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Abstract

We consider the problem of embedding finite metrics with
slack: we seek to produce embeddings with small dimension
and distortion while allowing a (small) constant fraction of
all distances to be arbitrarily distorted. This definition is
motivated by recent research in the networking community,
which achieved striking empirical success at embedding In-
ternet latencies with low distortion into low-dimensional
Euclidean space, provided that some small slack is allowed.

Answering an open question of Kleinberg, Slivkins, and
Wexler [29], we show that provable guarantees of this type
can in fact be achieved in general: any finite metric can
be embedded, with constant slack and constant distortion,
into constant-dimensional Euclidean space. We then show
that there exist stronger embeddings into`1 which exhibit
gracefully degradingdistortion: these is a single embed-
ding into `1 that achieves distortion at mostO(log 1

ε ) on
all but at most anε fraction of distances,simultaneously
for all ε > 0. We extend this with distortionO(log 1

ε )1/p

to maps into general̀p, p ≥ 1 for several classes of met-
rics, including those with bounded doubling dimension and
those arising from the shortest-path metric of a graph with
an excluded minor. Finally, we show that many of our con-
structions are tight, and give a general technique to obtain
lower bounds forε-slack embeddings from lower bounds for
low-distortion embeddings.
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1 Introduction

Over the past decade, the field of metric embeddings has
gained much importance in algorithm design. The central
genre of problem in this area is the mapping of a given
metric space into a “simpler” one, in such a way that the
distances between points do not change too much. More
formally, anembeddingof a finite metric space(V, d) into
a targetmetric space(V ′, d′) is a mapϕ : V → V ′. Recent
work on embeddings has useddistortionas the fundamen-
tal measure of quality; the distortion of an embedding is
the worst multiplicative factor by which distances are in-
creased by the embedding1. The popularity of distortion
has been driven by its applicability to approximation algo-
rithms: if the embeddingϕ : V → V ′ has a distortion of
D, then the cost of solutions to some optimization prob-
lems on(V, d) and on(ϕ(V ), d′) can only differ by some
function ofD; this idea has led to numerous approximation
algorithms [25].

In parallel with theoretical work on embeddings, there
has been a surge of interest in the networking community on
network embeddingproblems closely related to the frame-
work above (see e.g. [15, 36, 41]). This work is motivated
by different applications: one takes the point-to-point laten-
cies among nodes in a network such as the Internet, treats
this as a distance matrix,2 and embeds the nodes into a low-
dimensional space so as to approximately preserve the dis-
tances. In this way, each node is assigned a short sequence
of virtual “coordinates,” and distances between nodes can
be approximated simply by looking up their coordinates and
computing the distance, rather than having to interact with
the relevant nodes themselves. As location-aware applica-
tions in networks become increasingly prevalent — for ex-

1Formally, for an embeddingϕ : V → V ′, the distortion is the
smallestD so that∃α, β ≥ 1 with α · β ≤ D such that1

α
d(x, y) ≤

d′(ϕ(x), ϕ(y)) ≤ β d(x, y) for all pairsx, y ∈ V × V . Note that this
definition of distortion is slightly non-standard—sinceα, β ≥ 1, it is no
longer invariant under arbitrary scaling; however, this ismerely for nota-
tional convenience, and all our results can be cast in the usual definitions
of distortion.

2While the triangle inequality can be violated by network latencies, em-
pirical evidence suggests that these violations are small and/or infrequent
enough to make metric methods a useful approach.
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ample, finding the nearest server in a distributed application
with replicated services, or finding the nearest copy of a file
or resource in a peer-to-peer system — having such distance
information in a compact and easily usable form is an issue
of growing importance (see e.g. the discussion in [15]).

In the context of these networking applications, how-
ever, distortion as defined above has turned out to be too
demanding an objective function — many metrics cannot
be embedded into Euclidean space with constant distortion;
many of those that can be so embedded require a very large
number of dimensions; and the algorithms to achieve these
guarantees require a type of centralized coordination (and
extensive measurement of distances) that is generally not
feasible in Internet settings. Instead, the recent networking
work has providedempirical guarantees of the following
form: if we allow a small fraction of all distances to bear-
bitrarily distorted, we can embed the remainder with (ap-
parently) constant distortion in constant-dimensional Eu-
clidean space. Such guarantees are natural for the underly-
ing networking applications; essentially, a very small frac-
tion of the location-based lookups may yield poor perfor-
mance (due to the arbitrary distortion), but for the rest the
quality of the embedding will be very good.

These types of results form a suggestive contrast with
the theoretical work on embeddings. In particular, are the
strong empirical guarantees for Internet latencies the result
of fortuitous artifacts of this particular set of distances, or is
something more general going on? To address this, Klein-
berg, Slivkins, and Wexler [29] defined the notion of em-
beddings withslack: in addition to the metrics(V, d) and
(V ′, d′) in the initial formulation above, we are also given
a slack parameterε, and we want to find a mapϕ whose
distortion is bounded by some quantityD(ε) on all but an
ε fraction of the pairs of points inV × V . (Note that we
allow the distortion on the remainingεn2 pairs of points to
be arbitrarily large.) This question can be viewed as a nat-
ural variant of metric Ramsey theory [10]. Roughly, Klein-
berg et. al. [29] showed that any metric of bounded dou-
bling dimension — in which every ball can be covered by
a constant number of balls of half the radius — can be em-
bedded with constant distortion into constant-dimensional
Euclidean space, allowing a constant slackε. Such met-
rics, which have been extensively studied in their own right,
have also been proposed on several occasions as candidates
for tractable abstractions of the set of Internet latencies(see
e.g. [19, 27, 36, 38]).

