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Abstract

In the generalized connectivity problem, we are given
an edge-weighted graph G = (V, E) and a collection
D = {(S1, T1), . . . , (Sk, Tk)} of distinct demands; each
demand (Si, Ti) is a pair of disjoint vertex subsets. We
say that a subgraph F ⊆ G connects a demand (Si, Ti)
when it contains a path with one endpoint in Si and
the other in Ti. The goal is to identify a minimum
weight subgraph that connects all demands in D. Alon
et al. (SODA ’04) introduced this problem to study
online network formation settings and showed that it
captures some well-studied problems such as Steiner
forest, non-metric facility location, tree multicast, and
group Steiner tree. Finding a non-trivial approximation
ratio for generalized connectivity was left as an open
problem. Our starting point is the first polylogarithmic
approximation for generalized connectivity, attaining a
performance guarantee of O(log2 n log2 k). Here n is the
number of vertices in G and k is the number of demands.
We also prove that the cut-covering relaxation of this
problem has an O(log3 n log2 k) integrality gap.

Building upon the results for generalized connectiv-
ity, we obtain improved approximation algorithms for
two problems that contain generalized connectivity as a
special case. For the directed Steiner network problem,
we obtain an O(k1/2+ǫ) approximation, which improves
on the currently best performance guarantee of Õ(k2/3)
due to Charikar et al. (SODA ’98). For the set con-
nector problem, recently introduced by Fukunaga and
Nagamochi (IPCO ’07), we present a polylogarithmic
approximation; this result improves on the previously
known ratio which can be Ω(n) in the worst case.
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1 Introduction

Network design problems have received a great deal of
attention in the computer science and operations re-
search communities, as they play an instrumental role
in combinatorial optimization and algorithm engineer-
ing. In this paper we investigate the complexity of some
network design problems that seek to find a minimum-
cost subgraph that connects a collection of vertex sets.
These problems generalize some previously studied net-
work design problems and help in demarcating the
boundary of tractability between the easier problems
in undirected graphs and the more difficult ones in di-
rected graphs. Interestingly, the algorithm we develop
for an undirected set connectivity problem can be used
to improve the approximation ratio for a more general
directed connectivity problem. Our algorithms also il-
lustrate the junction-scheme technique for designing ap-
proximation algorithms.

1.1 The underlying setting. In the general-
ized connectivity problem, we are given an edge-
weighted graph G = (V, E) and a collection D =
{(S1, T1), . . . , (Sk, Tk)} of distinct demands, each of
which comprises a pair of disjoint vertex sets. We say
that a subgraph F ⊆ G connects a demand (Si, Ti) when
it contains a path with one endpoint in Si and the other
in Ti. With this definition in mind, the goal is to identify
a minimum weight subgraph that connects all demands
in D.

Alon et al. [2] introduced the generalized con-
nectivity problem to study online network formation
settings and showed that it captures several well-
studied problems, such as Steiner forest, non-metric
facility location, tree multicast, and group Steiner
tree. Since the group Steiner tree problem is a spe-
cial case, known lower bounds for it translate to lower
bounds for generalized connectivity. In particular,
Halperin and Krauthgamer [16] show that unless NP ⊆
ZTIME(npolylog(n)), there is no O(log2−ǫ n) approxima-
tion for group Steiner tree. Further, Halperin et al. [15]
show an Ω(log2 k) lower bound on the integrality gap
of a natural LP-relaxation for group Steiner tree. The
above two lower bounds extend identically to general-



ized connectivity.
On the positive side, Alon et al. [2] devised a

multiplicative-update online algorithm for computing
log-competitive fractional solutions to generalized con-
nectivity. They show online rounding procedures for the
previously-mentioned special cases by using problem-
specific arguments. However, the following two prob-
lems are left open in their work. Is there a polylogarith-
mic approximation for generalized connectivity in the
offline setting? Is there a randomized polylogarithmic
competitive online algorithm for generalized connectiv-
ity? In this paper we address the offline problem.

New results: We present the first polylogarithmic
approximation for generalized connectivity, attaining
a performance guarantee of O(log2 n log2 k). We also
prove that the cut-covering relaxation of this problem
has an O(log3 n log2 k) integrality gap. Section 2 has
the details of these results.

1.2 Application 1: directed Steiner network.
An instance of the directed Steiner network problem
consists of an arc-weighted directed graph G = (V, E)
and a collection of distinct source-sink pairs, to which
we refer as (s1, t1), . . . , (sk, tk). The objective is to
construct a minimum weight subgraph that connects
all input pairs, where (si, ti) is said to be connected by
F ⊆ G when the latter contains an si-ti path.

The same problem in undirected graphs, also re-
ferred to as the Steiner forest problem, can be ap-
proximated to within a 2(1 − 1/k) factor [1, 12, 13].
The directed graph problem is, however, significantly
harder; Dodis and Khanna [8] proved that directed
Steiner network cannot be approximated to within a
factor of O(2log1−ǫ n) for any fixed ǫ > 0, unless NP ⊆
TIME(npolylog(n)). In terms of upper bounds, Charikar
et al. [5] gave an Õ(k2/3)-approximation algorithm.
Their paper concludes by posing two open problems:

1. Can the Õ(k2/3) guarantee be improved?

2. Is the analysis of the algorithm in [5] tight? The
known lower bound on the performance was Ω(

√
k).

