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Abstract—We show that a natural nonclairvoyant online  processor (which is what would be required in order to at-
algorithm for scheduling jobs on a power-heterogeneous mul  tain processor homogeneity), some processor heterogeneit

tiprocessor is bounded-speed bounded-competitive for theb-  geems inevitable in chips with many processors/cores.
jective of flow plus energy.
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|. INTRODUCTION

Many computer architects believe that architectures con- ol I I
sisting of heterogeneous processors/cores will be the-domi N
nant architectural design in the future [BSCO08], [KT®Y],
[KTJO6], [Mer08], [MWK*06]. The main advantage of a

. . h M M
heterogeneous architecture, relative to an architectéire o
identical processors, is that it allows for the inclusion of H
processors whose design is specialized for particularstype M Vv

of jobs, and for jobs to be assigned to a processor best
suited for that job. Most notably, it is envisioned that #hes
heterogeneous architectures will consist of a small number

of high-power high-performance processors for criticéisijo
Figure 1. An example layout of an architecture consistingved high

and a larger number_ _Of Iqwer-power_ Iower-performgnce ower processors (labeled H), four medium power procegkadsled M),
processors for less critical jobs (see figure 1 for a visuahnd sixteen lower power processors (labeled L).

representation of such an architecture). Naturally, thneete
power processors would be more energy efficient in terms The position paper [BSCO08] argues for the fundamental
of the computation performed per unit of energy expendedimportance of research into scheduling policies for hetero
and would generate less heat per unit of computation. Fogeneous processors, and identified three fundamental chal-
a given area and power budget, heterogeneous designs ckmges in scheduling heterogeneous multiprocessorshél) t
give significantly better performance for standard work-OS must discover the status of each processor, (2) the
loads [BSCO08], [Mer08]; Evaluations in [KTJO6] suggest OS must discover the resource demand of each job, and
a figure of 40% better performance, and evaluations in3) given this information about processors and jobs, the
[MWK T06] suggest a figure of 70% better performance.OS must match jobs to processors as well as possible. The
Moreover, even processors that were designed to be haontribution of this paper is probably best summarized as
mogeneous, are increasingly likely to be heterogeneous an initial step in a theoretical worst-case investigatidn o
run time [BSCO08]: the dominant underlying cause is thechallenge (2) and (3) in tandem. To explain this contributio
increasing variability in the fabrication process as ttatdee  however, it is necessary to first review the results in [GKP],
size is scaled down (although run time faults will also play awhich is some sense completely solved challenge (3) from
role). Since manufacturing yields would be unacceptably lo a worst-case theoretical perspective.

if every processor/core was required to be perfect, anasinc

N . “A. The Problem Formulation, and the Clairvoyant Algo-
there would be significant performance loss from deratmgrithm and Analysis

the entire chip to the functioning of the least functional ] ) o
[GKP] introduced the following model, building on an
Anupam Gupta and Ravishankar Krishnaswamy were suppartpdrc  earlier model in [BCPO09]. Each processohas a known
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its release time;. Job j has an associatesizep; € R, error relative to the benchmark. The most obvious choice
as well as @mportance/weightv; € R~. for the benchmark is probably the optimal schedule for each
An online scheduler has two component policies: instancel. But since scheduling on identical processors with
Job Selection: Determines which job to run on each pro- the objecnve_ of total ﬂ.OW _(and even schedullng_on a smgle
processor with the objective of weighted flow), is a special

cessor at any time. . o
2 . ase of the problem we consider, bounded competitiveness
Speed Scaling:Determines the speed of each processor a . . . .
relative to the optimal schedule is not possible [LRO7],

each time. [BCOY].

