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Abstract—We show that a natural nonclairvoyant online
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tiprocessor is bounded-speed bounded-competitive for theob-
jective of flow plus energy.
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I. I NTRODUCTION

Many computer architects believe that architectures con-
sisting of heterogeneous processors/cores will be the domi-
nant architectural design in the future [BSC08], [KTR+04],
[KTJ06], [Mer08], [MWK+06]. The main advantage of a
heterogeneous architecture, relative to an architecture of
identical processors, is that it allows for the inclusion of
processors whose design is specialized for particular types
of jobs, and for jobs to be assigned to a processor best
suited for that job. Most notably, it is envisioned that these
heterogeneous architectures will consist of a small number
of high-power high-performance processors for critical jobs,
and a larger number of lower-power lower-performance
processors for less critical jobs (see figure 1 for a visual
representation of such an architecture). Naturally, the lower-
power processors would be more energy efficient in terms
of the computation performed per unit of energy expended,
and would generate less heat per unit of computation. For
a given area and power budget, heterogeneous designs can
give significantly better performance for standard work-
loads [BSC08], [Mer08]; Evaluations in [KTJ06] suggest
a figure of 40% better performance, and evaluations in
[MWK +06] suggest a figure of 70% better performance.
Moreover, even processors that were designed to be ho-
mogeneous, are increasingly likely to be heterogeneous at
run time [BSC08]: the dominant underlying cause is the
increasing variability in the fabrication process as the feature
size is scaled down (although run time faults will also play a
role). Since manufacturing yields would be unacceptably low
if every processor/core was required to be perfect, and since
there would be significant performance loss from derating
the entire chip to the functioning of the least functional
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processor (which is what would be required in order to at-
tain processor homogeneity), some processor heterogeneity
seems inevitable in chips with many processors/cores.
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Figure 1. An example layout of an architecture consisting oftwo high
power processors (labeled H), four medium power processors(labeled M),
and sixteen lower power processors (labeled L).

The position paper [BSC08] argues for the fundamental
importance of research into scheduling policies for hetero-
geneous processors, and identified three fundamental chal-
lenges in scheduling heterogeneous multiprocessors: (1) the
OS must discover the status of each processor, (2) the
OS must discover the resource demand of each job, and
(3) given this information about processors and jobs, the
OS must match jobs to processors as well as possible. The
contribution of this paper is probably best summarized as
an initial step in a theoretical worst-case investigation of
challenge (2) and (3) in tandem. To explain this contribution
however, it is necessary to first review the results in [GKP],
which is some sense completely solved challenge (3) from
a worst-case theoretical perspective.

A. The Problem Formulation, and the Clairvoyant Algo-
rithm and Analysis

[GKP] introduced the following model, building on an
earlier model in [BCP09]. Each processori has a known
collection of allowable speedssi,1, . . . , si,f(i), and associ-
ated powersPi,1, . . . , Pi,f(i). A collection of jobs arrive in
an online fashion over time. Jobj arrives in the system at



its release timeri. Job j has an associatedsizepj ∈ R>0,
as well as aimportance/weightwj ∈ R>0.

An online scheduler has two component policies:

Job Selection:Determines which job to run on each pro-
cessor at any time.
Speed Scaling:Determines the speed of each processor at
each time.

The objective considered in [GKP] is that ofweighted
flow plus energy. A job of size p takes p

s
units of time

to complete if run at speeds. The flow Fj of a job j
is its completion timeCi minus its release timerj . The
weighted flow for a jobj is wjFj, and the weighted flow
for a schedule is

∑

j wjFj. The intuitive rationale for the
objective of weighted flow plus energy can be understood
as follows: Assume that the possibility exists to investE
units of energy to decrease the flow of jobsj1, . . . , jk by
x1, . . . , xk respectively; then an optimal scheduler for this
objective would make such an investment if and only if
∑k

i=1 wixi ≥ E. So the importancewj of job j can be
viewed as specifying an upper bound on the amount of
energy that the system is allowed to invest to reducej’s
flow time by one unit of time (assuming that this energy
investment in runningj faster doesn’t change the flow
time of other jobs)— hence jobs with higher weight are
more important, since higher investments of energy are
permissible to justify a fixed reduction in flow.

