as introduction for the
interested reader. Much of the work related to combinatorial optimization problems in
this area has been concerned with finding and characterizingoptimal solutions either
for restricted classes of inputs or with algorithms withoutpolynomial running times
guarantees. Recently, there has been some work on taking solutions to stochastic lin-
ear programs and rounding those to obtain approximation algorithms for the stochastic
problems [4]; however, it is not clear how to apply those techniques to the Steiner tree
problem.

The Boosted Sampling Framework.Gupta et al. [3] propose theBoosted Sampling
framework of Figure 1.1 to solve any two-stage stochastic problemΠ where the setΓ
of demand points is stochastic.

One would naturally expect that in the case of stochastic Steiner tree, the determinis-
tic algorithm of Step 2 would build a Steiner tree on the set ofterminalsg1∪g2∪· · ·∪gσ.
In fact, if the support ofΓ was on sets that all contained the fixed rootr, the analysis
of [3] shows that this is enough to obtain an 3.55-approximationalgorithm for stochastic
Steiner tree.

Unfortunately, building a Steiner tree fails in the unrooted case. For an example,
consider two groupsg1 andg2 that are very far apart relative to their diameter; assume
thatPr[Γ = gi] · σ is large. In this case, the optimum solution must connect up each
groupgi in the first stage to avoid high second stage cost, but it should not build a
link betweeng1 and g2 (to makeF0 spang1 ∪ g2) if it wants to avoid a high first

1: Boosted Sampling:Takebσc independent samplesg1, g2, . . . , gbσc from the sampling oracle
for Γ .

2: Building First Stage Solution:Use an algorithmA to find a solution to thedeterministic
equivalentof the problemΠ on the groupsg1, g2, . . . , gbσc. Use this solution as the first
stage solution to the stochastic problem.

3: Building Recourse:Once the groupg of required terminals materializes, use anaugmenting
algorithmAugA to augment the first stage solution to a valid solution that satisfiesg.

Fig. 1.1.Algorithm Boost-and-Sample(Π)

stage cost. On the other hand, if the two groups are interspersed in the same region
of the graph, the optimum solution may benefit from link sharing and hence build a
single Steiner tree spanning both groups. Hence it seems natural to suggest that the
algorithmA should build a forest ensuring that each group lies within a single connected
component; different groups may or may not be in the same component. As it turns
out, building aSteiner Foreston the groupsgi is a suitable deterministic equivalent of
stochastic unrooted Steiner tree; however, proving this requires a lot more work.

To this end, we have to show that the main theorem of [3] which relates the per-
formance of the boosted sampling framework to the notion ofstrictness4 of certain
cost-sharing functions can be proved in our case, even though our problem is not sub-
additive. The proof of this is simple, and we will sketch it inSection 2. We then define
the cost-shares in Section 3, and prove them to be strict in 4.

2 Notation and preliminaries

Let G = (V, E) be an undirected weighted graph with weigthsce on the edges. A
network is simply a subset of the edges. We say that a networkF is feasiblefor (or
connects) a group of terminalsg = {t1, t2, . . . , tk}, if all the terminals ofg lie in the
same connected component ofF . The cost of a networkF is simply the sum of costs
of its edges; that isc(F) =

∑
e∈F ce.

In the Steiner Forestproblem, given a weighted undirected graphG and a list of
groups of terminalsD = {g1, g2, . . . , gn} with eachgi = {ti1, . . . , tiki

}, we want to
construct a networkF of minimum cost that is feasible for each groupgi. For a setD of
terminal groups, letSols(D) denote the set of networks that are feasible for each of the
groups inD, and letOPT(D) be the network inSols(D) of minimum cost. An algorithm
A is anα-approximation algorithm for the Steiner Forest problem, if for any setD of
terminal groups, it finds a networkFD ∈ Sols(D) of cost at mostα cost(OPT(D)).