The objective considered in [GKP] is that @feighted This is a common phenomenon in online scheduling prob-
flow plus energy A job of size p takesZ units of time lem, and the standard remedy, called resource augmentation
to complete if run at speed. The flow F; of a job j is to use as a benchmark the optimal schedule that uses
is its completion timeC; minus its release time;. The  slightly slower processors. In this context, an algoritdm
weighted flow for a jobj is w;F}, and the weighted flow is o-speedc-competitive if A, equipped with processors
for a schedule isy . w; F;. The intuitive rationale for the with speedso - s;1,...,0 - s; y(;), and associated pow-
objective of weighted flow plus energy can be understoocrs P; 1, ..., P; ¢ is c-competitive relative to the bench-
as follows: Assume that the possibility exists to invést mark of the optimal schedule for processors with speeds
units of energy to decrease the flow of jops...,jx by  s;1,...,s; 5(;), and associated powef3 1, ..., P; ;).
x1,..., T, respectively; then an optimal scheduler for this To understand the motivation for resource augmentation
obLective would make such an investment if and only ifanalysis, note that it is common for systems to posses the
> i wiz; > E. So the importancev; of job j can be following (informally defined)threshold property The input
viewed as specifying an upper bound on the amount obr input distributions can be parameterized by a laadnd
energy that the system is allowed to invest to redyise the system is parameterized by a capagitihe system then
flow time by one unit of time (assuming that this energy has the property that its QoS would be very good when the
investment in running; faster doesn’t change the flow load ) is at most 90% of the system capacjiy and it is
time of other jobs)— hence jobs with higher weight arehorrible if A\ exceeds 110% ofi. Figure 2 gives such an
more important, since higher investments of energy arexample of the QoS curve for a system that has this kind of

permissible to justify a fixed reduction in flow. threshold property. Figure 2 also shows the performance of
[GKP] considered the following natural online algorithm, an online algorithm4 which compares reasonably well with
consisting of three policies, which we will call GKP: the performance of an optimal algorithm. Notice however

tthat the competitive ratio ofd relative to the optimal is
ery large when the load is near capacitysince there is
a large vertical gap between the two curves at load values
glightly below pi. In order to completely explain why the
curves forA and optimal in Figure 2 are “close”, we need
also measure the horizontal gap between curves. This
Intuitively measures the ratio of the maximum load for which
A has good performance with respect to the (typically larger)
éwe“laximum load for which the optimal can guarantee good

in the projected future (fractional) weighted flow, assugnin performance. To this end, we would like to say something

the adopted speed scaling and job selection policies, an%?hA ptgrformr? a; m(iSt :]ilmﬁs;/_vorstﬁ t?an (IJtptilmaI otr;]inﬁ)utz
ignoring the possibility of jobs arriving in the future. with ¢ times higher load. otice that multiplying the foa
by a factor ofo is equivalent slowing the system down by a

[GKP] evaluated this algorithm using resource augmentafactor of o. This can be captured by a statement which says
tion analysis [KPOQ], which is a type of worst-case compar-that A with an o times faster processor is at mastimes
ative analysis, and which we now explain within the contextas bad as optimal.
of the type of problem that we consider here. An algorithm  The informal notion of an online scheduling algorittn
is said to bec-competitive relative to a benchmark algorithm being “reasonable” is then generally formalizedAsaving
B if for all inputs I it is the case that bounded competitiveness for some small constant speed

A(I) < ¢ B(I) augmentatiorns. Such a scheduling algori_thm (whenis
modest) would guarantee a system capacity of at least
where A(I) is the value of the objective of the schedule which is at least a constant fraction of the optimal capacity
output by algorithmA on input, and B(I) is the value The informal notion of an online scheduling algorithm being
of the objective on the benchmark schedule for inpuin ~ “good”, is then generally formalized a$ has has bounded
other words, the competitivenesscafepresents a worst-case competitiveness even if = 1+ ¢ is arbitrarily close to one.

Job Selection: On each processor, always run the highes
density job assigned to that processor. The density of a jo
is its weight divided by its size.

Speed ScalingThe speed of each processor is set so that th
resulting power is the (fractional) weight of the unfinished
jobs on that processor. This guarantees that the energy us
will be identical to the weighted (fractional) flow time.
Assignment: When a new job arrives, it is greedily as-
signed to the processor that results in the least increa



; job has the same importance, or equivalently, we consider
' the objective of (unweighted) flow time plus energy. Our
: main result is that a natural nonclairvoyant algorithm is
5 bounded-speed bounded-competitive for the objective of
! flow plus energy. More precisely, we show that this nat-
Performancel ural nonclairvoyant scheduling algorithm {8 + ¢)-speed
Optimal O(%)-competitive for the objective of flow plus energy.