[GKP] considered the following natural online algorithm,
consisting of three policies, which we will call GKP:

Job Selection:On each processor, always run the highest
density job assigned to that processor. The density of a job
is its weight divided by its size.
Speed Scaling:The speed of each processor is set so that the
resulting power is the (fractional) weight of the unfinished
jobs on that processor. This guarantees that the energy used
will be identical to the weighted (fractional) flow time.
Assignment: When a new job arrives, it is greedily as-
signed to the processor that results in the least increase
in the projected future (fractional) weighted flow, assuming
the adopted speed scaling and job selection policies, and
ignoring the possibility of jobs arriving in the future.

[GKP] evaluated this algorithm using resource augmenta-
tion analysis [KP00], which is a type of worst-case compar-
ative analysis, and which we now explain within the context
of the type of problem that we consider here. An algorithmA
is said to bec-competitive relative to a benchmark algorithm
B if for all inputs I it is the case that

A(I) ≤ c · B(I)

where A(I) is the value of the objective of the schedule
output by algorithmA on input I, and B(I) is the value
of the objective on the benchmark schedule for inputI. In
other words, the competitiveness ofc represents a worst-case

error relative to the benchmark. The most obvious choice
for the benchmark is probably the optimal schedule for each
instanceI. But since scheduling on identical processors with
the objective of total flow (and even scheduling on a single
processor with the objective of weighted flow), is a special
case of the problem we consider, bounded competitiveness
relative to the optimal schedule is not possible [LR07],
[BC09].

This is a common phenomenon in online scheduling prob-
lem, and the standard remedy, called resource augmentation,
is to use as a benchmark the optimal schedule that uses
slightly slower processors. In this context, an algorithmA
is σ-speedc-competitive if A, equipped with processors
with speedsσ · si,1, . . . , σ · si,f(i), and associated pow-
ers Pi,1, . . . , Pi,f(i) is c-competitive relative to the bench-
mark of the optimal schedule for processors with speeds
si,1, . . . , si,f(i), and associated powersPi,1, . . . , Pi,f(i).

To understand the motivation for resource augmentation
analysis, note that it is common for systems to posses the
following (informally defined)threshold property: The input
or input distributions can be parameterized by a loadλ, and
the system is parameterized by a capacityµ. The system then
has the property that its QoS would be very good when the
load λ is at most 90% of the system capacityµ, and it is
horrible if λ exceeds 110% ofµ. Figure 2 gives such an
example of the QoS curve for a system that has this kind of
threshold property. Figure 2 also shows the performance of
an online algorithmA which compares reasonably well with
the performance of an optimal algorithm. Notice however
that the competitive ratio ofA relative to the optimal is
very large when the load is near capacityµ since there is
a large vertical gap between the two curves at load values
slightly below µ. In order to completely explain why the
curves forA and optimal in Figure 2 are “close”, we need
to also measure the horizontal gap between curves. This
intuitively measures the ratio of the maximum load for which
A has good performance with respect to the (typically larger)
maximum load for which the optimal can guarantee good
performance. To this end, we would like to say something
like A performs at mostc times worse than optimal on inputs
with σ times higher load. Notice that multiplying the load
by a factor ofσ is equivalent slowing the system down by a
factor ofσ. This can be captured by a statement which says
that A with an σ times faster processor is at mostc times
as bad as optimal.

The informal notion of an online scheduling algorithmA
being “reasonable” is then generally formalized asA having
bounded competitiveness for some small constant speed
augmentationσ. Such a scheduling algorithm (whenc is
modest) would guarantee a system capacity of at leastµ/σ,
which is at least a constant fraction of the optimal capacity.
The informal notion of an online scheduling algorithm being
“good”, is then generally formalized asA has has bounded
competitiveness even ifσ = 1+ ǫ is arbitrarily close to one.
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Figure 2. QoS curves of an almost fully scalable online algorithm A and
the optimal algorithm for a system with the threshold property.

Such an algorithm is calledscalablesince it would guarantee
a system capacity arbitrarily close to the optimal capacity,
while also ensuring that the QoS remains comparable (to
within a constant factor). For a more detailed elaboration
see [PST04], [Pru07].

The main result in [GKP] was that the online algorithm
GKP was scalable for weighted flow plus energy. The
analysis in [GKP] extended theorems showing similar results
for weighted flow plus energy on a uniprocessor [BCP09],
[AWT09], and for weighted flow on a multiprocessor with-
out power considerations [CGKM09].