Given a groupg of terminals and an existing networkF ⊆ E, the goal of anaug-
menting algorithmis buy a set of extra edgesF ′ so thatF ∪ F ′ is a network that
connects the groupg. For instance, given a networkFD ∈ Sols(D) that connects each

4 This concept will shortly be defined in Definition 2. Loosely,a cost sharing function is a
scheme to charge the cost of a solution to the participating groups, and strictness relates the
cost of the edges bought in the second stage to the group shares.

of the groups inD, and a new groupg /∈ D, the augmenting algorithmAugA seeks to
find a set of edgesF ′ of minimum cost so thatFD ∪ F ′ ∈ Sols(D ∪ {g}).

Definition 1. A cost-sharing functionξ is a function that, for any instance(G,D) of
the Steiner forest problem, assigns a non-negative real number ξ(G,D, gi) to every
participating groupgi ∈ D.

We shall drop a reference to the graphG, if clear from the context.Note that the cost
sharing function assigns shares to groups, and not to the individual terminals.

Since the above definition is so general, let us specify some properties of these func-
tions that we would like to get. A cost-sharing functionξ is competitive if∑

g∈D ξ(D, g) ≤ cost(OPT(D)) holds for any Steiner forest instance(G,D). Thus,
competitive cost-shares serve as a lower bound on the cost ofthe optimal solution. The
following notion is crucial to the development of the paper,and implicitly places lower
bounds on the cost-shares themselves.

Definition 2. A cost sharing functionξ is β-strict with respect to an algorithmA, if
there exists an augmenting algorithmAugA, such that for any set of demand groupsD
and any groupg /∈ D,

cost(AugA(A(D), g)) ≤ βξ(D + g, g). (2.2)

Remark 1.There is a fine distinction between the notion of strictness we use here and
strictness as defined in [7, 3]. In [7], strictness was definedonly for augmentations with
groups of size 2; in this paper, we allow for groups of larger sizes. However, the strict-
ness in [3] is stronger than our notion, and allows for multiple group augmentations;
the question of proving strictness by this definition remains open despite much effort.

Given all these definitions, we can now state the the following theorem, which can
be derived from the proof of [3, Theorem 3.1].

Theorem 2. Suppose thatA is anα-approximation algorithm for deterministic Steiner
forest. Then, the boosted sampling algorithm of Figure 1.1 is an(α+β)-approximation
algorithm for unrooted stochastic Steiner tree whenever there is a cost-sharing function
ξ that isβ-strict with respect toA and single group augmentations.

The proof of this theorem is simple, and closely follows the arguments in the aforemen-
tioned paper; we defer the simple details for the final version of the paper.

3 The Algorithm A and the Cost Sharesξ

In this section we review the Steiner forest algorithm of [7], although the algorithm
of Becchetti et al. [6] would serve our purpose equally well.Both algorithms are ex-
tensions of the algorithm of Agarwal, Klein, and Ravi (AKR) [16], and Goemans and
Williamson (GW) [17], and are designed to “build a few extra edges” over and above the
AKR-GW algorithms, while keeping the overall cost of the solution within a constant
factor of the cost of the optimum. We also describe our cost-sharing method.

Recall that we are given a graphG = (V, E) and a setD of groupsg1, . . . , gn

of terminals, where each groupgi = {ti1, ti2, . . . , tiki
} ⊆ V . Before defining our

algorithm, we review the LP relaxation and the corresponding LP dual of the Steiner
forest problem that was used in [17]:

min
∑

ecexe (SF-LP)

x(δ(S)) ≥ f(S) ∀S ⊆ V

xe ≥ 0

max
∑

SyS (SF-DP)∑
S⊆V :e∈δ(S) yS ≤ ce (3.3)

yS ≥ 0,

wheref(S) is equal to1 if S separatesgi for somei (that is, if bothS ∩ gi and
(V − S) ∩ gi is nonempty), and is0 otherwise. Note that variablesyS for setsS that
do not separate any group are not contributing to the dual objective function, they still
play an important role in our algorithm.