.: So intuitively, if this scheduling algorithm is adopted ithe

the system should have capacity at least approximately
half of the optimal system capacity. So using the standard
interpretation, this natural nonclairvoyant algorithnostd
be viewed as “reasonable”. Or at least the algorithm seems as
m reasonable as Equipartition is for the objective of miningz

Load A average flow time (without energy considerations) as it is

known that Equipartition i$2 + ¢)-speedO(1)-competitive

Figure 2. QoS curves of an almost fully scalable online atgor A and in this context [EPOQ]. . .
the optimal algorithm for a system with the threshold proper We now describe the component policies of our nonclair-
voyant algorithm:

Such an algorithm is callestalablesince it would guarantee Spee(;j SC"?"'”Q:A CO”TC“OZ of processors a_nd issomated
a system capacity arbitrarily close to the optimal capacitySloee settings are selected so as to maximize the aggregate

while also ensuring that the QoS remains comparable (tgpeed, subject to the constraints that the of cardinalithef

within a constant factor). For a more detailed eIaboratiorFeIeCted processors at m_ost the number of unfinishe_d_jobs,
see [PST04], [Pru07]. and the aggregate power is at most the number of unfinished

The main result in [GKP] was that the online algorithm jobs. . _ . .
GKP was scalable for weighted flow plus energy. The‘]Ob Selection:The jobs share this processing power equally.
analysis in [GKP] extended theorems showing similar result
for weighted flow plus energy on a uniprocessor [BCP09], In other words, the job selection policy is Equipartition (o
[AWTO9], and for weighted flow on a multiprocessor with- equivalently Round Robin or Processor Sharing). As for our

out power considerations [CGKMO09]. speed scaling policy, the intuition is that it tries to maden
N . the effective aggregate speed of the assigned processors
B. The Contribution of this Paper subject to the same maximum power constraint as in GKP

So in some sense [GKP] shows that the natural greedgnd earlier algorithms. We show that this speed scaling
algorithm GKP has the best possible worst-case performangsolicy can be implemented using a simple and efficient
for challenge (3) from [BSCO8]. However note that the GKP greedy algorithm.
algorithm is clairvoyant, that is, it needs to know the job However, note that, in contrast to the GKP algorithm, this
sizes when jobs are released. In the GKP algorithm, the joligorithm produces migratory schedules, that is, the same
selection policy needs to know the size of a job to computgob may be run on different processors over time (however,
its density, and the assignment policy must know the sizéio job is run on different machines at the same time).
and density to compute the future costs. Thus the GKRBut it is easy to see that job migration is an unavoidable
algorithm is not directly implementable as in general oneconsequence of nonclairvoyance, that is, any boundedispee
can not expect the system to know job sizes when they argounded-competitive nonclairvoyant algorithm must migra
released. jobs.

Thus the natural question left open in [GKP] is what
is the best possible nonclairvoyant scheduling algorithmC- Related Results
Nonclairvoyant algorithms do not require knowledge of a Let us now consider related scheduling problems where
size of a job. This can be viewed as addressing challengatere are no power considerations. First let us assume a
(2) and (3) from [BSCO08] in tandem (described in Section I).single processor. The online clairvoyant algorithm Short-
We note that it is both practically natural, and mathemati-est Remaining Time (SRPT) is optimal for unweighted
cally necessary, to assume that the system does know tllew. The nonclairvoyant algorithm Shortest Elapsed Time
importance of each job. First is scalable for unweighted flow [KP0O]. The non-

In this paper, we make a first step toward addressing thelairvoyant algorithm Round Robin i& + ¢)-speedO(1)-
open question of finding the best nonclairvoyant schedulingompetitive [EP09] for unweighted flow. The algorithm
policy. In particular, we consider the simplification thatk  Highest Density First (HDF) is scalable for weighted



flow [BLO4], and there is no online algorithm that D. Preliminaries
has bounded competitiveness against the optimal sched-

ule [BCOY]. NOW_ let us consider_ _multiple_ identical PO~ and each processor, a speed for that processor and a job that
cessors. SRPT i©)(logn)-competitive against the opti- each processor runs. We assume that no job may be run