There were two main open questions posed in [29].

(1) There was no evidence that the main embedding result
of [29] needed to be restricted to metrics of bounded
doubling dimension. Could it be the case that forevery
finite metric, and everyε > 0, there is an embedding of
the metric with distortionf(ε) into Euclidean space?

(2) Rather than have the embedding depend on the given
slack parameterε, a much more flexible and powerful
alternative would be to have asingleembedding of the
metric with the property that, for some (slowly grow-
ing) functionD(·), it achieved distortionD(ε) on all
but anε fraction of distance pairs, for allε > 0. We
call such an embeddinggracefully degrading[29], and
ask whether such an embedding (with a polylogarith-
mic functionD(·)) could exist for all metrics.

In this paper, we resolve the first of these questions in
the affirmative, showing constant distortion with constant
slack for all metrics. Moreover, the embedding we design
to achieve this guarantee isbeacon-based, requiring only
the measurement of distances involving a small set of dis-
tinguished “beacon nodes”; see Section 2. Approaches that
measure only a small number of distances are crucial in net-
working applications, where the full set of distances can be
enormous; see, e.g., [23, 20, 30, 36, 37, 42] for beacon-
based approaches and further discussions. We then resolve
the second question in the affirmative for metrics that ad-
mit anO(1)-padded decomposition (a notion from previ-
ous work on embeddings that we specify precisely in Sec-
tion 1.1); this includes several well-studied classes of met-
rics including those with bounded doubling dimension and
those arising from the shortest-path metric of a graph with
an excluded minor. We further show that gracefully degrad-
ing distortion can be achieved in the`1 norm for all metrics.
The second question has been subsequently solved in full
in [1] (see also the bibliographic notes in the sequel), pro-
viding an embeddings with gracefully degrading distortion
for all metrics in`p for everyp ≥ 1 . Finally, we show that
many of our constructions are tight, and give a general tech-
nique to obtain lower bounds forε-slack embeddings from
lower bounds for low-distortion embeddings.

Basic Definitions. Before we formally present our results,
let us present some of the notions that will be used through-
out the paper. We will assume that the metric(V, d) is also
represented as a graph on the nodesV , with the length of
edgeuv beingd(u, v) = duv. We imagine this graph as
havingn2 edges, one for each pairu, v ∈ V ×V ; this makes
the exposition cleaner and does not change the results in any
significant way. For a mapϕ : V → V ′ let us define the no-
tion of thedistortion of a setS of edgesunder embeddingϕ
as the smallestD ≥ 1 such that for some positive constant
K and all edges(u, v) ∈ S we have

d(u, v) ≤ d′(ϕ(u), ϕ(v))/K ≤ D · d(u, v).
Note that the distortion ofϕ (as given in Footnote 1) is the
same as the distortion of the set of all edges.

Definition 1.1 (ε-slack distortion) Givenε, an embedding
ϕ : V → V ′ hasdistortionD with ε-slackif a set of all but
an ε-fraction of edges has distortion at mostD underϕ.



We will also consider a stronger notion of slack, for which
we need the following definition. Letρu(ε) be the radius of
the smallest ball aroundu that contains at leastεn nodes.
Call an edgeuv ε-long if duv ≥ min(ρu(ε), ρv(ε)). Then
there are at least(1 − ε)n2 edges that areε-long. For any
such edgeuv, at least one endpointu is at least as far from
the other endpointv as the(εn)-th closest neighbor ofv.

Definition 1.2 (ε-uniform slack distortion) Given ε, an
embeddingϕ : V → V ′ hasdistortionD with ε-uniform
slackif the set of allε-long edges has distortion at mostD.

While the above notions of embeddings with slack allow the
mapϕ to depend on the slackε, the following notion asks
for a single map that isgood for allε simultaneously.

Definition 1.3 (gracefully degrading distortion) An em-
beddingψ : V → V ′ has agracefully degrading distor-
tion D(e) if for eachε > 0, the distortion of the set of all
ε-long edges is at mostD(ε).

Our Results. We now make precise the main results de-
scribed above, and also describe some further results in the
paper. Our first result shows that if we are allowed con-
stant slack, we can indeed embedanymetric into constant
dimensions with constant distortion.

Theorem 1.4 For any source metric(V, d), any target met-
ric `p, p ≥ 1 and any parameterε > 0, we give the follow-
ing twoO(log 1

ε )-distortion embeddings:

(a) with ε-slack intoO(log2 1
ε ) dimensions, and

(b) with ε-uniform slack intoO(log n log 1
ε ) dimensions.

Both embeddings can be computed with high probability by
randomized beacon-based algorithms.