We now describe a general way to define primal-dual algorithms for the Steiner
forest problem. As is standard for the primal-dual approach, the algorithm with maintain
a feasible (fractional) dual, initially the all-zero dual,and a primal integral solution (a set
of edges), initially the empty set. The algorithm will terminate with a feasible Steiner
forest, which will be proved approximately optimal with thedual solution (which is
a lower bound on the optimal cost by weak LP duality). The algorithms of [16, 17]
arise as a particular instantiation of the following algorithm. Our presentation is closer
to [16], where the “reverse delete step” of Goemans and Williamson [17] is implicit;
this version of the algorithm is more suitable for our analysis.

Our algorithm has a notion oftime, initially 0 and increasing at a uniform rate.
At any point in time, some terminals will beactiveand othersinactive. All terminals
are initially active and eventually become inactive. At anypoint of time, the vertex set
is also partitioned intoclusters, which can again be either active or inactive. In our
algorithm, a cluster will be one or more connected components (w.r.t. the currently
built edges). Initially, each vertex is a cluster by itself,and the active clusters are just
the terminals. We will consider different rules by which demands and clusters become
active or inactive, which we describe shortly. To maintain dual feasibility, whenever the
constraint (3.3) for some edgee between two clustersS andS′ becomes tight (i.e., first
holds with equality), the clusters aremergedand replaced by the clusterS ∪ S′. We
raise dual variables of active clusters until there are no more such clusters.

We have not yet specified how an edge can get built. Towards this end, let us define a
(time-varying) equivalence relationR on the set of terminals. Initially, all terminals lie
in their own equivalence class; these classes will only merge with time. When two active
clusters are merged, we merge the equivalence classes of allactive terminals in the two
clusters. Since inactive terminals cannot become active, this rule ensures that all active
terminals in a cluster are in the same equivalence class. (Note that if an active cluster
merges with an inactive one, this merging of equivalence classes does not happen.)

We build enough edges to maintain the following invariant: the terminals in the same
equivalence class are connected by built edges. This clearly holds at the beginning, since
the equivalence classes are all singletons. When two activeclusters meet, the invariant
ensures that, in each cluster, all active terminals lie in a common connected component.
To maintain the invariant, we join these two components by adding a path between
them. Building such paths without incurring a large cost is simple but somewhat subtle;
Agrawal et al. [16] (and implicitly, Goemans and Williamson[17]) show how to do
this. We refer the reader to [16] for details of this procedure, instead of repeating it

here. Specifying the rule by which clusters are deemed active or inactive now gives us
two different algorithms:

1. Algorithm GW(G,D): A terminaltij ∈ gi is active if the current cluster containing
it does not contain the entire groupgi. A cluster is active as long as it contains at
least one active demand. This implementation of the algorithm is equivalent to the
algorithms of Agrawal et al. [16] and Goemans and Williamson[17].

2. Algorithm Timed(G, D, T): This algorithm takes as an additional input a function
T : V → R≥0 which assigns astopping timeto each vertex. (We can also viewT
as a vector with coordinates indexed byV .) A vertexj is active at timeτ if j ∈ D
andτ ≤ T (j). (T is defined for vertices not inD for future convenience, but such
values are irrelevant, and can be imagined to be set to0 for the rest of the paper.)
As before, a cluster is said to be active if at least one demandin it is active.

To get a feeling forTimed(G, D, T), consider the following procedure: run the
algorithmGW(G,D) and setTD(j) to be the time at which vertexj becomes inac-
tive during this execution. (Ifj /∈ D, thenTD(j) is set to zero.) Since a vertex stays
active for exactly the same duration of time in the two algorithms GW(G,D) and
Timed(G, D, TD), the two algorithms clearly have identical outputs. Similarly, if for
eachtij ∈ gi we setT (tij) = maxt,t′∈gi

dG(t, t′), we we obtain the recent algorithm
of Könemann et al. [18].