mal schedule, and no better compet|t|venes§ IS achieVsy more than one processor simultaneously. The speed is
able [LRO7]. The clairvoyant algorithm HDF is scalable {4 rate at which work is completed: a jgbwith size p;
for_weighted flow [B_T06_]. The nonclairvoyant_algorithm run at a constant speedcompletes in% seconds. A j(J)b
Welghted L_APS’ which is ba_sed on the algonthm LAPS;g completed when all of its work has been processed. The
in [EPOS], is scalable for weighted flow, and this can beﬂow time of a job is the completion time of the job minus

inferred from the problem b_eing a special case Of thee release time of the job. The weighted flow of a job is
problem of broadcast scheduling [BKN]. the weight of the job times the flow time of the job (for our

We now turn our attention on prior work on scheduling results, all jobs have the same weight, and we could think

involving power management. For the case of a single pro®f the weights as being unit). _
cessor with unbounded speed and a polynomially bounded 2) Power Functions.:As noted in [BCP09] we can in-
power function P(s) = s®, [PUWOS] gave an efficient terp_olate_the _dlscrete speed_s and powers of a processor to
offlinealgorithm to find the schedule that minimizes average® Piecewise linear function in the obvious way. See figure
flow subject to a constraint on the amount of energy used3 for an illustration. To elaborate, let and s, be two

in the case that jobs have unit work. However, no suct@llowable speed§ for a processor, with associated powers
result involving an energy constraint is possible when wel1 and P». By time multiplexing the speeds; and s,
transition to online algorithms. Therefore, [AFO7] intcaméd ~ With proportionA and 1 — A respectively (here\ € [0, 1)),

the objective offlow plus energyand gave a constant One can effectively have a processor that runs at speed
competitive algorithm algorithm for this objective in thase ~ As1+ (1 —A)s2 with powerAP; + (1 — ) P». Note that then

of unit work jobs. Subsequently, [BPS09] gave a constanthis is just the linear interpolation of the two poirits , F)
competitive algorithm for the objective of weighted flow plu @nd (s2, P2). As noted in [BCPOY] we may then assume
energy. The competitive ratio was improved by [LLTWO08b] W|th01_1t loss of g_enerallty that _the power funct|qn has the
for the unweighted case using a potential function specififollowing properties:P(0) = 0, is strictly increasing, and
cally tailored to integer flow. [BCLLO8] extended the result i$ Strictly convex. We will useP; to denote the resulting

of [BPS09] to the bounded speed model, and [€B8] gave ~ Power function for processar and useQ; to denoter;*;

a nonclairvoyantalgorithm that isO(1)-competitive. i.e., Qi(y) gives us the speed that we can run processay
if we specify a limit ofy. We note that sincé’; is convex,

Remaining on a single processor, [BCPO9] dropped th&); is concave and we exploit this fact in our proofs.
assumptions of unbounded speed and polynomially-bounded
power functions, and gave &competitive algorithm for
the objective of unweighted flow plus energy, and2a
competitive algorithm for fractional weighted flow plus
energy, when the power function could be arbitrary. The
former analysis was subsequently improved to shw
competitiveness, along with a matching lower bound on the
competitive ratio [AWTO09].

1) Scheduling Basics A schedule specifies for each time

Power

Moving on to the setting of multiple machines,
[LLTWO8a] considers the problem of minimizing flow plus
energy on multiple homogeneous processors, where the
allowable speeds range between zero and some upper bound,
and the power function is polynomial. [LLTWO08a] show
that an algorithm that uses a variation of round robin forgigyre 3. An illustration of the natural extension of a povenction for
the assignment policy, and uses the job selection and speddee discrete speeds to a piecewise linear power function.
scaling policies from [BPS09], is scalable for this problem
[CEPO9] show that bounded-competitiveness for the objec- 3) Local Competitiveness and Potential Functionbi:
tive of flow plus energy is not achievable on multiprocessorqally, let us quickly review the technique of amortized
if jobs can be run simultaneously on multiprocessors, andompetitiveness analysis on a single processor, which we
have varying speed-ups (i.e jobs have different degrees afse in our proofs. Consider an objectitie(in our setting, it
parallelism). [CEP09] give an optimally log competitive is unweighted flow plus energy). Lét 4(¢) be the increase
algorithm building on the results in [CE109]. in the objective in the schedule for algorithrh at time