These results extend Bourgain’s theorem on embedding ar-
bitrary metrics intò p, p ≥ 1 with distortionO(log n) [11],
and are proved in a similar manner.

Note that the bounds on both the distortion as well as the
dimension in Theorem 1.4(a) are independent of the num-
ber of nodesn, which suggests that they could be extended
to infinite metrics; this is further discussed in Section 2. In
part (b), the dimension is proportional tologn; we show
that, for arbitrary metrics, this dependence onn is indeed in-
evitable. As an aside, let us mention that metrics of bounded
doubling dimension do not need such a dependence onn:
in Slivkins [42], these metrics are embedded into any`p,
p ≥ 1 with ε-uniform slack, distortionO(log 1

ε log log 1
ε )

and dimension(log 1
ε )O(log 1

ε
).

In section 3 we generalize these results by a theorem that
converts practically any classical embedding into`p, into ε-
slack embedding orε-uniform slack embedding, in the latter

case there is an inevitable increase ofO(log n) factor in the
dimension. The following corollary gives some main exam-
ples:

Corollary 1.5 1. Any finite metric space has aε-slack
embedding intòp with distortionO(log 1

ε ) and dimen-
sionO(log 1

ε ).

2. Any finite metric space has aε-slack embedding
into `p with distortionO(d(log 1

ε )/pe) and dimension
eO(p) log 1

ε .

3. Any decomposable metric3has a ε-slack embedding
into `p with distortionO((log 1

ε )1/p) and dimension
O(log2 1

ε ).

4. Any negative type metric (in particularl1 metrics)
has a ε-slack embedding intò 2 with distortion

O
(
√

log 1
ε log log 1

ε

)

and dimensionO(log2 1
ε ).

5. Any tree metric has aε-slack embedding intò2 with

distortionO
(
√

log log 1
ε

)

and dimensionO(log 1
ε ).

Where the improved dimension in the first two results
follows from a recent improvement of the dimension in
Bourgain’s theorem due to [8].

We then studyembeddings into trees. We extend the
known results of probabilistic embedding into trees [5, 6,
17, 7] to obtain embeddings with slack. In particular, we
use the technique of Fakcharoenphol et al. [17] to obtain
the following two results:

Theorem 1.6 For any input metric(V, d) and any parame-
ter ε > 0 there exists an embedding into a tree metric with
ε-uniform slack and distortionO(1

ε log 1
ε ).

In fact, the tree metric in Theorem 1.6 is induced by a
Hierarchically Separated Tree(HST) [5], which is a rooted
tree with edge-weightswe such thatwe < we′/2 whenever
edgee′ is on the path from the root to edgee.

Theorem 1.7 For any input metric(V, d), the randomized
embedding of [17] into tree metrics has expected gracefully
degrading distortionD(ε) = O(log 1

ε ). 4 Since tree metrics
are isometrically embeddable intoL1, this immediately im-
plies that we can embed any metric intoL1 with gracefully
degrading distortionD(ε) = O(log 1

ε ).

3A metric is calleddecomposableif it admits aβ-padded decomposi-
tion for some constantβ, see Section 1.1 for details.

4More formally, we show that if an edgeuv is ε-long, thenduv ≤
ET [dT (u, v)] ≤ O(log 1

ε
) duv , wheredT is the tree metric generated by

the randomized algorithm in [17].



However, the dimension of the above embedding intoL1

may be prohibitively large. To overcome this hurdle, and to
extend this embedding tòp, p > 1, we explore a different
approach:

Theorem 1.8 Consider a metric(V, d) which admitsβ-
padded decompositions. Then it can be embedded into`p,
p ≥ 1 withO(log2 n) dimensions and gracefully degrading
distortionD(ε) = O(β)(log 1

ε )1/p.

For the reader unfamiliar with padded decompositions, let
us mention thatβ ≤ O(dimV ), the doubling dimension
of the metric, which in turn is always bounded above by
O(log n). Moreover, doubling metrics, and metrics induced
by planar graphs haveβ = O(1); hence Theorem 1.8 im-
plies that such metrics admit embeddings into`p, p ≥ 1
with gracefully degrading distortionO(log 1

ε )1/p. Note that
for p > 1 this result can be seen as a strengthening of The-
orem 1.4(b) on embeddings withε-uniform slack.

The proof of Theorem 1.8 is technically the most in-
volved part of the paper; at a high level, we develop a set
of scale-based embeddings which are then combined to-
gether (as in most previous embeddings)—however, since
the existing ways to perform this do not seem to guarantee
gracefully degrading distortion, we construct new ways of
defining distance scales.

Finally, we provelower boundson embeddings with
slack: we give a very general theorem that allows us to con-
vert lower bounds on the distortion and dimension of em-
beddings that depend only onn = |V | into lower bounds
in terms of the slack parameterε. This result works under
very mild conditions, and allows us to prove matching or
nearly matching lower bounds for all of our results onε-
slack embeddings. These lower bounds are summarized in
Corollary 6.5 of Section 6.