New results: In Section 3, we present a polynomial-
time algorithm that approximates directed Steiner net-
work to within a factor of O(k1/2+ǫ), for any fixed ǫ > 0.
We also prove a lower bound of Ω(k2/3/ log k) on the
ratio achieved by the algorithm of Charikar et al. [5],
thereby showing that their analysis is essentially tight.

1.3 Application 2: set connector. In order to de-
scribe the problem we introduce a few definitions. Given
an undirected graph G = (V, E), a division is a family
V = {X1, . . . , Xh} of pairwise-disjoint vertex subsets.

For a set of edges F ⊆ E, let F/V be the multigraph
obtained from (V, F ) by coalescing each subset Xi ∈ V
into a single vertex (henceforth, V-terminal). Finally,
we say that F ⊆ E weakly connects V if all V-terminals
reside in the same connected component of F/V .

In the set connector problem, we are given an edge-
weighted graph G = (V, E) and a collection V1, . . . ,Vm

of distinct divisions. The objective is to detect a mini-
mum weight edge set F ⊆ E that simultaneously weakly
connects all input divisions. Generalized connectivity
can be viewed as a special case of set connector in which
each division consists of two disjoint vertex sets. It is
important to mention that the seemingly obvious re-
duction in the opposite direction, where each division
Vi = {X1, . . . , Xh} is replaced by a collection of de-
mands {(Xr, Xs) : 1 ≤ r < s ≤ h}, is incorrect.

The set connector problem has recently been in-
vestigated by Fukunaga and Nagamochi [10], whose
main contribution in this context was a fractional pack-
ing theorem, leading to an approximation guarantee
of 2(α − 1) via LP-rounding methods, where α =
maxi(

∑
X∈Vi

|X |). However, this result does not ensure
a reasonable upper bound for all possible instances, as
α may very well be Ω(n).

New results: In Section 4, we present the first poly-
logarithmic approximation for set connector, showing
that a performance guarantee of O(log2 n log2(mn))
can be achieved in polynomial time. We also prove
that a natural LP-relaxation of this problem has an
O(log3 n log2(mn)) integrality gap.

1.4 Techniques. Our results are based on a simple
but effective technique that has recently been high-
lighted in the context of the work on the (non-uniform)
buy-at-bulk network design problem [14, 6, 7]. Roughly
speaking, we approximately reduce a multi-commodity
connectivity problem to the density version of its single-
source variant via the so-called junction-scheme. As
single-source problems tend to be easier, this approach
can lead to an algorithm for the multi-commodity prob-
lem. We informally describe the junction-scheme ap-
proach in approximation algorithms.

The junction-scheme. Given a connectivity problem
that asks to link a collection of vertex pairs (or sets),
a subgraph F ⊆ G is called a partial solution if it is
feasible for a non-empty subset of the input pairs; the
density of F is defined as the ratio between its cost and
the number of pairs it connects. Following greedy cover-
ing arguments [17, 18, 19], repeating a subroutine for as-
sembling approximate minimum-density subgraphs ulti-
mately leads to a complete solution, while incurring an
additional logarithmic factor in the performance guar-



antee. The first step is to establish the existence of
an “easy-to-compute” partial solution providing near-
optimal density, or more specifically, the existence of
a junction vertex through which pairs are connected.
Having already fixed upon a particular vertex to serve
as a junction (by means of exhaustive enumeration), the
second step typically consists of guessing which pairs
should be connected to this junction, which may very
well be a challenging task. However, when the single-
source variant admits a polynomial-time LP-rounding
procedure, a bucketing-and-scaling mechanism allows
one to bound the integrality gap of minimum-density
junction structures, at the cost of losing polylogarith-
mic factors (see, for example, [6, 7]). In general, both of
these conceptual steps, i.e., proving the existence of a
junction-type solution and constructing a near-optimal
subgraph of this class, are non-trivial.

We remark that it is typically easier to establish
the existence of a junction-type solution by reasoning
about an optimal integral solution. Therefore, an
approximation algorithm obtained via the junction-
scheme does not necessarily lead to a corresponding
upper bound on the integrality gap of an LP relaxation
for the problem.

Problem-specific adaptations. For the generalized
connectivity problem, it turns out that we can indeed es-
tablish the existence of good-density junction-type solu-
tions. In this case, the single-source variant happens to
coincide with group Steiner tree, allowing us to employ
known algorithms for rounding fractional solutions to its
linear formulation [11, 15, 21]. With respect to directed
Steiner network, proving the existence of good junction
subgraphs is far from being enough, as its single-source
variant corresponds to directed Steiner tree [5, 16, 20];
unfortunately, no polylogarithmic integrality gap is cur-
rently known for the natural LP-relaxation of directed
Steiner tree. Nevertheless, we take advantage of sev-
eral structural characteristics, and reduce the minimum-
density junction problem on directed graphs to gener-
alized connectivity on undirected trees. Finally, as pre-
viously noted, set connector does not admit a naive re-
duction to generalized connectivity, in spite of appear-
ance. Therefore, to approximate the former problem,
we present a refined reduction, along with an iterative
greedy heuristic.