B. The Contribution of this Paper

So in some sense [GKP] shows that the natural greedy
algorithm GKP has the best possible worst-case performance
for challenge (3) from [BSC08]. However note that the GKP
algorithm is clairvoyant, that is, it needs to know the job
sizes when jobs are released. In the GKP algorithm, the job
selection policy needs to know the size of a job to compute
its density, and the assignment policy must know the size
and density to compute the future costs. Thus the GKP
algorithm is not directly implementable as in general one
can not expect the system to know job sizes when they are
released.

Thus the natural question left open in [GKP] is what
is the best possible nonclairvoyant scheduling algorithm.
Nonclairvoyant algorithms do not require knowledge of a
size of a job. This can be viewed as addressing challenges
(2) and (3) from [BSC08] in tandem (described in Section I).
We note that it is both practically natural, and mathemati-
cally necessary, to assume that the system does know the
importance of each job.

In this paper, we make a first step toward addressing the
open question of finding the best nonclairvoyant scheduling
policy. In particular, we consider the simplification that each

job has the same importance, or equivalently, we consider
the objective of (unweighted) flow time plus energy. Our
main result is that a natural nonclairvoyant algorithm is
bounded-speed bounded-competitive for the objective of
flow plus energy. More precisely, we show that this nat-
ural nonclairvoyant scheduling algorithm is(2 + ǫ)-speed
O( 1

ǫ2
)-competitive for the objective of flow plus energy.

So intuitively, if this scheduling algorithm is adopted then
the system should have capacity at least approximately
half of the optimal system capacity. So using the standard
interpretation, this natural nonclairvoyant algorithm should
be viewed as “reasonable”. Or at least the algorithm seems as
reasonable as Equipartition is for the objective of minimizing
average flow time (without energy considerations) as it is
known that Equipartition is(2 + ǫ)-speedO(1

ǫ
)-competitive

in this context [EP09].
We now describe the component policies of our nonclair-

voyant algorithm:

Speed Scaling:A collection of processors and associated
speed settings are selected so as to maximize the aggregate
speed, subject to the constraints that the of cardinality ofthe
selected processors at most the number of unfinished jobs,
and the aggregate power is at most the number of unfinished
jobs.
Job Selection:The jobs share this processing power equally.

In other words, the job selection policy is Equipartition (or
equivalently Round Robin or Processor Sharing). As for our
speed scaling policy, the intuition is that it tries to maximize
the effective aggregate speed of the assigned processors
subject to the same maximum power constraint as in GKP
and earlier algorithms. We show that this speed scaling
policy can be implemented using a simple and efficient
greedy algorithm.

However, note that, in contrast to the GKP algorithm, this
algorithm produces migratory schedules, that is, the same
job may be run on different processors over time (however,
no job is run on different machines at the same time).
But it is easy to see that job migration is an unavoidable
consequence of nonclairvoyance, that is, any bounded-speed
bounded-competitive nonclairvoyant algorithm must migrate
jobs.

C. Related Results

Let us now consider related scheduling problems where
there are no power considerations. First let us assume a
single processor. The online clairvoyant algorithm Short-
est Remaining Time (SRPT) is optimal for unweighted
flow. The nonclairvoyant algorithm Shortest Elapsed Time
First is scalable for unweighted flow [KP00]. The non-
clairvoyant algorithm Round Robin is(2 + ǫ)-speedO(1

ǫ
)-

competitive [EP09] for unweighted flow. The algorithm
Highest Density First (HDF) is scalable for weighted



flow [BL04], and there is no online algorithm that
has bounded competitiveness against the optimal sched-
ule [BC09]. Now let us consider multiple identical pro-
cessors. SRPT isO(log n)-competitive against the opti-
mal schedule, and no better competitiveness is achiev-
able [LR07]. The clairvoyant algorithm HDF is scalable
for weighted flow [BT06]. The nonclairvoyant algorithm
Weighted LAPS, which is based on the algorithm LAPS
in [EP09], is scalable for weighted flow, and this can be
inferred from the problem being a special case of the
problem of broadcast scheduling [BKN].