It turns out that theTimed algorithm gives us a nice principled way to essentially
force theGW algorithm to build additional edges: run theTimed algorithm with a vec-
tor of demand activity times that is larger than what is naturally induced by theGW

algorithm.

The Algorithm A: The algorithmAlgorithm A(G,D) that we use to build the first
stage solution is

1: RunGW(G,D), and letTD(v) be the time at whichv becomes inactive.

2: RunTimed(G, D, γTD)—the timed algorithm with the above time vectorTD scaled
up by a parameterγ ≥ 1—and output the resulting forestFD.

(A technical point: whenγ > 1, algorithmA may raise the dual variables of vertex
sets that do not separate any group, and hence do not contribute to the value of the
dual objective function. However, this will not hinder our analysis. The fact thatFD is
a feasible Steiner network forD is easily verified, using the fact that the terminals of
each group became inactive at the same timeTD(gi) (equal toTD(tij) for anytij ∈ gi)
whengi became connected, and thatγ ≥ 1. We now define the cost sharesξ.

The Cost Sharesξ: We want the cost share of a groupgi of users to account for the
growth of components that grow solely because they contain terminals fromgi. Let
a(gi, τ) be the number of active clusters in the execution ofGW(G,D) that contain a
terminal fromgi but do notcontain any active terminals outsidegi. We define the cost
share ofgi to be

ξ(D, gi) =

∫
a(gi, τ) dτ, (3.4)

where the integral is over the entire execution of the algorithm. Note that the cost shares
defined by Equation (3.4) do not account for the full cost of the dual solutiony, as the
cost of growth of clusters with active demands from more thanone group more than one
active demand is not reflected at all. We could fix this by dividing the cost of growing
mixed clusters among participating groups in some way; however, we do not see how
to use this to improve our approximation ratio.

Augmentation Algorithm AugA: A practical augmenting algorithmAugA would sim-
ply contract all edges ofFD, and then find an approximate Steiner tree on the terminals
of g in this contracted graphG/FD. However, in order to bound the second stage cost,
we build a specific Steiner tree ong in G/FD, and argue that the cost ofthis tree can be
bounded byβ ξ(D + g, g) for someβ ∈ R. The construction of this tree is implicit in
the proof of Theorem 4, and can be found efficiently in polynomial time if required. In
the following, we letAugA be the algorithm that constructs this implicit tree. Our main
technical result is thus the following.

Theorem 3. For anyγ > 2,A is aα = (γ +1)-approximation for the Steiner network
problem, andξ is a β = (4γ/(γ − 2))-strict cost sharing method with respect to the
algorithmsA andAugA.

Proof. The fact thatA is a(γ + 1)-approximation can be proved along the lines of [6,
Lemma 3.1] (We postpone the details to the full version of thepaper). The proof of
strictness (Theorem 4) is the analytical heart of this paper, and is given in the following
section.

4 Proving strictness

Our analysis follows a fairly natural line of analysis that was also used in [7]. We start
by fixing a setD of demand groups, and a groupg /∈ D. To prove strictness of our
cost shares, we compare two executions of theGW algorithm: the inflated algorithm
A(G,D) on the set of groupsD that results in the forestFD, and the uninflated algo-
rithm GW(G,D + g) which is responsible for computing the cost shareξ(D + g, g).

Recall that we have to show thatg can be connected inFD with cost at most
O(ξ(D + g, g)). We prove this in the following theorem, which also implicitly de-
scribes the augmenting algorithmAugA. In the rest of the discussion, we will assume
thatγ > 2.

Theorem 4. There is a treeF ′ in the graphG/FD that spans all terminals ofg and
has cost at most4γ/(γ − 2) ξ(D + g, g). The treeF ′ can be constructed in polynomial
time.