2 A Polylogarithmic Approximation for
Generalized Connectivity

In what follows, we present a polylogarithmic approx-
imation for the generalized connectivity problem. We
use the junction-scheme that is described in Section 1,
and hence the focus is on constructing partial solutions

of near-optimal “density”; an algorithm of this nature
may be repeatedly applied in greedy fashion to approx-
imate the original problem, incurring an additional log-
arithmic factor in the performance guarantee. The re-
sulting approximation is with respect to an optimum
integral solution. However, we also establish a polylog-
arithmic upper bound on the integrality gap of a cut-
based LP-relaxation.

2.1 Preliminaries. We refer to each vertex in⋃k
i=1(Si ∪ Ti) as a terminal. When a subgraph F ⊆ G

connects only a subset of demands, we call it a partial
solution. For F ⊆ G, let D(F ) denote the set of de-
mands in D connected by F , and let c(F ) =

∑
e∈F c(e)

denote its cost. Finally, the density of F is given by
density(F ) = c(F )/|D(F )|, i.e., the ratio between its
cost and the number of demands it connects.

Relating between density and accumulated cost.
Prior to formally defining the minimum density version
of generalized connectivity, let us make some simplifica-
tions. By a simple averaging argument, if a forest F ⊆ G
consists of several connected components, there must be
some tree T ⊆ F whose density is at most density(F ).
Moreover, given an algorithm for constructing a dense
solution that contains a predetermined root vertex r,
we can handle the unrooted density variant as well by
testing all vertices as possible roots. In terms of the
junction-scheme for generalized connectivity, this argu-
ment proves the existence of an r-rooted tree of optimal
density. Consequently, we define the following problem.

Definition 2.1. An instance of minimum density gen-
eralized connectivity (MDGC) consists of an edge-
weighted graph G = (V, E), a collection of demands
D = {(S1, T1), . . . , (Sk, Tk)}, and a root vertex r. The
objective is to identify a minimum density r-rooted tree.

In the remainder of this section, we focus our at-
tention on approximating MDGC rather than directly
dealing with the minimum cost version for two reasons.
First, a ρ-approximation for the former problem imme-
diately leads to a performance guarantee of O(ρ log k)
for generalized connectivity, via a standard repeated
covering procedure (see, for instance, [17, 18, 19]). Sec-
ond, the minimum density version will considerably sim-
plify the analysis of other applications studied in this
paper.

2.2 Approximating the density version. Sup-
pose we knew in advance the subset of demands
(Si1 , Ti1), . . . , (Sih

, Tih
) connected by a minimum den-

sity r-rooted tree. Then, the computational task in
question would be to find a low-cost tree connecting the



groups Si1 , Ti1 , . . . , Sih
, Tih

to r; this is essentially an in-
stance of the group Steiner tree problem. However, we
obviously do not have such prior knowledge. To work
around this difficulty, we formulate an LP-relaxation
which is derived from that of group Steiner tree, and
employ a bucketing-and-scaling mechanism to round its
optimal solution.

LP-relaxation. For each demand (Si, Ti), we set up
a variable yi that indicates whether both Si and Ti

are connected to r. In addition, for each edge e ∈ E,
there is a corresponding variable xe, indicating whether
e is picked. Given a yi value for a demand (Si, Ti), the
edges variables should model the constraint that both
Si and Ti are connected to the root r to the extent
of yi. Hence, for each cut (U, V \ U) that separates r
from some Si or Ti, we require that

∑
e∈δ(U) xe ≥ yi,

where δ(U) denotes the set of edges crossing (U, V \
U). We can linearize the original objective function∑

e c(e)xe/
∑

i yi by normalizing
∑

i yi to 1. This
discussion leads to the following linear program:

min
∑

e∈E

c(e)xe

(LPD)

s.t.

k∑

i=1

yi = 1

∑

e∈δ(U)

xe ≥ yi

∀U ⊆ V ∀ 1 ≤ i ≤ k such that:
(1) r ∈ U ; and
(2) U ∩ Si = ∅ or U ∩ Ti = ∅

xe, yi ∈ [0, 1] ∀ e ∈ E, 1 ≤ i ≤ k

Note that although LPD has exponentially many con-
straints, it admits a polynomial-time separation oracle;
therefore, we can efficiently compute an optimal frac-
tional solution (x∗, y∗) using the Ellipsoid method. Al-
ternatively, one can formulate an equivalent, yet polyno-
mial size, linear program by utilizing flow-like variables
(see, e.g., [11, 21]). Letting F ∗ ⊆ G be a minimum den-
sity solution to the given instance, it is not difficult to
verify that OPT(LPD) provides a lower bound on the
optimal density, that is,

∑
e∈E c(e)x∗

e ≤ density(F ∗).

The bucketing-and-scaling reduction. Since
(x∗, y∗) does not necessarily set y∗

i ∈ {0, 1}, even with
proper scaling, this fractional solution does not explic-
itly allow us to identify which pairs should be connected.
To this end, each demand (Si, Ti) ∈ D is placed in one
of ℓ = ⌈log2(2k)⌉ classes, depending on its y∗

i value.
More specifically, for every 1 ≤ j ≤ ℓ, we define a class
Ij = {i : y∗

i ∈ (2−j , 2−j+1]}. Since there are k demands
and ℓ classes, a simple averaging argument implies that
if Ij∗ is the class over which the sum of y∗

i ’s is maxi-
mized, then

∑
i∈Ij∗

y∗
i ≥ 1/(2ℓ) while |Ij∗ | ≥ 2j∗/(4ℓ).