We now turn our attention on prior work on scheduling
involving power management. For the case of a single pro-
cessor with unbounded speed and a polynomially bounded
power functionP (s) = sα, [PUW08] gave an efficient
offlinealgorithm to find the schedule that minimizes average
flow subject to a constraint on the amount of energy used,
in the case that jobs have unit work. However, no such
result involving an energy constraint is possible when we
transition to online algorithms. Therefore, [AF07] introduced
the objective of flow plus energyand gave a constant
competitive algorithm algorithm for this objective in the case
of unit work jobs. Subsequently, [BPS09] gave a constant
competitive algorithm for the objective of weighted flow plus
energy. The competitive ratio was improved by [LLTW08b]
for the unweighted case using a potential function specifi-
cally tailored to integer flow. [BCLL08] extended the results
of [BPS09] to the bounded speed model, and [CEL+09] gave
a nonclairvoyantalgorithm that isO(1)-competitive.

Remaining on a single processor, [BCP09] dropped the
assumptions of unbounded speed and polynomially-bounded
power functions, and gave a3-competitive algorithm for
the objective of unweighted flow plus energy, and a2-
competitive algorithm for fractional weighted flow plus
energy, when the power function could be arbitrary. The
former analysis was subsequently improved to show2-
competitiveness, along with a matching lower bound on the
competitive ratio [AWT09].

Moving on to the setting of multiple machines,
[LLTW08a] considers the problem of minimizing flow plus
energy on multiple homogeneous processors, where the
allowable speeds range between zero and some upper bound,
and the power function is polynomial. [LLTW08a] show
that an algorithm that uses a variation of round robin for
the assignment policy, and uses the job selection and speed
scaling policies from [BPS09], is scalable for this problem.
[CEP09] show that bounded-competitiveness for the objec-
tive of flow plus energy is not achievable on multiprocessors
if jobs can be run simultaneously on multiprocessors, and
have varying speed-ups (i.e jobs have different degrees of
parallelism). [CEP09] give an optimally log competitive
algorithm building on the results in [CEL+09].

D. Preliminaries

1) Scheduling Basics.:A schedule specifies for each time
and each processor, a speed for that processor and a job that
each processor runs. We assume that no job may be run
on more than one processor simultaneously. The speed is
the rate at which work is completed; a jobj with size pj

run at a constant speeds completes inpj

s
seconds. A job

is completed when all of its work has been processed. The
flow time of a job is the completion time of the job minus
the release time of the job. The weighted flow of a job is
the weight of the job times the flow time of the job (for our
results, all jobs have the same weight, and we could think
of the weights as being unit).

2) Power Functions.:As noted in [BCP09] we can in-
terpolate the discrete speeds and powers of a processor to
a piecewise linear function in the obvious way. See figure
3 for an illustration. To elaborate, lets1 and s2 be two
allowable speeds for a processor, with associated powers
P1 and P2. By time multiplexing the speedss1 and s2

with proportionλ and 1 − λ respectively (hereλ ∈ [0, 1]),
one can effectively have a processor that runs at speed
λs1 +(1−λ)s2 with powerλP1 +(1−λ)P2. Note that then
this is just the linear interpolation of the two points(s1, P1)
and (s2, P2). As noted in [BCP09] we may then assume
without loss of generality that the power function has the
following properties:P (0) = 0, is strictly increasing, and
is strictly convex. We will usePi to denote the resulting
power function for processori, and useQi to denoteP−1

i ;
i.e., Qi(y) gives us the speed that we can run processori at,
if we specify a limit ofy. We note that sincePi is convex,
Qi is concave and we exploit this fact in our proofs.

Power

Speed

Figure 3. An illustration of the natural extension of a powerfunction for
three discrete speeds to a piecewise linear power function.

3) Local Competitiveness and Potential Functions.:Fi-
nally, let us quickly review the technique of amortized
competitiveness analysis on a single processor, which we
use in our proofs. Consider an objectiveG (in our setting, it
is unweighted flow plus energy). LetGA(t) be the increase
in the objective in the schedule for algorithmA at time



t. So whenG is unweighted flow plus energy,GA(t) is
Pa(t) + na(t), wherePa(t) is the total power used byA
at time t and na(t) is the number of unfinished jobs for
A at time t. Let OPT be the optimal benchmark schedule
we could like to compare against. Then, the algorithmA
is said to be locallyc-competitive if for all timest, if
GA(t) ≤ c ·GOPT (t). A weaker notion of that of amortized
competitiveness: To proveA is (c+d)-competitive using an
amortized local competitiveness argument, it suffices to give
a potential functionΦ(t) such that the following conditions
hold (see for example [Pru07]).