Related Work. This work is closely related to the large
body of work on metric embeddings in theoretical computer
science; see the surveys [25, 26] for a general overview of
the area. Our results build on much of the previous work on
embeddings intòp, including [11, 33, 40, 34, 21, 31, 32],
and on embeddings of metrics into distributions of trees [2,
5, 6, 22, 17, 7]. Among the special classes of metrics we
consider aredoubling metrics[4, 21, 43, 35]; the book by
Heinonen [24] gives more background on the analysis of
metric spaces.

All of these papers consider low-distortion embeddings
without slack. Note that an embedding with(ε = 1/2n2)-
slack or(ε = 1/2n)-uniform-slack is the same as an em-
bedding with no slack; for many of our results, plugging in
these values ofε gives us the best known slackless results—
hence our results can be viewed as extensions of these pre-
vious results.

The notion of embedding with slack can be viewed as a
natural variant of metric Ramsey theory. The first work on
metric Ramsey-type problems was by Bourgain, Figiel and
Milman [13] and a comprehensive study was more recently
developed by Bartal et. al. [9, 10]. In the original met-
ric Ramsey problem we seek a large subset of the points in
the metric space which admit a low distortion embedding,
whereas an embedding with slack provides low distortion
for a subset of the pairs of points.

Bibliographic note. The results in this paper have been ob-
tained independently by two groups: by I. Abraham, Y. Bar-
tal and O. Neiman (whom we will refer to as G1 below),
and by T-H.H. Chan, K. Dhamdhere, A. Gupta, J. Klein-
berg and A. Slivkins (referred to as G2). The present paper
combines the original write-ups of these two groups into a
single presentation; as part of this, we briefly discuss the
relation between the work of the two groups.

For embeddings with slack, Theorem 1.4 is due to (G2),
and Theorem 3.1 is due to (G1). The results on lower
bounds (Theorem 6.3) and embedding into distributions of
trees (Theorem 1.7) were proved independently and simi-
larly by both groups; the presentation in this paper of the
proof of Theorem 4.1 follows that of (G2) while the presen-
tation of the proof of Theorem 6.3 is a combination of the
approaches of the two groups. The presentation in Section 5
and the result presented here on embedding into a single tree
metric (Theorem 4.2) are due to (G2).

Abraham, Bartal, and Neiman (G1) independently
proved several important extensions which will be pub-
lished as a separate paper [1]. In particular, they resolve
the second of the main open questions discussed above,
i.e., showing a gracefully degrading embedding of any met-
ric space intò p with O(log 1

ε ) distortion and dimension
O(log n). This result is based on a new type of metric de-
compositions developed in [8, 1]. They also observe that the
result implies a constantaverage distortionfor embedding
any metric intò p. In their paper they study more general
notions of average distortion and in particular show this no-
tion is applicable - and under certain conditions they show
that Theorem 4.1 combined with their techniques yields
improved approximation algorithms for problems such as
sparsest cut, minimum linear arrangement, uncapacitated
quadratic assignment etc. Among other results, they show a
tight result ofO( 1√

ε
) distortion forε-slack embedding into

a tree metric, and improve the distortion in Theorem 1.8 to

O
(

min{β1− 1

p (log 1
ε )

1

p , log 1
ε}

)

.

1.1 Notation and Preliminaries

Throughout the paper(V, d) is the metric to be embed-
ded, andduv = d(u, v) is the distance between nodesu, v ∈
V . Define the closed ballBu(r) = {v ∈ V | duv ≤ r}.



The distance between a nodeu and setS ⊆ V is denoted
d(u, S) = minv∈S duv, and henced(u, V \ Bu(r)) > r.
We will assume that the smallest distance in the metric is1,
and the largest distance (or the diameter) isΦd.

A coordinate mapf is a function fromV to R; for an
edgeuv definef(uv) = |f(u) − f(v)|. Call such map1-
Lipschitzif for every edgef(uv) ≤ duv. Fork ∈ N define
[k] as the set{0, 1, . . . , k − 1}.
Doubling. A metric(V, d) is s-doublingif every setS ⊆ V
of diameter∆ can be covered bys sets of diameter∆/2;
thedoubling dimensionof such a metric isdlog se [24, 21].
A doubling metric is one whose doubling dimension is
bounded. Ameasureis s-doubling if the measure of any
ball Bu(r) is at mosts times larger than the measure of
Bu(r/2). It is known that for anys-doubling metric there
exists ans-doubling measure; moreover, such measure can
be efficiently computed [24, 35].
Padded Decompositions.Let us recall the definition of
a padded decomposition(see e.g. [21, 31]). Given a fi-
nite metric space(V, d), a positive parameter∆ > 0 and
β : V → R, a ∆-boundedβ-padded decompositionis a
distributionΠ over partitions ofV such that the following
conditions hold.

(a) For each partitionP in the support ofΠ, the diameter
of every cluster inP is at most∆.

(b) If P is sampled fromΠ, then each ballBx( ∆
β(x)) is

partitioned byP with probability at most12 .