Using Ij∗ we create a group Steiner tree instance
(henceforth, Π) in G; in this instance the groups are⋃

i∈Ij∗
{Si, Ti}, and the root r is to be connected to at

least one representative of each terminal group. Now
consider the natural LP-relaxation of this instance,
formally defined as follows:

min
∑

e∈E

c(e)xe

(LPΠ)

s.t.
∑

e∈δ(U)

xe ≥ 1
∀U ⊆ V such that ∃ i ∈ Ij∗ :
(1) r ∈ U ; and
(2) U ∩ Si = ∅ or U ∩ Ti = ∅

xe ∈ [0, 1] ∀ e ∈ E

Note that the main constraint in LPΠ is nearly identical
to the one in LPD, with an additional restriction stating
that yi = 1 if i ∈ Ij∗ , and yi = 0 otherwise. With
this observation in mind, it is easy to verify that x̂ =
min{2j∗x∗, 1} constitutes a feasible solution to LPΠ, as
y∗

i ≥ 2−j∗ for every i ∈ Ij∗ . Furthermore, the objective
function value of x̂ with respect to LPΠ is at most
2j∗

∑
e∈E c(e)x∗

e.

Putting it all together. At this point in time, we can
round the fractional solution x̂ using the procedure of
Garg, Konjevod and Ravi [11]. Their rounding proce-
dure proves that the integrality gap of the cut-based LP
for the group Steiner problem is O(log2 n log k). In fact
they show a stronger property; for any fixed constant
c < 1, there is an integral solution that connects at
least ck groups to the root and the cost of this solution
is O(log2 n) times the LP cost — here k is the number
of groups in the initial instance. Moreover, such a solu-
tion can be obtained in polynomial time from the given
LP solution. We use this stronger property to obtain a
tree F ⊆ G that connects r to representatives of at least
3|Ij∗ |/2 groups in

⋃
i∈Ij∗

{Si, Ti} such that the cost of F

is O(log2 n)
∑

e∈E c(e)x̂e = O(2j∗ log2 n)
∑

e∈E c(e)x∗
e.

Recall that the number of groups in Π is 2|Ij∗ |. Since r
is connected to at least 3|Ij∗ |/2 groups in

⋃
i∈Ij∗

{Si, Ti},
the number of demands (Si, Ti) ∈ Ij∗ for which r is con-
nected to both Si and Ti is at least |Ij∗ |/2; implying that
|D(F )| ≥ |Ij∗ |/2 ≥ 2j∗/(8ℓ). Since ℓ = ⌈log2(2k)⌉, we
have

density(F ) =
O(2j∗ log2 n)

∑
e∈E c(e)x∗

e

2j∗/(8ℓ)

= O(log2 n log k) · density(F ∗) .

This leads to the following results.

Lemma 2.1. MDGC can be approximated to within a
factor of O(log2 n log k).



Theorem 2.1. There is a polynomial-time algorithm
that approximates generalized connectivity to within a
factor of O(log2 n log2 k).

2.3 Integrality gap. As previously mentioned, the
junction-scheme does not automatically yield an inte-
grality gap result in multi-commodity settings, even
when it depends upon an LP-relaxation of the corre-
sponding single-source problem (see, for example, [6, 7]).
The primary bottleneck is our existence proof of low-
density rooted trees, which compares the densities of
integral solutions. In what follows, we take advantage
of a reduction to instances in which the input graph is a
tree, and prove that a natural LP-relaxation of general-
ized connectivity has a polylogarithmic integrality gap.
The resulting upper bound is worse than the one stated
in Theorem 2.1 by a logarithmic factor.

LP-relaxation. We consider the natural cut relax-
ation, in the spirit of Section 2.2, with a variable xe

for each edge e ∈ E, and a crossing constraint for each
cut (U, V \ U) that separates a demand (Si, Ti).

min
∑

e∈E

c(e)xe

(LPGC)

s.t.
∑

e∈δ(U)

xe ≥ 1
∀U ⊆ V such that ∃ i

Si ⊆ U and Ti ⊆ V \ U

xe ∈ [0, 1] ∀ e ∈ E

The remainder of this section is devoted to proving
the next theorem.

Theorem 2.2. The integrality gap of LPGC is
O(log3 n log2 k).

Integrality gap on rooted trees. We begin by argu-
ing that, when the underlying graph is a rooted tree of
height h, the integrality gap of LPGC is O(min{h, logn}·
h log2 k). For this purpose, consider a generalized con-
nectivity instance on a tree H = (V, E) of height h. We
can assume without loss of generality that all terminals
are at the leaves of H .