Boundary condition: Φ is zero before any job is re-
leased andΦ is non-negative after all jobs are finished.

Completion condition: Φ does not increase due to
completions by either A or OPT.

Arrival condition: Φ does not increase more thand ·
OPT due to job arrivals.

Running condition: At any timet when no job arrives
or is completed,

GA(t) +
dΦ(t)

dt
≤ c · GOPT (t) (1)

The sufficiency of these conditions for proving(c + d)-
competitiveness follows from integrating them over time.

II. THE DESCRIPTION OF THEALGORITHM

In this section we describe the nonclairvoyant algorithm,
which we will denote byA, in greater detail. Like men-
tioned in the introduction (Section I-B),A consists of two
components, (i) the speed scaling policy which at any time
t determines the power to run each processor at, and (ii)
the job selection policy which decides which job is run on
which processor.

At any time instant t, let na(t) denote the number
of unfinished jobs forA, our online algorithm, that have
already been released. Also letNa(t) denote the set of these
unfinished jobs. The greedy speed scaling policy, which we
denote byGreedySS, intuitively incrementally investsna(t)
total units of energy into the processors that will give it the
greatest increase in aggregate speed. For completeness, we
give pseudo-code forGreedySS, which takes an integer input
parameterW :

GreedySS(W ):

• Initially set Ei := 0 for all processorsi. Ei will
eventually be the power used by processori.

• For j = 1 to W do

– Let k = arg maxi Qi(Ei + 1) − Qi(Ei)
– IncrementEk to Ek + 1.

• Set the speedsi of each processori to beQi(Ei)

Recall thatQi(y) is the inverse power function for pro-
cessori and specifies the maximum speed that processori
can run subject to a power constraint ofy. Intuitively, the
algorithm partitions the power budget into units, and assigns

each unit to the machine which offers the best increase to the
total speed that can be extracted. The speed scaling policy
for A is then justGreedySS(na).

The job selection policy forA is Equipartition, which
equally shares the speed among the processors. That is, each
job is effectively run at speed

∑

i si/na. Furthermore, since
there are only at mostna(t) machines which are powered
on at an timet, it is possible to equally share the total
resources among the jobs without having to schedule any
job on two different machines at the the same time. We
remark that this seems like the most natural nonclairvoyant
job selection policy, since the scheduler is not aware of the
initial job sizes, and hence remaining unprocessed sizes.

Before we analyze the algorithmA, we now show that
GreedySS optimally solves the followingspeed extraction
optimization problem:

Speed Extraction Optimization Problem: Assign a power
budget ofEi to each processori so as to maximize the total
extracted speed

∑

i Qi(Ei) subject to the constraints:
• EachEi is a nonnegative integer,
•

∑

i Ei ≤ na(t), and
• the number of machines that are powered, i.e. have

Ei > 0, is at mostna.

Lemma 2.1:The greedy algorithmGreedySS optimally
solves the speed extraction problem.

Proof: Imagine the optimal speed scaling policy assigns
a power budget ofE∗

i ∈ Z≥0 to machine i, such that
∑

i E∗
i = na(t) and the number of machines for which

E∗
i > 0 is at mostna(t). Also let s∗ =

∑

i Qi(E
∗
i ) be

the speed achieved by this power distribution.
Firstly, notice that we can views∗ as the following sum:

s∗ =

m
∑

i=1

E∗

i
∑

j=0

Qi(j + 1) − Qi(j) (2)

But notice that we could also express the total speed
extracted by the greedy algorithm as a sum of such incre-
ments, with each increment being selected at some point
in the loop iteration in step (2). Now, suppose for the
sake of contradiction the greedy selection differs from the
optimal policy. Then, consider the first pointj in the loop
iteration where the greedy algorithm picked a machinei
and incremented power fromE to E + 1 for some value of
E, such that the optimal solution does not include the term
Qi(E + 1) − Qi(E) in s∗ (in equation 2).