For simplicity, say that a metricadmitsβ-padded decompo-
sitions(whereβ is a number) if for every∆ > 0 it admits a
∆-boundedβ-padded decomposition. It is known that any
finite metric space admitsO(log n)-padded decomposition
[5]. Moreover, metrics of doubling dimensiondimV ad-
mit O(dimV )-padded decompositions [21]; furthermore, if
a graphG excludes aKr-minor (e.g., if it has treewidth
≤ r), then its shortest-path metric admitsO(r2)-padded de-
compositions [28, 40, 18].

2 Embeddings with slack into`p

In this section we show that for anyε > 0 any metric can
be embedded intòp for p ≥ 1 with ε-slack and distortion
O(log 1

ε ), thus resolving one of the two main questions left
open by [29].

Let us fix ε > 0 and writeρu = ρu(ε). Recall that an
edgeuv is ε-long if duv ≥ min(ρu, ρv); call it ε-good if
duv ≥ 4 min(ρu, ρv). We partition all theε-long edges into
two groups, namely those which areε-good and those which
are not, and use a separate embedding (i.e. a separate block
of coordinates) to handle each of the groups. Specifically,
we handleε-good edges using a Bourgain-style embedding
from [29], and for the rest of theε-long edges we use an

auxiliary embedding such that for any edgeuv the embed-
deduv-distance isΘ(ρu + ρv). The combined embedding
has dimensionO(log2 1

ε ) and achieves distortionO(log 1
ε )

on a set of all but anε-fraction of edges.
There are several ways in which this result can be re-

fined. Firstly, we can ask for lowε-uniform-slackdistor-
tion, and require distortionO(log 1

ε ) on the set of allε-long
edges; we can indeed get this, but have to boost the number
of dimensions toO(log n log 1

ε ). As Theorem 2.2 shows,
this increase is indeed required. We note that this logarith-
mic increase in the number of dimensions is not the case
for doubling metrics: Slivkins [42] shows how these met-
rics are embedded into any`p, p ≥ 1 with ε-uniform slack,
distortionO(log 1

ε log log 1
ε ) and dimension(log 1

ε )O(log 1

ε
)

Secondly, this embedding can be computed in a dis-
tributedbeacon-basedframework. Here a small number of
nodes are selected independently and uniformly at random,
and designated asbeacons. Then the coordinates of each
node are computed as a (possibly randomized) function of
its distances to the beacons.

Thirdly, note that for theε-slack result, the target dimen-
sion is independent ofn, which suggests that this result can
be extended to infinite metrics. To state such extension, let
us modify the notion of slack accordingly. Following [42],
let us assume that an infinite metric is equipped with a prob-
ability measureµ on nodes. This measure induces aproduct
measureµ × µ on edges. We say that a given embedding
φ hasdistortionD with (ε, µ)-slack if some set of edges of
product measure at least1 − ε incurs distortion at mostD
underφ. Note that in the finite case,ε-slack coincides with
(ε, µ)-slack whenµ is the counting measure, i.e. when all
nodes are weighted equally.

In the embedding algorithm, instead of selecting beacons
uniformly at random (i.e. with respect to the counting mea-
sure) we select them with respect to measureµ. The proof
carries over without much modification; we omit it from
this version of the paper.

Theorem 2.1 For any source metric(V, d), any target met-
ric `p, p ≥ 1 and any parameterε > 0, we give the follow-
ing twoO(log 1

ε )-distortion embeddings:

(a) with ε-slack intoO(log2 1
ε ) dimensions, and

(b) with ε-uniform slack intoO(log n log 1
ε ) dimensions.

These embeddings can be computed with high probability
by randomized beacon-based algorithms that use, respec-
tively, onlyO(1

ε log 1
ε ) andO(1

ε logn) beacons.

Proof: Let δ > 0 be the desired total failure probability.
The embedding algorithm is essentially the same for both
parts, with one difference: we letk = O(log 1

δ + log 1
ε ) for

part (a), andk = O(log 1
δ +logn) for part (b). We describe



a centralized algorithm first, and prove that it indeed con-
structs the desired embedding. Then we show how to make
this algorithm beacon-based.

We use two blocks of coordinates, of sizekt andk, re-
spectively, wheret = dlog 1

ε e. The first block comes from
a Bourgain-style embedding without the smaller distance
scales. For eachi ∈ [t] choosek independent random sub-
sets ofV of size2i each, call themSij , j ∈ [k]. The first-
block coordinates of a given nodeu are

fij(u) = (kt)−1/p d(u, Sij), wherei ∈ [t], j ∈ [k]. (1)

For every nodeu and everyj ∈ [k], choose a numberβui ∈
{−1, 1} independently and uniformly at random. The
second-block coordinates ofu aregj(u) = k−1/p ρu βuj ,
wherej ∈ [k]. This completes the embedding.