The main difficulty in proving Theorem 4 arises from the fact that the two execu-
tionsA(G,D) andGW(G,D + g) may be very different. Hence it is not immediately
clear how to relate the cost of augmenting the forestFD produced by the former by the
cost shareξ(D + g, g) computed by the latter. To make a direct comparison possible,
we work through some transformations that allow us to find a mapping between dual
variables in these two executions. In the grand finale, we produce a treeT that spans

terminals ofg, and show that a1/β fraction of its edges is covered by dual variables
corresponding to the cost share ofg, which will complete the proof. Let us introduce
some time vectors to facilitate this comparison.

– LetTD be the time vector obtained by runningGW(G,D). Recall thatFD is the for-
est constructed byTimed(G,D, γTD); we also letRD be the equivalence relation
constructed by the latter algorithm.

– Let TD+g be the time vector generated by the executionGW(G,D + g) and let
τ = TD+g(g) be the time when the terminals ofg got connected in this execution.

– Let T be the vector obtained by truncatingTD+g at time τ . That is,
T (v) = min(τ, TD+g(v)) for v ∈ V . (The intuition forT is loosely this: we do not
care about time afterg has been connected, and this truncation captures this fact.)

– Finally, letT−g be the vectorT with g “taken out”, that is,T−g(v) = T (v) if v /∈ g,
andT−g(v) = 0 if v ∈ g. LetR−g be the equivalence relation constructed by the
executionTimed(G,D, γT−g).

A side-by-side comparison of the executionsGW(G,D) andGW(G,D + g) shows
that for allv ∈ V ,

TD(v) ≥ T−g(v); (4.5)

the simple inductive proof is omitted. Hence, we will use theforest constructed by
Timed(G,D, γT−g) as a proxy for the forestFD created byTimed(G,D, γTD); intu-
itively, sinceT−g is smaller thanTD, it should also produce a forest with fewer edges.
We will make this intuition precise in Lemma 1 below.

To state the lemma in a general form that will be useful later,we need some more
notation. For two weighted graphsG andG′ on the same vertex setV , we writeG′ ≤ G
if the shortest path distance between any pair of vertices (u,v) in G′ is no more than their
distance inG. For a graphG = (V, E) and a setF ⊆ (V ×V), the graphG′ = G/F is
acontractionof G, and is obtained by adding a zero-cost edge inG between every pair
(u, v) ∈ F . SinceR ⊆ V × V , we can defineG/R in the same way. It immediately
follows that if G′ is a contraction ofG, thenG′ ≤ G. For time vectors, letT ≤ T ′

denote coordinate-wise inequality (and hence we can rewrite (4.5) asT−g ≤ TD).

Lemma 1 ([7]). Let G ≤ G′ be two weighted graphs andT ≤ T ′ be two time
vectors. Then, for the equivalence relationsR and R′ produced by the executions
Timed(G,D, T) andTimed(G′,D, T ′), it holds thatR ⊆ R′.

A Simpler graph H : We now define a simpler graphH = G/R−g; this graphH will
act as a proxy forG/FD in the following sense. For two verticesu, v connected by
a zero-cost path inH , we know thatu andv are connected by a path inFD. This is
because the inequalityT−g ≤ TD used with Lemma 1 implies thatR−g ⊆ RD; now
the invariant maintained by the algorithmTimed implies that there is a path connecting
u andv in FD whenever(u, v) ∈ RD.

Thus, to prove Theorem 4, it suffices to exhibit a treeT in H that spans all terminals
of g, and has cost at most4γ/(γ − 2)ξ(D + g, g). By the properties of the graphH , it
then follows that the networkT ∪ FD is feasible for the groupg.

Note that each equivalence class ofR−g can also be thought of as a single (super)-
vertex of the graphH ; this view may be more useful in some contexts. To complete the

correspondence between the two views, let us extend the definition of a time vector to
supernodes in the natural way: ifwC is an equivalence class of the relationR−g, we let
T (wc) = maxvi∈C T (vi); this allows us to talk about running theTimed algorithm on
H with the vectorT .