Let the values of theEi’s (in the greedy algorithm
GreedySS) at the beginning of this iteration be denoted by
Ej∗

i , for 1 ≤ i ≤ m. Since the firstj∗ − 1 choices made by
the greedy policy are all included in the optimal solution
as well, and both the greedy algorithm and the optimal
algorithm have the constraint on the total power budget to
be na(t), it must mean that the optimal solution includes
some other term of the formQi′(E

′ + 1) − Qi′(E
′) which



the greedy algorithm does not choose in itsna(t) iterations.
Furthermore, it must be thatE′ > Ej∗

i′ otherwise the greedy
algorithm must have also made this selection in one of the
first j∗ − 1 iterations.

However, the nature of the greedy selection, and the
concavity of the functionsQi ensure that

Qi(E + 1) − Qi(E) ≥ Qi′(E
j∗

i′ + 1) − Qi′(E
j∗

i′ ))

≥ Qi′(E
′ + 1) − Qi′(E

′)

The first inequality above is due to the greedy choice of
the selection in iterationj∗ and the second follows from
the concavity of the functionQi′ . Therefore the optimal
solution would become no worse in terms of total speed it
can extract by switching the latter selection with the former.
But we could apply this swapping step repeatedly until the
optimal solution and the greedy policy are identical without
decreasing the speed extracted by the optimal policy. This
completes the proof.

III. T HE ANALYSIS OF A

In this section, we show using an amortized local-
competitiveness analysis that the algorithmA is (2+ǫ)-speed
O( 1

ǫ2
)-competitive for the objective of flow plus energy. We

will assume that the optimal schedule OPT is the schedule
output by the GKP algorithm defined in [GKP], and then
show thatA is (2 + ǫ)-speedO(1

ǫ
)-competitive relative to

this OPT. This is sufficient, as [GKP] shows that the GKP
algorithm is (1 + ǫ)-speedO(1/ǫ)-competitive. Therefore,
we could combine these two results to get(2 + ǫ)-speed
O( 1

ǫ2
)-competitiveness of our nonclairvoyant algorithmA.

We first reduce the analysis ofA on an instanceI to the
analysis ofA an associated instanceI ′ where there is only
a single processor. We show the cost for the online cost
is preserved by the reduction and the optimal cost doesn’t
increase, that is:

A(I) = A(I ′)

and

OPT(I) ≥ OPT(I ′)

Then it is sufficient to show thatA is (2 + ǫ)-speedO(1
ǫ
)-

competitive for the objective of flow plus energy on the
instanceI ′ to get the desired result.

In subsection III-A we give the reduction, and note that
it is obvious thatA(I) = A(I ′). In subsection III-B we
show that OPT(I) ≥ OPT(I ′). In subsection III-C we show
that A is (2 + ǫ)-speedO(1

ǫ
)-competitive (relative to the

GKP schedule) for the objective of flow plus energy on the
instanceI ′.

A. The Reduction

For each job inI, there is a corresponding job inI ′ with
the same size and release time. The single processor in the
instanceI ′ has the inverse power function

Q(W ) := GreedySS(⌈W ⌉)

In other words,Q(W ) is simply the total speed used by
A with ⌈W ⌉ jobs. To define the power functionP (·), we
simply say thatP (s) is the smallestW such thatQ(W ) ≥ s.
It is clear from the nature of the reduction that the schedules
A(I) and A(I ′) are identical, since at any timet, the
speed of the single processor inI ′ is set to beQ(na(t)),
which is equal to the total speed extracted inI, which is
GreedySS(na(t)). Because of this, the extent to which each
job is run is identical in both schedules.

B. Comparing the costs of the optimal solutions

In this section we show that OPT= OPT(I) has cost
at least OPT′ = OPT(I ′). We accomplish this by finding
a feasible candidate for OPT′ of cost at most OPT, which
recall we are assuming is the output of the GKP algorithm
onI. The following facts about the GKP schedule are useful
and are proved in [GKP]:

(a) When a job is released, the GKP algorithm assigns
it to some machine which would minimize the total
future cost that is to be incurred. This assignment is
fixed when a job arrives, and jobs are never migrated.

(b) At any point in time, the GKP algorithm runs machine
i at a speed ofQi(no(i, t)), where no(i, t) is the
number of unfinished jobs in GKP that have been
assigned to machinei. Notice that the total power used
at any time is exactlyno(t) =

∑

i no(i, t).