Speed



t. So whenG is unweighted flow plus energy4(¢) is  each unitto the machine which offers the best increase to the
P,(t) + na(t), where P,(t) is the total power used byl  total speed that can be extracted. The speed scaling policy
at time ¢ and n,(¢) is the number of unfinished jobs for for A is then justGreedySS(n,).
A at timet. Let OPT be the optimal benchmark schedule The job selection policy forA is Equipartition, which
we could like to compare against. Then, the algoritdAm equally shares the speed among the processors. That is, each
is said to be locallyc-competitive if for all timest, if  job is effectively run at spee¥’, s; /n,. Furthermore, since
Ga(t) < c-Gopr(t). A weaker notion of that of amortized there are only at most,(¢) machines which are powered
competitiveness: To prova is (¢ + d)-competitive using an on at an timet, it is possible to equally share the total
amortized local competitiveness argument, it suffices e gi resources among the jobs without having to schedule any
a potential function®(¢) such that the following conditions job on two different machines at the the same time. We
hold (see for example [Pru07]). remark that this seems like the most natural nonclairvoyant
Boundary condition: ® is zero before any job is re- job selection policy, since the scheduler is not aware of the
leased andb is non-negative after all jobs are finished. initial job sizes, and hence remaining unprocessed sizes.
Completion condition: ® does not increase due to Before we analyze the algorithi, we now show that
completions by either A or OPT. GreedySS optimally solves the followingspeed extraction
Arrival condition: & does not increase more thain optimization problem
OPT due to job arrivals.
Running condition: At any timet when no job arrives
or is completed,

Speed Extraction Optimization Problem: Assign a power
budget of E; to each processarso as to maximize the total
extracted speed", Q);(E;) subject to the constraints:

do(t) Each E; is a nonnegative integer
Galt) + —2 < ¢ -Gopr(t 1 . i 9 ger,
Alt)+ =g~ s ¢ Gorr(®) @) « 3. E; < ng(t), and
The sufficiency of these conditions for provirg + d)- » the number of machines that are powered, i.e. have
competitiveness follows from integrating them over time. E; >0, is at mostn,.
[I. THE DESCRIPTION OF THEALGORITHM Lemma 2.1:The greedy algorithnmGreedySS optimally

In this section we describe the nonclairvoyant algorithm SOIves the speed exiraction problem. _ _

which we will denote byA, in greater detail. Like men- Proof: Imagine the optimal speed scaling policy assigns

tioned in the introduction (Section I-BJ\ consists of two & POWer budget ofEy € Zxo to machines, such that
components, (i) the speed scaling policy which at any time: i = na(t) and the number of machines for which
¢ determines the power to run each processor at, and (if’i > 0 1S at mostng(t). Also lets™ = 3, Qi(E}) be
the job selection policy which decides which job is run onthe Speed achieved by this power distribution.

which processor. Firstly, notice that we can view* as the following sum:
At any time instantt, let n,(t) denote the number m B
of unfinished jobs forA, our online algorithm, that have o — ZZQi(j 1) - Qi(h) )

already been released. Also I8t (¢) denote the set of these
unfinished jobs. The greedy speed scaling policy, which we

denote byGreedySS, intuitively incrementally invests,, (¢) extracted by the greedy algorithm as a sum of such incre-

total units of energy into the processors that will give i th ; ith hi t bei lected at int
greatest increase in aggregate speed. For completeness, {pgnts, with €ach increment being selected at some poin