For an edgeuv, let f(uv) and g(uv) denote thè p-
distance betweenu andv in the first and the second block
of coordinates, respectively. By construction,f(uv) ≤ duv

andg(uv) ≤ ρu + ρv. Moreover,

for everyε-good edgeuv, f(uv) ≥ Ω(duv/t)

with failure probability at mostt/2Ω(k). (2)

Indeed, fix anε-good edgeuv and letd = duv. Let αi be
the minimum of the following three quantities:ρu(2−i),
ρv(2

−i) and d/2. The numbersαi are non-increasing;
α0 = d/2. Moreover, sinceuv is ε-good we haveαt ≤
min(ρu, ρv, d/2) ≤ d/4. By a standard Bourgain-style ar-
gument it follows that for eachi the event

∑

j

|d(u, Sij) − d(v, Sij)| ≥ Ω(k)(αi − αi+1)

happens with failure probability at most1/2Ω(k). (We omit
the details from this version of the paper.) Therefore, with
failure probability at mostt/2Ω(k), this event happens for
all i ∈ [t] simultaneously, in which case
∑

ij

|d(u, Sij) − d(v, Sij)| ≥
∑

i∈[t]

Ω(k)(αi − αi+1)

= Ω(k)(α0 − αt) ≥ Ω(kd),

sof(uv) ≥ Ω(d/t) for the casep = 1. It is easy to extend
this to p > 1 using standard inequalities. This proves the
claim (2).

Furthermore, we claim that for each edgeuv, g(uv) =
Ω(ρu + ρv) with failure probability at most1/2Ω(k). In-
deed, letNj be the indicator random variable for the event
βuj 6= βvj . SinceNj ’s are independent and their sumN
has expectationk/2, by Chernoff Bounds (Lemma A.1a)
N ≥ k/4 with the desired failure probability. This com-
pletes the proof of the claim.

Now fix an ε-long edgeuv and letd = duv. Without
loss of generality assumeρu ≤ ρv; note thatρu ≤ d. Since

Bu(ρu) ⊂ Bv(ρu + d), the cardinality of the latter ball is at
leastεn. It follows thatρv ≤ ρu +d, sog(uv) ≤ ρu +ρv ≤
3d. Sincef(uv) ≤ d, the embeddeduv-distance isO(d).

To lower-bound the embeddeduv-distance, note that
with failure probability at mostt/2Ω(k) the following hap-
pens: if edgeuv is ε-good then this distance isΩ(d/t) due
to f(uv); else it isΩ(d) due tog(uv). For part (a) we use
Markov inequality to show that with failure probability at
mostδ this happens for all but anε-fraction ofε-long edges.
For part (b) we take a Union Bound to show that with fail-
ure probability at mostδ this happens forall ε-long edges.
This completes the proof of correctness for the centralized
embedding.

It remains to provide the beacon-based version of the al-
gorithm. LetS be the union of all setsSij . The Bourgain-
style part of the algorithm depends only on distances to the
Θ(k/ε) nodes inS, so it can be seen as beacon-based, with
all nodes inS acting as beacons. To define the second block
of coordinates we need to know theρu’s, which we do not.
However, we will estimate them using the same setS of
beacons.

Fix a nodeu. LetB be the open ball aroundu of radius
ρu, i.e. the set of all nodesv such thatduv < ρu. LetB′ be
the smallest ball aroundu that contains at least4εn nodes.
Note thatS is a set ofck/ε beacons chosen independently
and uniformly at random, for some constantc.

In expectation at mostck beacons land inB, and
at least4ck beacons land inB′. By Chernoff Bounds
(Lemma A.1ab) with failure probability at most1/2Ω(k) the
following eventEu happens: at most2ck beacons land in
B, and at least2ck beacons land inB′. Rank the beacons
according to its distance fromu, and letw be the(2ck)-th
closest beacon. Define our estimate ofρu asρ′u = duw.
Note that if eventEu happens, thenρ′u lies betweenρu and
ρu(4ε).

Consider a4ε-good edgeuv such that bothEu andEv

happen. Then (as in the non-beacon-based proof) we can
upper-bound the embeddeduv-distance byO(duv), and
lower-bound it byΩ(duv/t) with high probability. For part
(a) we use Markov inequality to show that with failure prob-
ability at mostδ eventEu happens for all but anε-fraction
of nodes. For part (b) we take a Union Bound to show that
with failure probability at mostδ this event happens for all
nodes. 2

The following theorem lower-bounds the target dimen-
sion required forε-uniform slack, essentially showing that
in part (b) of the above theorem the dependence onlogn is
indeed necessary.

Theorem 2.2 For any ε < 1
2 there is a metric(V, d) such

that anyε-uniform slack embedding intolp, p ≥ 1 with
distortionD requiresΩ(logD n) dimensions.



Proof: Take a clique onε n red and(1 − ε)n blue nodes,
assign length two to each of the blue-blue edges, and assign
unit lengths to all the remaining edges. Consider the metric
generated by this graph. Now all the blue-blue edges areε-
long, and thus any distortion-D ε-uniform-slack embedding
must maintain all the distances between the blue vertices.
But this is just a uniform metric on(1 − ε)n nodes, and the
lower bound follows by a simple volume argument. 2

3 Embeddings with slack: a general theorem

In this section, we generalize the results of the previ-
ous section. We formulate and prove a general theorem
which takes a result on classic (distortion-minimizing) em-
beddings of finite metrics intòp, and converts it into re-
sults on embeddings withε-slack and embeddings withε-
uniform slack.