Let x∗ be an optimal solution to LPGC, of value
OPT(LPGC). We assign a level ℓ(i) to each demand
(Si, Ti) as follows. Noting that x∗ supports a unit flow
from Si to Ti, let us arbitrarily fix such a flow. Since
the underlying graph is a tree and all terminals are at
the leaves, this flow must travel upwards towards the
root, turn at some vertex, and then travel downwards
towards the leaves. Let f j

i be the total Si-Ti flow that

turns at level j of H . We remark that since
∑

j f j
i = 1

and there are only h levels, there must be a level j for

which f j
i ≥ 1/h; we set ℓ(i) to be such a level. We

assign the demand (Si, Ti) to level ℓ(i).
Now let Hj = {Hj

1 , . . . , Hj
p} be the collection of

vertex-disjoint subtrees rooted as level j of H , with
respective roots r1, . . . , rp. Let Dj

t be the restriction

of level-j assigned demands to the tree Hj
t ; in other

words, if ℓ(i) = j then (S′
i, T

′
i ) ∈ Dj

t , where S′
i and

T ′
i denote the vertex subsets of Si and Ti that appear

in Hj
t , respectively. We claim that there is an index

1 ≤ s ≤ p such that OPT(LPD) ≤ h ·OPT(LPGC)/k for
some rs-rooted MDGC instance on Hj

s with a demand
set Dj

s. For a demand (Si, Ti), let z(i, t) be the total
Si-Ti flow routed in Hj

t , and let OPTj
t =

∑
e∈Hj

t
c(e)x∗

e.

Since the subtrees at level j are disjoint,
∑

t

∑
i z(i, t) ≥

k/h whereas
∑

t OPTj
t ≤ OPT(LPGC). Therefore,

there is an index s such that OPTj
s/

∑
i z(i, s) ≤ h ·

OPT(LPGC)/k. We define a candidate solution (x′, y′)
to LPD on Hj

s by setting x′
e = x∗

e/
∑

i z(i, s) for each
e ∈ Hj

s and y′
i = z(i, s)/

∑
i z(i, s) for each demand

(Si, Ti). By construction, the entire Si-Ti flow in Hj
s

goes through the root rs, implying that (x′, y′) is indeed
a feasible solution to LPD; in addition, our scaling
method ensures that

∑
e c(e)x′

e ≤ h · OPT(LPGC)/k,
as desired.

Based on the above claim, in conjunction with
a specialization of Lemma 2.1 to rooted trees1, we
can construct an rs-rooted tree F ⊆ Hj

s of density
O(min{h, logn} · h log k) · OPT(LPGC)/k. Note that
F is also a partial solution to the original general-
ized connectivity instance. Therefore, when we dis-
card all demands connected by F , the fractional so-
lution x∗ remains feasible for the residual problem.
Using standard covering arguments, these findings es-
tablish the existence of an integral solution of cost
O(min{h, logn}) · h log2 k) · OPT(LPGC), which proves
the desired integrality gap.

Integrality gap on arbitrary graphs. We attain an
upper bound for general graphs as follows. A feasible LP
solution on the input graph is transformed into a feasible
solution on a rooted tree obtained by probabilistically
embedding the given metric into a distribution over
dominating tree metrics [3, 4, 9]. Consequently, an
integrality gap of α on rooted trees translates to a gap
of O(α log n) on general graphs. The height of the
resulting tree is guaranteed to be O(log ∆), where ∆ is
the original aspect ratio. Standard scaling tricks can be
used to ensure that the ratio of the largest edge cost to
the smallest edge cost in the original graph is bounded

1In trees of height h, we save an additional logarithmic factor,
by observing that the rounding method of Garg et al. [11] connects
a constant fraction of the input groups while incurring only an
O(min{h, log n}) loss in the performance guarantee.



by a polynomial in n, with a negligible increase in
the objective function value. This modification ensures
that the probabilistic embedding will produce O(log n)-
height trees. We then apply the previously obtained
bound for rooted trees.

3 An O(k1/2+ǫ) Approximation for Directed
Steiner Network

The main result of this section is a polynomial-time
algorithm that approximates directed Steiner network
to within a factor of O(k1/2+ǫ), for any fixed ǫ > 0.
Along the way, we demonstrate that our analysis is
essentially tight. We also prove a lower bound of
Ω(k2/3/ log k) on the approximation ratio achieved by
the algorithm of Charikar et al. [5]. We remind the
reader that an instance of directed Steiner network
consists of a directed graph G = (V, E), with non-
negative arc costs specified by c : E → R+, and a
collection D = {(s1, t1), . . . , (sk, tk)} of distinct source-
sink pairs. The objective is to construct a minimum cost
subgraph that connects all input pairs, where (si, ti) ∈
D is said to be connected by a given subgraph when the
latter contains an si-ti path.

3.1 A lower bound for bunches. The Õ(k2/3)-
approximation proposed by Charikar et el. [5] repeat-
edly connects new pairs by minimum density “bunches”
until all source-sink pairs are connected. A bunch is sim-
ply the union of an in-star and an out-star that share a
common arc or center; hence, a minimum density bunch
can be computed efficiently. Most of the effort in estab-
lishing the Õ(k2/3) upper bound is devoted to proving
the existence of a bunch whose density does not ex-
ceed that of an optimal solution by a factor of more
than O(k2/3 log1/3 k). However, the best possible lower
bound provided by Charikar et al. [5] for the density
of bunches was Ω(

√
k); improving on this bound had

been posed as an open question. In the full version of
this paper, we demonstrate that their analysis is indeed
tight up to polylogarithmic factors, by proving the next
theorem.

Theorem 3.1. There are instances of the directed
Steiner network problem in which the density of every
bunch is Ω(k2/3/ log k) · OPT/k.

3.2 Junction trees and their density. In retro-
spect, one can view the algorithm proposed by Charikar
et al. [5] as an application of the junction-scheme, re-
stricted to a very simple structure that can be easily
computed. Our approach follows the same paradigm.
However, instead of being interested in bunches, whose
height is extremely limited, we focus our attention on

junction subgraphs of arbitrary height, shooting for a
provable density of O(

√
k).