: ) . . : in the loop iteration in step (2). Now, suppose for the
give pseudo-code fdGreedySS, which takes an integer input sake of contradiction the greedy selection differs from the

i=1 j=0
But notice that we could also express the total speed

parameteny: optimal policy. Then, consider the first poigtin the loop
GreedySS(W): iteration where the greedy algorithm picked a machine
o Initially set E; := 0 for all processorsi. E; will and incremented power froth to £+ 1 for some value of
eventually be the power used by processor E, such that the optimal solution does not include the term
e Forj=1toW do Q:(E+1)— Q;(F) in s* (in equation 2).
— Let k = argmax; Q;(E; + 1) — Q:(E)) Let the values of theE;'s (in the greedy algorithm
— IncrementE, to Ej, + 1. GreedySS) at the beginning of this iteration be denoted by
« Set the speed; of each processarto be Q;(E;) E} , for 1 <i < m. Since the firstj* — 1 choices made by

the greedy policy are all included in the optimal solution

Recall thatQ,(y) is the inverse power function for pro- as well, and both the greedy algorithm and the optimal

cessori and specifies the maximum speed that processor algorithm have the constraint on the total power budget to

can run subject to a power constraint f Intuitively, the  be n,(t), it must mean that the optimal solution includes
algorithm partitions the power budget into units, and assig some other term of the for®@,, (E’ + 1) — Q. (E’) which



the greedy algorithm does not choose invitgt) iterations. A. The Reduction

Furthermore, it must be thdt’ > £, otherwise the greedy  For each job irz, there is a corresponding job i with
algorithm must have also made this selection in one of thgne same size and release time. The single processor in the

first j* — 1 iterations. instanceZ’ has the inverse power function
However, the nature of the greedy selection, and the
concavity of the functions); ensure that Q(W) := GreedySS([WT)

In other words,Q(W) is simply the total speed used by
- - A with [I¥] jobs. To define the power functioR(-), we
Qu(Ej +1) = Qu(E} ) simply say thatP(s) is the smallest? such thatQ(W) > s.
Qi(E' +1)—Qu(E" Itis clear from the nature of the reduction that the scheslule
A(Z) and A(Z’) are identical, since at any timg the
The first inequality above is due to the greedy choice ofspeed of the single processor I is set to beQ(n.(t)),
the selection in iteration* and the second follows from which is equal to the total speed extractedZinwhich is
the concavity of the functior@,,. Therefore the optimal GreedySS(n,(t)). Because of this, the extent to which each
solution would become no worse in terms of total speed ifob is run is identical in both schedules.
can extract by switching the latter selection with the forme . . )
But we could apply this swapping step repeatedly until theB- Comparing the costs of the optimal solutions
optimal solution and the greedy policy are identical withou In this section we show that OPE OPT(Z) has cost
decreasing the speed extracted by the optimal policy. Thiat least OPT= OPT(Z’). We accomplish this by finding
completes the proof. m a feasible candidate for OP®f cost at most OPT, which
recall we are assuming is the output of the GKP algorithm
onZ. The following facts about the GKP schedule are useful
and are proved in [GKP]:

In this section, we show using an amortized local- (@) When a job is released, the GKP algorithm assigns
competitiveness analysis that the algorithAris (2-+¢)-speed it to some machine which would minimize the total
O(E%)-competitive for the objective of flow plus energy. We future cost that is to be incurred. This assignment is
will assume that the optimal schedule OPT is the schedule  fixed when a job arrives, and jobs are never migrated.
output by the GKP algorithm defined in [GKP], and then (b) Atany pointintime, the GKP algorithm runs machine

Qi(E+1)—Qi(E)

>
>

IIl. THE ANALYSIS OFA

show thatA is (2 + ¢)-speedO(1)-competitive relative to i at a speed ofQ;(n,(i,t)), wheren,(i,t) is the

this OPT. This is sufficient, as [GKP] shows that the GKP number of unfinished jobs in GKP that have been
algorithm is (1 + ¢)-speedO(1/¢)-competitive. Therefore, assigned to machine Notice that the total power used
we could combine these two results to det+ ¢)-speed at any time is exactlyi,(t) = >_,; no(i, ?).
O(Z)-competitiveness of our nonclairvoyant algoriti#m Then, suppose we set the speed of the single processor in

We first reduce the analysis @f on an instancd to the  OPT at timet is beQ(n,(t)). Further, OPTschedules the
analysis ofA an associated instan@@ where there is only same set of jobs OPT schedules on its processors at this time
a single processor. We show the cost for the online cosinstant, at the same rates. To show that this is feasible, it i
is preserved by the reduction and the optimal cost doesn&nough to show thap(n,(t)) is at least the total speed used
increase, that is: by OPT on its jobs at time. But this is clear because of