4.1 The treeT spanning terminals ofg

We will obtain the desired Steiner tree on the groupg in H by considering the execution
of the algorithmTimed(H,D + g, T); we denote this execution byE . Recall that the
time vectorT was defined to ensure that in the executionTimed(G,D + g, T) on the
original graphG, the terminals ofg eventually merge into a single equivalence class
of the respective relationR. Since the graphH is a contraction ofG, it follows from
Lemma 1 that the terminals ofg must end up in the same equivalence class inE , and
hence in the same connected component of the forest constructed by E . There is a
unique minimal tree that spans the terminals ofg in this forest; letT denote this tree.

SinceT was constructed by the executionE , all of its edges must be fully tight with
the dual grown inE . Our plan of attack is to show that the dual variables corresponding
to the terminals ofg account for a significant fraction of this dual, and hence thecost
share ofg must be large enough to pay for a1/β fraction of the tree. To pursue this
plan, we introduce the following notion of layers as in [7]; this terminology is just a
convenient way of talking about “dual moats”.

In an execution of an algorithm, alayer (C, I) corresponds to an active cluster
C whose dual variableyC has been growing during the time intervalI = [τ1, τ2);
the thicknessof this layer is|I| = τ2 − τ1. A layeringL of an execution is a set of
layers such that, for every timeτ and every active clusterC, there is exactly one layer
(C, I) ∈ L such thatτ ∈ I.

Lonely layers: A layer (C, I) is lonely, if it does not contain any active terminals ex-
cept terminals belonging tog. Thus, the cost share ofg can be expressed as the total
thickness of lonely layers in any layering ofTimed(G,D + g, T). Using Lemma 1, we
can argue that the total thickness of lonely layers in the executionE is no more than in
Timed(G,D + g, T) (see [7] for details). Hence the total thickness of lonely layers in
the executionE is a lower bound on the cost share ofg.

We lower bound the thickness of lonely layers by arguing thatthe thickness of non-
lonely layers intersectingT is significantly smaller than the length ofT: since all ofT
has to be covered, this leaves a considerable fraction of thetree to be covered by lonely
layers. Hence our overall goal can be reduced to giving an upper bound on the thickness
of non-lonely layers that intersect the treeT.

To get a hold on this quantity, we proceed to compare a layeringL of the execution
E—recall thatE = Timed(H,D + g, T)—with a layeringL′ of its inflated counterpart
E ′ = Timed(H,D, γT−g). We construct a mapping that maps every non-lonely layer
` = (C, I) ∈ L to a distinct layer̀ ′ = (C′, γI) ∈ L′ that isγ times thicker. (Note
that lonely layers do not have a natural counterpart, as the terminals ofg do not appear
at all in the executionE ′.) To ensure the existence of such a mapping, we align the
two layerings to satisfy the following property: if(C, I) ∈ L and(C′, I ′) ∈ L′ with
γI ∩ I ′ 6= ∅, thenI ′ = γI. (I.e., I ′ = [γτ1, γτ2) andI = [τ1, τ2).) This condition

can easily be imposed by repeatedlysplitting layers ofL andL′, that is, replacing an
offending layer(C, [τ1, τ2)) by two layers(C, [τ1, τ̂)) and (C, [τ̂ , τ2)) for a suitably
chosen̂τ ∈ [τ1, τ2).

Mapping non-lonely layers ofL to layers ofL′: Every non-lonely layer̀ = (C, [τ1, τ2))
must contain a terminalt ∈ C such thatt /∈ g, that was active in the interval[τ1, τ2).
SinceT−g ≤ TD, the terminalt must have been active in the interval[γτ1, γτ2) in the
executionE ′, and hence there is a unique layer`′ = (C′, [γτ1, γτ2)) such thatt ∈ C′.
We thus map̀ to `′. A layer ` may contain multiple active terminals outsideg; in that
case, pick one of them arbitrarily.