For embeddings withε-slack, the idea is to choose a
small set of nodes (beacons) uniformly at random, embed
the beacons using the result on classic embeddings, then
embed all the other points according to the nearest beacon,
and add some auxiliary coordinates. To obtain embeddings
with ε-uniform slack, for each non-beacon node instead of
choosing the nearest beacon we choose the “best” beaconin
each coordinate. In both cases, we apply the result on clas-
sic embeddings to asubsetof the original metric. Therefore
our results are only about families of metrics that are subset-
closed: a familyX of metrics issubset-closedif any metric
in X restricted to any subset of nodes is also inX . The
auxiliary coordinates are similar to those in Section 2.

For theε-uniform slack result we will need a technical re-
striction that the original classic embedding isstrongly non-
expansive. An embeddingf from (V, d) into `kp is strongly
non-expansiveif it is a contraction and of the form

f = (η1f1, . . . , ηkfk) and
∑k

i=1 η
p
i = 1,

where for any two nodesu, v ∈ V and any coordinatei we
have|fi(u) − fi(v)| ≤ d(u, v).

Note that the above requirement is not so restricting,
since almost every known embedding can be converted to
a strongly non-expansive one. In particular, it is easy to
check that any generalized Fréchet embedding (i.e., an em-
bedding where each coordinatei is associated with a setSi

such thatfi(u) = d(Si, u)) is strongly non-expansive.

Theorem 3.1 Consider a fixed spacèp, p ≥ 1. LetX be
a subset-closed family of finite metric spaces such that for
any n ≥ 1 and anyn-point metric spaceX ∈ X there
exists an embeddingφX : X ↪→ `p with distortionα(n)
and dimensionβ(n).

Then there exists a universal constantC > 0 such that
for any metric spaceX ∈ X and anyε > 0 we have

(a) an embedding into`p with ε-slack, distortion
α(C

ε log 1
ε ) and dimensionβ(C

ε log 1
ε ) + C log 1

ε .

(b) an embedding intòp with ε-uniform slack, distortion
α(C/ε) and dimensionC log(n)β(C/ε).

In part (b) we need to assume that for allY ∈ X the origi-
nal embeddingφY is strongly non-expansive.

The most notable application of the above theorem is
for of arbitrary metrics into`p, p ≥ 1. Using Bour-
gain’s embedding [11] of distortionO(log n) and dimen-
sionO(log2 n), we obtain another proof of Theorem 2.1.
Using a recent result of Bartal [8] which improves of the
dimension in Bourgain’s theorem toO(log n) we obtain an
improved dimension in Thorem 2.1. Corollary 1.5 states
several additional applications of Theorem 3.1. The proof
follows from known upper bounds:(1) from [11], (2)
from [34], where the improved dimension of(1), (2) follow
from [8], (3) from [31], (4) from [3], (5) from [12].

Both embeddings in Theorem 3.1 can be cast in a dis-
tributed beacon-based framework which is similar to that in
Section 2. Specifically, we have two phases. In the first
phase, beacons measure distances to each other and com-
pute an embeddingφ for the set of beacons. In the second
phase, each node computes its coordinates as a (possibly
randomized) function ofφ and its distances to beacons. We
needO(1

ε log 1
ε ) andO(1

ε logn) beacons for parts (a) and
(b), respectively. The necessary modifications are similarto
those in Section 2; we defer the details to the full version.

We prove part (a) here and defer part (b) to Appendix B.
Proof of Theorem 3.1(a): We will choose a constant set
of beacons, embed them, then embed all the other points
according to the nearest beacon, and add some auxiliary co-
ordinates.

Formally, consider some metricX = (V, d) ∈ X , where
V is a set ofn nodes. Givenε > 0 let ε̂ = ε/20, and
t = 100 log

(

1
ε̂

)

. LetB be a uniformly distributed random
set of t

ε̂ points inV (the beacons). Letg be a contracting
embedding fromB into `p with distortionα( t

ε̂ ) and dimen-
sionβ( t

ε̂). Let

{σj(u) | u ∈ V, 1 ≤ j ≤ t}

be i.i.d symmetric{0, 1}-valued Bernoulli random vari-
ables. Define the following functions:

hj(u) = σj(u) ρu(ε̂) t−1/p

for all u ∈ V andj such that1 ≤ j ≤ t.

f(u) = g(b) for all u ∈ V , whereb ∈ B

is the beacon that is closest tou.

The embedding will beϕ = f ⊕ h, whereh is thet-vector
with j-th coordinate equal tohj(u). LetE be the set of all



unordered node pairs, and letG′ = E \ (D1 ∪D2), where

D1 = {(u, v) | d(u, v) ≤ max {ρu(ε̂), ρv(ε̂)}}
D2 = {(u, v) | d(u,B) ≥ ρu(ε̂) ∨ d(v,B) ≥ ρv(ε̂)}.