Then, suppose we set the speed of the single processor in
OPT′ at timet is beQ(no(t)). Further, OPT′ schedules the
same set of jobs OPT schedules on its processors at this time
instant, at the same rates. To show that this is feasible, it is
enough to show thatQ(no(t)) is at least the total speed used
by OPT on its jobs at timet. But this is clear because of
property (b) we observed above, that the power distribution
of OPT isone feasible solution for the problem solved by
the greedy scaling policyGreedySS(no(t)), and hence the
bestsuch partition would only extract at least as much speed.
Hence, OPT′ simply imitates OPT at this time so each job
completes at the same time in OPT′ as the corresponding job
in I does in OPT, and the power used at any time in OPT′

is at most the power used in OPT. Hence, OPT≥ OPT′.

C. ComparingA and OPT′

We show thatA is (2 + ǫ)-speedO(1
ǫ
)-competitive (rela-

tive to the schedule OPT′ output by the GKP algorithm on
the instanceI ′) for the objective of flow plus energy using
an amortized local competitiveness argument. To this end,
let us define the following potential function:



Φ(t) =

na(t)
∑

j=1

rank(j, t)

Q(rank(j, t))
max (0, xa(j, t) − xo(j, t)) (3)

Here,Na(t) denotes the set of jobs that are unfinished at
time t in A, na(t) = |Na(t)|, and for allj ∈ Na(t), rank(j, t)
denotes the index of how late the job arrived among all
unfinished jobs forA at time t. That is the most recent
job would have a rank of|Na(t)|, and the earliest arriving
job would have a rank of1. The termxa(j, t) denotes the
amount of processing unfinished byA for job j at time t,
andxo(j, t) denotes the analogous quantity for the optimal
solution OPT′.

We now show that all of the conditions in an amortized
local competitiveness argument, reviewed in Section I-D3,
hold for the potential functionΦ. Clearly, at t = 0,
xa(j, t) = xo(j, t) for any job j and henceΦ(0) = 0.
Furthermore, when bothA and OPT′ have completed by
some timet, againΦ(t) = 0. Hence the boundary conditions
trivially hold. As for the completion condition, notice that
when A completes a jobj, the term xa(j, t) − xo(j, t)
is non-positive, and therefore when we remove it from
the summation becausej /∈ Na(t + dt), the potential
only drops. Furthermore, all unfinished jobs which arrived
subsequent toj will suffer a decrease in their corresponding
terms in the potential function, since theirrank drops by
1 and the functionx/Q(x) is non-decreasing (sinceQ(·)
is concave). As for arrival conditions, notice that when a
job j arrives, say at some timet, it does not change other
jobs’ indices/ranks, andxa(j, t) = xo(j, t) and therefore
the potential function does not increase on job arrivals (i.e.
d = 0 from Section I-D3 in our case).

Now we deal with the most interesting case — the running
condition. Consider some arbitrarily small time interval
[t, t + dt) when no jobs arrive or are completed by the
online algorithmA. We now analyze the change in potential
function in this time interval. The potential changes due to
the following factors: (i) the optimal solution OPT′ works on
some jobs thereby decreasingxo(j, t) in some of the terms in
Φ, and (ii) the online algorithmA works on all unfinished
jobs and therefore brings downxa(j, t). We bound these
changes in two steps. Recall that our aim is to show the
following running condition inequality:

(Pa(t) + na(t)) +
dΦi(t)

dt
(4)

= (na(t) + na(t)) +
dΦi(t)

dt
(5)

≤ c (Po(t) + no(t)) (6)

= c (no(t) + no(t)) (7)

Note that bothA algorithm and the GKP algorithm maintain
the invariant that the power is equal to the number of
unfinished jobs.