Definitions and notation. For this purpose, an r-
rooted junction tree J ⊆ G is defined as the union
of an in-tree Tin and an out-tree Tout, both rooted at
r ∈ V (see Figure 1). It is worth pointing out that
the trees Tin and Tout are allowed to overlap in both
nodes and arcs. Note that a sufficient condition for J
to connect a node pair (si, ti) ∈ D is that si ∈ Tin while
ti ∈ Tout. Following previously used notation, let D(J )
denote the set of source-sink pairs connected by J , and
let c(J ) =

∑
e∈J c(e) denote its cost. In addition, the

density of J is given by c(J )/|D(J )|.

Bounding the density of junction trees. With
the above definitions in mind, we say that a junction
tree J ⊆ G is ρ-optimal if density(J ) ≤ ρ · OPT/k,
where OPT denotes the cost of an optimal solution. In
the following lemma, we establish the existence of

√
k-

optimal junction trees; this result is complemented by
proving a coinciding lower bound, which is tight up to
constant multiplicative factors.

Lemma 3.1. A minimum density junction tree is
√

k-
optimal.

Proof. Let H∗ ⊆ G be a minimum cost subgraph that
connects all node pairs in D. In addition, for 1 ≤ i ≤ k,
let pi ⊆ H∗ be a directed si-ti path in H∗; when si and
ti are connected by more than one path, pi is arbitrarily
picked. The proof proceeds by distinguishing between
two cases:

1. There is a node r ∈ V that appears in at least
√

k
of the paths p1, . . . , pk. In this case, consider the
junction tree J formed by the union of all paths in
p1, . . . , pk passing through r. Since J is a subgraph
of H∗, its cost is at most OPT. Therefore, by
observing that J connects at least

√
k pairs, we

have density(J ) ≤ OPT/
√

k =
√

k · OPT/k.

2. There is no such node. In particular, every arc of
H∗ appears in at most

√
k of the paths p1, . . . , pk.

Hence, by creating
√

k copies of each arc, all node
pairs can be connected via arc-disjoint paths. Since
the overall duplication cost is

√
k · OPT, at least

one of these paths is associated with a cost of at
most

√
k ·OPT/k. This path constitutes a (trivial)

junction tree whose density is at most
√

k ·OPT/k.

Lemma 3.2. There are directed Steiner network in-
stances in which every junction tree is Ω(

√
k)-optimal.
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Figure 2: An example demonstrating that the density
of any junction tree is Ω(

√
k) · OPT/k.

Proof. Consider the following instance of directed
Steiner network, schematically described in Figure 2:

1. The input graph consists of four layers, with nodes
x1, . . . , x√

k in the first layer, u1, . . . , u√
k in the

second, v1, . . . , v√k in the third, and y1, . . . , y√k in
the fourth.

2. For every 1 ≤ i ≤
√

k, there are two
√

k-cost arcs,
(xi, ui) and (vi, yi). In addition, every ui is linked
to all vj ’s by zero-cost arcs.

3. The collection of k distinct pairs to be connected is
D = {(xi, yj) : 1 ≤ i, j ≤

√
k}.

Note that the instance under consideration has
a unique optimal solution, in which all arcs must
be picked. Since the overall cost is 2k, we have
OPT/k = 2. Now let H be a minimum density junction
tree. Without loss of generality, we may assume that
the root of H belongs to {u1, . . . , u√

k, v1, . . . , v√k}.

Consequently, c(H) = (1 + |D(H)|)
√

k, implying that
the density of H is at least

√
k.

3.3 Finding low-density junctions trees.
Overview. We had already observed that junc-
tion trees are strongly related to directed Steiner
trees [5, 16, 20]. In particular, identifying a low-density
junction tree would have been rather straightforward,
should the natural LP-relaxation of directed Steiner
tree had a reasonably small integrality gap; unfortu-
nately, Zosin and Khuller [21] demonstrated that the
latter gap is Ω(

√
k). To overcome this difficulty, given a

fixed accuracy parameter ǫ > 0, we limit our attention
to junction trees of height 1/ǫ, while incurring an O(kǫ)
penalty in the performance guarantee via a height
restriction lemma due to Zelikovsky [20]. We then
reduce the problem of finding a low density (1/ǫ)-height
junction tree to MDGC (see Section 2.1), blowing up
the final approximation ratio by only logarithmic
factors. In essence, the remainder of this section will
be devoted to proving the next lemma.

Lemma 3.3. For any fixed ǫ > 0, there is a polynomial-
time algorithm that constructs a junction tree J ⊆ G
satisfying density(J ) = O(kǫ) · density(J ∗), where J ∗

is a minimum density junction tree.

Preliminaries. For ease of presentation, it would be
convenient to assume that 1/ǫ is an integer. In addition,
we can assume without loss of generality that G is
transitively closed. Finally, we may assume that the
root r of J ∗ is known in advance; otherwise, all nodes
can be tested as potential roots by means of exhaustive
search.