The following two lemmas supply us with all the ammunition wewill need to finish
our argument. In the next lemma, letV (T) denote the vertex set of the treeT.

Lemma 2. The mapping from non-lonely layers ofL to layers ofL′ is one to one; that
is, distinct layers ofL map to distinct layers ofL′.

Lemma 3. Let ` = (C, I) ∈ L be a non-shared layer, such thatV (T) ∩ C 6= ∅. Then,
for its corrsponding layer̀ ′ = (C′, γI) we have thatV (T) ∩ C 6= ∅.

The proof of the former is in Appendix A; the latter follows from [7, Lemmas 4. 16 and
4.17].

4.2 The book keeping

Let L andN denote the total thickness of lonely and non-lonely layers that intersect the
treeT. Note that we count every layer only once, irrespective of how many edges ofT
it cuts. We can express the total length of the tree as

|T| = L + N + X, (4.6)

whereX represents the “extra” contributions of layers that intersectT more than once.
(For example, if a lonely layer intersectsT in three edges, it is counted once inL and
twice inX).

At any time instantτ , consider all the active clusters in the executionE that have
a non-empty intersection with the treeT. We claim that any such clusterC “carves
out” a connected portion of the treeT, that is,C ∩ T is a connected graph. Hence if
we construct a graph with a node for every cluster intersecting T and an edge between
every pair of clusters connected by a direct path alongT, this graph will also be a tree.
The number of layers intersectingT is equal to the number of nodes in this graph; the
number of times each layer intersectsT is equal to the degree of the corresponding
vertex in this graph. Since the average vertex degree in a tree is at most 2, the number
of intersections is at any time bounded by twice the number oflayers intersectingT.
Integrating over the course of the executionE , we obtain that

L + N + X ≤ 2(L + N). (4.7)

A non-lonely layer̀ is consideredwastedif ` intersectsT, but its imagè ′ does not.
According to Lemma 3, this happens only ifT is fully contained insidè′. LetW denote

the total thickness of wasted layers. The total thickness oflayers ofL′ intersectingT
is a lower bound on the length ofT. Since the image of every non-lonely layer` that
intersectsT and is not wasted also intersectsT, and because images of distinct layers
do not overlap, we get the following lower bound on the lengthof T.

γ(N − W) ≤ |T|. (4.8)

The final piece of our argument is the following claim: for every layer that is wasted,
there must be a lonely layer growing at the same time, and hence W ≤ L. To see this
claim, suppose that a non-lonely layer` = (C, I) intersectsT but is wasted—hence
for its inflated imagè ′ = (C′, γI), we haveV (T) ⊆ C′. Since` intersectsT, there
must be a terminalt ∈ g such thatt /∈ C. We now claim that during the intervalI, the
terminalt must have been a part of a lonely cluster. Indeed, suppose not; let t be inside
a non-lonely layer̀ 1 = (C1, I) with some other active terminalt1 /∈ g. But then, by
Lemma 3, the inflated imagè′1 = (C′

1, γI) of this layer`1 must contain some vertex
of T, and sinceV (T) ⊆ C′, the layers̀ ′ and`′1 have a nonempty intersection. This is
possible only if̀ ′ and`′1 are the same inflated layer, which contradicts Lemma 2, as the
clearly distinct layers̀ and`1 would then map to the same layer`′ = `′1. Thus,

W ≤ L. (4.9)

Combining the inequalities (4.6–4.9), we obtain(γ − 2)|T| ≤ 4γL, thus proving
Theorem 4.

References

1. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.: On the costs and benefits of procras-
tination: Approximation algorithms for stochastic combinatorial optimization problems. In:
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms. (2004)

2. Ravi, R., Sinha, A.: Hedging uncertainty: Approximationalgorithms for stochastic optimiza-
tion problems. In: Proceedings of the 10th International Conference on Integer Programming
and Combinatorial Optimization (IPCO). (2004)GSIA Working Paper 2003-E68.

3. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algorithms for
stochastic optimization. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing. (2004)

4. Shmoys, D., Swamy, C.: Stochastic optimization is (almost) as easy as deterministic opti-
mization. In: Proceedings of the 45th Annual IEEE Symposiumon Foundations of Computer
Science. (2004)

5. Gupta, A., Ravi, R., Sinha, A.: An edge in time saves nine: Lp rounding approximation algo-
rithms. In: Proceedings of the 45th Annual IEEE Symposium onFoundations of Computer
Science. (2004)

6. Becchetti, L., Könemann, J., Leonardi, S., Pál, M.: Sharing the cost more efficiently: Im-
proved approximation for multicommodity rent-or-buy. In:Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms. (2005)

7. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: A simple
approximation algorithm for the multicommodity rent or buyproblem. In: Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science. (2003) 606–615

8. Kumar, A., Gupta, A., Roughgarden, T.: A constant factor approximation algorithm for the
multicommodity rent-or-buy problem. In: Proceedings of the 43rd Annual Symposium on
Foundations of Computer Science. (2002)

9. Karger, D.R., Minkoff, M.: Building steiner trees with incomplete global knowledge. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science. (2000)
613–623

10. Hayrapetyan, A., Swamy, C., Tardos, E.: Network design for information networks. In:
ACM-SIAM Symposium on Discrete Algorithms. (2005)

11. Dantzig, G.B.: Linear programming under uncertainty. Management Sci.1 (1955) 197–206
12. Beale, E.M.L.: On minimizing a convex function subject to linear inequalities. J. Roy. Statist.

Soc. Ser. B.17 (1955) 173–184; discussion, 194–203 (Symposium on linear programming.).
13. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer Series in Oper-

ations Research. Springer-Verlag, New York (1997)
14. Kall, P., Wallace, S.W.: Stochastic programming. Wiley-Interscience Series in Systems and

Optimization. John Wiley & Sons Ltd., Chichester (1994)
15. Schultz, R., Stougie, L., van der Vlerk, M.H.: Two-stagestochastic integer programming: a

survey. Statist. Nederlandica50 (1996) 404–416
16. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for the

generalized steiner problem on networks. SIAM J. Comput.24 (1995) 440–456 (Preliminary
version in23rd STOC, 1991).

17. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest
problems. SIAM J. Comput.24 (1995) 296–317 (Preliminary version in5th SODA, 1994).

18. Könemann, J., Leonardi, S., Schäffer, G.: A group-strategyproof mechanism for steiner
forests. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms. (2005)

A Additional Proofs

Lemma 2. The mapping from non-lonely layers ofL to layers ofL′ is one to one; that
is, distinct layers ofL map to distinct layers ofL′.

Proof (Lemma 2).The lemma follows from the at first surprising fact thatthe execution
E ′ never builds any edges (of non-zero length). Indeed, suppose that two layers`1 =
(C1, I) and`2 = (C2, I) of L map to the same layer̀′ = (C′, γI). But this means
that there are two distinct active (super)-nodes of the graph H that are in the same
cluster, and hence by the invariant maintained by the algorithm, E ′ must have built a
path between them.

The fact that two active clusters inE ′ never merge can be established by comparing
the executionsE ′ (recall,E ′ = Timed(H,D, γT−g)) andTimed(G,D, T−g) side by
side. It can be shown that both executions behave identically in that edges in both get
tight at the same time (see [7]).

Hence, suppose that two active clusters inE ′ merge, each of them containing an
active (super)-terminalwC1

andwC2
respectively (recall that each (super)-nodewC of

H corresponds to an equivalence classC of the relationR−g). But this means that the
path between a pair of active verticesu ∈ C1 andv ∈ C2 got tight in the execution
Timed(G,D, γT−g) as well, implying thatu andv should be in the same equivalence
class ofR−g, and henceC1 andC2 must be the same equivalence class, contradicting
the assumption thatwC1

andwC2
are distinct. ut