A(T) = A(T") property (b) we observed above, that the power distribution

of OPT isonefeasible solution for the problem solved by

the greedy scaling policfreedySS(n,(t)), and hence the

bestsuch partition would only extract at least as much speed.
OPT(Z) > OPT(Z') Hence, OPTsimply imitates OPT at this time so each job

completes at the same time in OB the corresponding job
Then it is sufficient to show thak is (2 + e)-speedO(%)- in Z does in OPT, and the power used at any time in OPT
competitive for the objective of flow plus energy on the is at most the power used in OPT. Hence, OPDPT.
instanceZ’ to get the desired result. _

In subsection IIIl-A we give the reduction, and note thatC: €omparingA and OPT
it is obvious thatA(Z) = A(Z’). In subsection III-B we We show thatA is (2 + €)-speedO (2 )-competitive (rela-
show that OPTZ) > OPT(Z’). In subsection 11I-C we show tive to the schedule OPToutput by the GKP algorithm on
that A is (2 + ¢)-speedO(2)-competitive (relative to the the instancel’) for the objective of flow plus energy using
GKP schedule) for the objective of flow plus energy on thean amortized local competitiveness argument. To this end,
instanceZ’. let us define the following potential function:

and



The increase i® due toOPT working.Since OPTis using

na(t) rank(, t) the GKP algorithm, its power at timeis exactlyn,(t) and
O(t) = Z ———"~ _max (0,2,(j,t) — z,(j,t)) (3) therefore the total speed it can work on any job is at most
= Q(rank(j, t)) Q(n,(t)). In the worst case, it dedicates this entire speed to

Here, N, (t) denotes the set of jobs that are unfinished at€ job with the highest index i, that is the latest arriving
timetin A, na(t) = | N.(t)], and for allj € N, (t), rank(j, t) job unfinished job inV, (¢). Thus the total increase i can
denotes the index of how late the job arrived among allP® Pounded by
unfinished jobs forA at time ¢. That is the most recent na(t)
job would have a rank ofN,(¢)|, and the earliest arriving mQ(no(t))dt (8)
job would have a rank of. The termz,(j, ¢) denotes the

amount of processing unfinished By for job j at timet, Notice that if n(t) > na(t), then this is at most,(t)

. : .__since x/Q(x) is a non-decreasing function whef} is
and t) denotes the analogous quantity for the optimal S . i
Zo(J: 1) 9 q y P concave. Therefore, in this case, the running conditiod$ol

solution OPT. : . 1
We now show that all of the conditions in an amortizedw'th €= 3/2. Also, 'f. no(t) < na(t) < ?no(t)’ then the
term in expression 8 is at most

local competitiveness argument, reviewed in Section 1-D3,
hold for the potential function®d. Clearly, att = 0, 1 ne(t) 1
. _ < —
2a(j,t) = z,(j,t) for any job j and hence®(0) = 0. eQ(no(t))Q(no(t))dt - eno(t)dt
Furthermore, When botA and OP: hbave gompletedq _by This is because for any > 1, the non-decreasing nature
some timef, again®(t) = 0. Hence_t e boundary conditions ¢ Q(-) implies that A;zo(tz <A no(tz . Combining this
trivially hold. As for the completion condition, notice tha : o QOne(t) = T Qno(l)) :
-y . _ fact (instantiatingh = (1/¢)) with the fact thatr/Q(x) is
when A completes a jobj, the termux,(j,t) — z,(j,t) . : 2 (t 1 no(t)
. o . also non-decreasing gives u <2 .
is non-positive, and therefore when we remove it from : . Wlna(t)) = € Q(no(t)) .
. _ : Therefore, in this case, the running condition holds with
the summation becaus¢ ¢ N,(t + dt), the potential : . .
- . : ¢ = (3/2¢). Therefore, the most interesting case is when
only drops. Furthermore, all unfinished jobs which arrived .
C . . S ng(t) > (1/€)no(t). In this case, we argue thdt drops
subsequent tg will suffer a decrease in their corresponding L .
i . . . . sufficiently to counter the rise.