Step 1: layering. An ℓ-layering of G = (V, E) is
an operation that produces a directed acyclic graph as
follows. The newly formed node set consists of ℓ + 1
copies of V , to which we refer as V0, . . . Vℓ. For every
0 ≤ i ≤ ℓ − 1, two types of arcs are added from Vi to
Vi+1: regular and parallel. Every arc (u, v) ∈ E induces
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Figure 3: The directed acyclic graph D.

a regular arc from the image of u in Vi to the image of
v in Vi+1, whose cost is identical to that of (u, v). On
the other hand, for every v ∈ V , a zero-cost parallel arc
is added between the image of v in Vi and in Vi+1.

Having formally defined layering, we move on to
assemble a directed acyclic graph D by unifying a (1/ǫ)-
layering D+ of G and a (1/ǫ)-layering D− of the graph
obtained from G by reversing its arcs. More precisely,
assuming that D+ and D− consist of the node sets
V +

0 , . . . , V +
1/ǫ and V −

0 , . . . , V −
1/ǫ, respectively, the first

layers of these graphs (i.e., V +
0 and V −

0 ) are identified
as one layer, V0, while other layers are kept separated,
as shown in Figure 3. It is instructive to omit nodes
from V0, V +

1/ǫ and V −
1/ǫ as follows: only r is left in V0;

only sinks are left in V +
1/ǫ; and only sources are left in

V −
1/ǫ.

The next claim is due to Zelikovsky [20, Thm. 2];
a rooted tree in a transitively closed graph can be
transformed into an ℓ-level tree defined on the same set
of nodes, while blowing up the overall cost by no more
than O(ℓk1/ℓ). In this context, k denotes the number of
leaves in the original tree.

Claim 3.1. There exists an r-rooted tree Tr ⊆ D that
satisfies the following properties:

1. For every (si, ti) ∈ D(J ∗), Tr connects r to both
si ∈ V −

1/ǫ and ti ∈ V +
1/ǫ.

2. c(Tr) = O(kǫ) · c(J ∗).

We remark that any r-rooted tree Tr ⊆ D can be
efficiently translated to a junction tree J ⊆ G such that

c(J ) ≤ c(Tr), and such that D(J ) consists of all source-
sink pairs (si, ti) for which both si ∈ V −

1/ǫ and ti ∈ V +
1/ǫ

are reachable from r in Tr.

Step 2: path splitting. We proceed by creating an
undirected tree T as follows. Consider the star formed
by constructing a collection of O(n1/ǫ) disjoint paths,
one for each path in D connecting r to a node in V +

1/ǫ ∪
V −

1/ǫ, and unifying their roots. We repeatedly merge

common prefixes of these paths, until every branching
corresponds to an actual branching in D. Alternatively,
one can also provide a recursive definition:

1. When u ∈ V +
1/ǫ ∪ V −

1/ǫ, the resulting tree consists of

the singleton vertex u.

2. When u ∈ V +
i , for some 0 ≤ i ≤ 1/ǫ − 1, we

begin by recursively computing a fresh collection
of rooted trees, {Tv : v ∈ V +

i+1}. The root of each
Tv is then joined to u by an edge whose cost is equal
to that of the arc (u, v) in D. The case u ∈ V −

i is
handled analogously.

With the underlying tree T in place, we create
an instance of MDGC by setting up a unique demand
(Si, Ti) for each node pair (si, ti) ∈ D. Specifically, since
each source node si ∈ V −

1/ǫ has just been duplicated

O(n1/ǫ) times, its corresponding vertex set Si is defined
to be the collection of leaves in T that are duplicates
of si. Similarly, the set Ti contains all duplicates of
ti ∈ V +

1/ǫ. It is not difficult to verify that there is a

one-to-one correspondence between r-rooted trees in D
and T , namely, for each tree Tr ⊆ D there is a matching
tree T ′

r ⊆ T of identical cost, such that T ′
r connects r

to both Si and Ti if and only if Tr connects r to both
si ∈ V −

1/ǫ and ti ∈ V +
1/ǫ. Moreover, this bijection can be

efficiently computed.
Consequently, it remains to approximate an MDGC

instance defined on a (1/ǫ)-height tree spanning O(n1/ǫ)
vertices. As a result of specializing Lemma 2.1 to
rooted trees (see footnote on page 5), such instances
can be approximated to within a factor of O(log k).
By combining the latter observation with an additional
O(kǫ) factor lost during our layering step, Lemma 3.3
follows.

Summary. Lemma 3.3, in conjunction with Lemma 3.1
and a standard repeated covering procedure, immedi-
ately implies the main result of this section, formally
stated in the following theorem.

Theorem 3.2. The directed Steiner network problem
can be approximated to within a factor of O(k1/2+ǫ),
for any fixed ǫ > 0.



Remark: The layering and path splitting ideas, com-
bined with Zelikovsky’s height-reduction lemma, give
a reduction from the directed Steiner tree problem to
the group Steiner problem. This reduction leads to an
O(i2k1/i log k) approximation in nO(i) time for the di-
rected Steiner tree problem and is an alternative to the
greedy scheme in [5]. Although unpublished, this reduc-
tion was known to several people.

4 A Polylogarithmic Approximation for Set
Connector

The main result of this section is a polylogarithmic
performance guarantee for set connector. We remind
the reader that an instance of the latter problem consists
of an undirected graph G = (V, E), whose edges are
associated with non-negative costs specified by c : E →
R+. Given a collection of divisions V1, . . . ,Vm, the
objective is to construct a minimum cost subset of edges
F ⊆ E that simultaneously weakly connects all input
divisions. Our principal finding in this context can be
briefly summarized as follows.