The increase inΦ due toOPT′ working.Since OPT′ is using
the GKP algorithm, its power at timet is exactlyno(t) and
therefore the total speed it can work on any job is at most
Q(no(t)). In the worst case, it dedicates this entire speed to
the job with the highest index inΦ, that is the latest arriving
job unfinished job inNa(t). Thus the total increase inΦ can
be bounded by

na(t)

Q(na(t))
Q(no(t))dt (8)

Notice that if no(t) ≥ na(t), then this is at mostno(t)
since x/Q(x) is a non-decreasing function whenQ is
concave. Therefore, in this case, the running condition holds
with c = 3/2. Also, if no(t) ≤ na(t) ≤ 1

ǫ
no(t), then the

term in expression 8 is at most

1

ǫ

no(t)

Q(no(t))
Q(no(t))dt ≤

1

ǫ
no(t)dt

This is because for anyλ ≥ 1, the non-decreasing nature
of Q(·) implies that λno(t)

Q(λno(t)) ≤ λ no(t)
Q(no(t)) . Combining this

fact (instantiatingλ = (1/ǫ)) with the fact thatx/Q(x) is
also non-decreasing gives usna(t)

Q(na(t)) ≤ 1
ǫ

no(t)
Q(no(t)) .

Therefore, in this case, the running condition holds with
c = (3/2ǫ). Therefore, the most interesting case is when
na(t) > (1/ǫ)no(t). In this case, we argue thatΦ drops
sufficiently to counter the rise.

The decrease inΦ due toA working. The online algorithm
A works on all the unfinished jobs at the same rate, i.e. runs
each job at a rateσQ(na(t))/na(t), where we assume that
the online algorithm has a speed-up ofσ over the optimal
solution. Furthermore, it decreasesΦ for all the jobs on
which it is lagging behind OPT′ (those jobs which it leads
havemax(xa(j, t)−xo(j, t), 0) = 0 andΦ does not drop due
to the processing of these jobs). But sinceno(t) ≤ ǫna(t),
the potential function drops for at least(1−ǫ)na(t) jobs, and
in the worst case, these are the ones with ranks1 through
na(t)(1 − ǫ).

Therefore, the total drop inΦ is at least

(1−ǫ)na(t)
∑

j=1

i

Q(i)
σ

Q(na(t))

na(t)
dt

≥
1

2
(1 − ǫ)na(t)

(1 − ǫ)na(t)

Q((1 − ǫ)na(t))
σ

Q(na(t))

na(t)
dt

≥
1

2
(1 − ǫ)na(t)

(1 − ǫ)na(t)

Q(na(t))
σ

Q(na(t))

na(t)
dt

≥
1

2
(1 − ǫ)2na(t)

(1 − ǫ)na(t)

Q(na(t))
σ

Q(na(t))

na(t)
dt

≥
σ

2
(1 − ǫ)2na(t)

Here, the second inequality follows becausex/Q(x) is
a sub-additive function1 when Q is concave, and for any

1A function f is sub-additive iff(a + b) ≤ f(a) + f(b) for a, b ≥ 0.



sub-additive functionf(·),
∫ t

x=0
f(x)dx ≥ 1

2 tf(t). The third
inequality holds becauseQ is non-increasing. Now, the term
in the final inequality would be at least2na(t) for σ =
(2 + 5ǫ) when ǫ is sufficiently small. Therefore, the total
decrease inΦ can counter both the increase inΦ due to
OPT′ working and pay for the incremental cost of the online
algorithm. Thus in this case, the running condition holds
with c = 0.

Taking maximum over all cases, we see thatc = 3/2ǫ
suffices for the following inequality to hold at all times:

(na(t) + na(t)) +
dΦi(t)

dt
≤

3

2ǫ
(no(t) + no(t))

Plugging this into the details given in Section I-D3
completes the proof of our main result.

IV. CONCLUSION

The main result of this paper is to show that a nat-
ural nonclairvoyant algorithm is bounded-speed bounded-
competitive for the objective of flow plus energy on power-
heterogeneous processors. This paper is a first step to-
wards determining the theoretically best nonclairvoyant
algorithm for scheduling jobs of varying importance on
power-heterogeneous processors. The obvious two possible
next steps are to either find a scalable algorithm for flow
plus energy, or find a bounded-speed bounded-competitive
algorithm for weighted flow plus energy. The most obvious
way to generalize the algorithm considered in this paper to
weighted flow is for each job to get a share of the total speed
proportional to its weight. This works for a single processor,
but doesn’t work for multiprocessors. For example, if you
have jobs with weights10, 5 and 5, and three processors
that can only be run at unit speed, then it is not possible for
the first job to be run at speed3 ·

(

10
20

)

.
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