terms in the potential function, since thetink drops by
1 and the functionx/Q(x) is non-decreasing (sinc@(-)  The decrease i® due toA working. The online algorithm
is concave). As for arrival conditions, notice that when aA works on all the unfinished jobs at the same rate, i.e. runs
job j arrives, say at some time it does not change other each job at a rateQ(n,(t))/n.(t), where we assume that
jobs’ indices/ranks, and:,(j,t) = z,(j,t) and therefore the online algorithm has a speed-up ofover the optimal
the potential function does not increase on job arrivaks (i. solution. Furthermore, it decreasds for all the jobs on
d = 0 from Section I-D3 in our case). which it is lagging behind OPT(those jobs which it leads

Now we deal with the most interesting case — the runninchavemax(x,(j, t)—x,(j, t),0) = 0 and® does not drop due
condition. Consider some arbitrarily small time interval to the processing of these jobs). But sincgt) < en,(t),
[t,t + dt) when no jobs arrive or are completed by the the potential function drops for at legdt—e)n,(¢) jobs, and
online algorithmA. We now analyze the change in potential in the worst case, these are the ones with rankisrough
function in this time interval. The potential changes due ton,(¢)(1 — ¢).

the following factors: (i) the optimal solution OPWorks on Therefore, the total drop i® is at least
some jobs thereby decreasing(j, t) in some of the terms in (1—)na(t)
®, and (ii) the online algorithnA works on all unfinished Z UQ(”a(t))dt
jobs and therefore brings down,(j,t). We bound these = Q) ma(t)
changes in two steps. Recall that our aim is to show the 1 (1= nalt)  Qna(d)
following running condition inequality: > —(1—e)ng(t - ot
g running quality = 5 S T ) a0
1 (1 - 9na(t) Qna(t)
d(I)l t > — —
(Pa(t) +na(t)) + dt( ) (4) z =)o ) )
- 4 (1) s Ly e A= ana) Q)
= (na (t) + Ng (t)) + dt (5) = 2( ) ( ) Q(na (t)) Na (t)
< C(Po(t) + no(t)) (6) > 2(1 _ E)QTLa(t)
= c(no(t) +no(t)) (7) 2

_ i o Here, the second inequality follows becaus&)(z) is
Note that bothA algorithm and the GKP algorithm maintain , ¢,,n-additive functiohwhen Q is concave, and for any
the invariant that the power is equal to the number of '

unfinished jobs. 1A function f is sub-additive iff(a 4 b) < f(a) + f(b) for a,b > 0.



sub-additive functiorf(-), [1_, f(z)da > 4tf(t). The third  [BKN]
inequality holds becaus@ is non-increasing. Now, the term

in the final inequality would be at leagn,(t) for o =

(2 + 5¢) when e is sufficiently small. Therefore, the total [BLO4]
decrease inP can counter both the increase dn due to

OPT working and pay for the incremental cost of the online

algorithm. Thus in this case, the running condition holds

with ¢ = 0. [BPS09]
Taking maximum over all cases, we see that 3/2¢
suffices for the following inequality to hold at all times:
i) 3 [BSCO08]
(ma(t) +na(t) + == < o (no(t) + (1))

dt -~ 2e
Plugging this into the details given in Section |-D3

completes the proof of our main result. [BTO6]

IV. CONCLUSION

The main result of this paper is to show that a nat-[CEL*09]
ural nonclairvoyant algorithm is bounded-speed bounded-
competitive for the objective of flow plus energy on power-
heterogeneous processors. This paper is a first step to-
wards determining the theoretically best nonclairvoyanfcepog
algorithm for scheduling jobs of varying importance on
power-heterogeneous processors. The obvious two possible
next steps are to either find a scalable algorithm for flow

plus energy, or find a bounded-speed bounded-competitiv&eKMOQ]

algorithm for weighted flow plus energy. The most obvious

way to generalize the algorithm considered in this paper to

weighted flow is for each job to get a share of the total speed

proportional to its weight. This works for a single processo

but doesn’t work for multiprocessors. For example, if YOU [Epqg)

have jobs with weightd0, 5 and 5, and three processors

that can only be run at unit speed, then it is not possible for

the first job to be run at speest (37).
[GKP]
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