Theorem 4.1. The set connector problem admits
an O(log2 n log2(mn)) approximation. Moreover
the integrality gap of a natural LP-relaxation is
O(log3 n log2(mn)).

Prior to proving the above theorem, we demonstrate
that a naive reduction to generalized connectivity, in
which each division Vi = {X1, . . . , Xh} is replaced by
a collection of demands {(Xr, Xs) : 1 ≤ r < s ≤ h}
is incorrect. To this end, consider a set connector
instance defined on a complete graph with vertex set
{v1, v2, v3, v4}, and suppose that we are given a single
division V1 = {X1, X2, X3}, where X1 = {v1}, X2 =
{v2} and X3 = {v3, v4}. It is not difficult to verify
that F = {(v1, v3), (v2, v4)} forms a feasible solution
to this instance. However, F is infeasible for the
resulting generalized connectivity instance, since it does
not contain a path with one endpoint in X1 and the
other in X2.

Proof of Theorem 4.1. The proof proceeds by
relating the approximability of set connector to that
of generalized connectivity. We say that X ∈ Vi is
covered by an edge set F ⊆ E when the subgraph (V, F )
contains a path connecting a vertex in X to a vertex
in Y 6= X , for some Y ∈ Vi. Note that the optimal
solution F ∗ covers every set in

⋃m
i=1 Vi. In addition,

given a set of edges F ⊆ E that covers all sets in
⋃m

i=1 Vi,
we can create a new set connector instance as follows.
For each division Vi = {X1, . . . , Xh}, let Gi(F ) be a
graph on the vertex set {1, . . . , h}, in which r and s
are joined by an edge when Xr and Xs are connected

by F . Since all vertex sets are covered, Gi(F ) consists
of at most h/2 connected components, C1, . . . , Cℓ. We
define V ′

i = {Y1, . . . , Yℓ}, where Yt =
⋃

j∈Ct
Xj , noting

that |V ′
i| ≤ |Vi|/2. It is easy to ascertain that F ∗

remains a feasible solution to the new instance induced
by V ′

1, . . . ,V ′
m, and furthermore, any feasible solution to

this instance can be combined with F to form a feasible
solution with respect to V1, . . . ,Vm. We conclude that
an α-approximation for covering

⋃m
i=1 Vi implies an

O(α log β)-approximation for the set connector problem
where, β = maxi |Vi| ≤ n.

We now show that a generalized connectivity heuris-
tic can be straightforwardly employed as a subroutine,
to detect an approximate edge set covering all sets in⋃m

i=1 Vi. For this purpose, an instance of the former
problem is assembled as follows. For each division
Vi = {X1, . . . , Xh}, we introduce a collection of h de-

mands (X1, (
⋃h

j=1 Xj) \ X1), . . . , (Xh, (
⋃h

j=1 Xj) \Xh).

We observe that F ⊆ E covers
⋃m

i=1 Vi if and only if
this edge set constitutes a feasible solution to the gen-
eralized connectivity instance obtained via the above re-
duction. Therefore, by plugging in the O(log2 n log2 k)-
approximation for generalized connectivity stated in
Theorem 2.1, we attain a performance guarantee of
O(log3 n log2(mn)) for set connector.

The reader will notice that the procedure described
above loses an extra logarithmic term in comparison to
the approximation ratio claimed in Theorem 4.1. Tech-
nically speaking, the additional factor is incurred since
we make use of our generalized connectivity algorithm
in black-box fashion; this redundancy can be avoided by
noting that the latter is an iterative greedy algorithm by
itself. The specifics of achieving such an improvement
and establishing an O(log3 n log2(mn)) integrality gap
are deferred to the final version of this paper.

5 Conclusions

It is interesting to note that the following slight variant
of the generalized connectivity problem makes it very
hard to approximate: for each pair (Si, Ti) we are also
given a relation Ri ⊆ Si × Ti, and a solution F is now
considered feasible if it connects some pair (u, v) from
Ri for each set-pair i. Using a reduction from the Label
Cover problem as in [8], one can establish that this

variant is hard to approximate to within an O(2log1−ǫ n)
factor.

Obvious open problems are to improve the approxi-
mation ratios for the problems considered in this paper.
For generalized connectivity it may be possible to get a
ratio that matches the one known for the group Steiner
problem - the ratio we give is worse by a logarithmic
factor. It is also of interest to prove an integrality gap



bound that matches the approximation ratio.
Finally, can we obtain a poly-logarithmic competi-

tive ratio for generalized connectivity in the online set-
ting? Alon et al. [2] show an O(log m) competitive ratio
to compute a fractional solution to the relaxation LPGC

for generalized connectivity. The framework of [2] re-
quires a specific kind of rounding procedure to convert
the fractional solution to an integral solution in an on-
line fashion. Although we showed a poly-logarithmic
integrality gap for LPGC, our rounding procedure is not
applicable to the online setting. Generalized connectiv-
ity and set connector are closely related to the group
Steiner problem for which [2] gives an online rounding
algorithm by adapting the randomized rounding algo-
rithm of [11]. Is there an online rounding algorithm for
generalized connectivity and set connector that gives a
poly-logarithmic competitive ratio?
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