Observe that|D1| ≤ ε̂n2. For anyu ∈ V we have

Pr [ d(u,B) ≥ ρu(ε̂) ] ≤ (1 − t/(nε̂))ε̂n ≤ e−t ≤ ε̂,

so by Markov inequality|D2| ≤ 2ε̂n2 w.p. at least1/2. We
begin with an upper bound onϕ for all (u, v) ∈ G′:

‖ϕ(u) − ϕ(v)‖p
p

= ‖f(u) − f(v)‖p
p +

∑t
j=1 |hj(u) − hj(v)|p

≤ (3d(u, v))
p

+
∑t

j=1

∣

∣t−1/p max{ρu(ε̂), ρv(ε̂)} − 0
∣

∣

p

≤ (3p + 1) (d(u, v))
p

We now partitionG′ into two sets:

G1 = {(u, v) ∈ G′ : max {ρu(ε̂), ρv(ε̂)} ≥ d(u, v)/4}
andG2 = G′ \G1.

Consider an edge(u, v) ∈ G1. Without loss of gener-
ality assumeρu(ε̂) ≥ ρv(ε̂). Let Ej(u, v) be the event that
hj(v) = 0 andhj(u) = ρu(ε̂)t−1/p. This event happens
with probability 1

4 . Let A(u, v) =
∑t

j=1 1Ej(u,v). Then
E[A(u, v)] = t/4, so using Chernoff’s bound we can bound
the probability thatA(u, v) is smaller than half it’s expecta-
tion:

Pr [A(u, v) ≤ t/8] ≤ e−t/50 ≤ ε̂.

LetD3 = {(u, v) ∈ G1 | A(u, v) ≤ t/8} so by Markov
inequality with probability at least1/2, |D3| ≤ 2ε̂n2.

Therefore, for any(u, v) ∈ G1 \D3 we lower bound the
contribution.

‖ϕ(u) − ϕ(v)‖p
p ≥ ∑t

j=1 |hj(u) − hj(v)|p

≥ t
8

(

ρu(ε̂) · t−1/p
)p ≥ 1

8 · (1
4d(u, v))

p

For any(u, v) ∈ G2 let bu, bv be the beacons such that
f(u) = g(bu), f(v) = g(bv). Due to the definition ofD2

andG2 and from the triangle inequality it follows that

d(bu, bv) ≥ d(u, v) − d(u, bu) − d(v, bv)

≥ d(u, v) − d(u, v)/2 = d(u, v)/2.

Therefore, we lower bound the contribution of(u, v) ∈ G2.

‖ϕ(u) − ϕ(v)‖p
p ≥ ‖f(u)− f(v)‖p

p = ‖g(bu) − g(bv)‖p
p

≥ 1

α(t/ε̂)
· d(bu, bv) ≥

d(u, v)

2α(t/ε̂)

Finally note thatD2, D3 are independent andG = E\(D1∪
D2∪D3) is the set of edges suffering the desired distortion.
So with probability at least1/4 we have

|G| ≥
(

n
2

)

− 5ε̂n2 ≥
(

n
2

)

− εn2/4 ≥ (1 − ε)
(

n
2

)

as required. 2

4 Embeddings into Trees

Probabilistic embedding of finite metric space into trees
was introduced in [5]. Fakcharoenphol et al. [17] proved
that finite metric space embeds into a distribution of dom-
inating trees with distortionO(log n) (slightly improving
the result of[6], other proofs can be found in [7]). In this
section we exploit the technique of [17] to obtain embed-
dings with slack. First we show that it gives a probabilistic
embedding of arbitrary metrics into tree metrics withex-
pectedgracefully degrading distortionD(ε) = O(log 1/ε).
For technical convenience, we will treatn-point metrics as
functions from[n] × [n] to reals. Note that all metricsdT

generated by the algorithm in [17] aredominating, i.e. for
any edgeuv we haved(u, v) ≤ dT (u, v).

Theorem 4.1 For any input metric(V, d), let dT be the
dominating HST metric onV constructed by the random-
ized algorithm in Fakcharoenphol et al. [17]. Then the em-
bedding from(V, d) to (V, dT ) hasexpectedgracefully de-
grading distortionD(ε) = O(log 1/ε). Specifically, for any
parameterε > 0 and anyε-long edgeuv we have

duv ≤ Eϕ[dT (u, v)] ≤ O(log 1/ε) duv. (3)

Since tree metrics are isometrically embeddable intoL1, it
follows that we can embed any metric intoL1 with grace-
fully degrading distortionD(ε) = O(log 1

ε ).

Proof: For simplicity let us assume that all distances in
(V, d) are distinct; otherwise we can perturb them a little
bit and make them distinct, without violating the triangle
inequality; see the full version of this paper for details. In
what follows we will assume a working knowledge of the
decomposition scheme in [17].

Let us fix the parameterε > 0 and anε-long edgeuv, and
let d = d(u, v). Let us assume without loss of generality
thatρu(ε) ≤ ρv(ε). Thenρu(ε) ≤ d, so|Bu(d)| ≤ εn.

Run the randomized algorithm of [17] to build a tree
T and the associated tree metricdT . The decomposi-
tion scheme will separateu andv at some distance scale
2i ≥ d/2. Let∆ be the maximum distance in the input met-
ric. Under the distribution over tree metricsdT that is in-
duced by the algorithm, the expected distanceE[dT (u, v)]
betweenu andv in treeT is equal to the sum

∑log ∆
i≥log d−1 4 · 2i × Pr[(u, v) first separated at level2i].

Look at the sum fori such thatd/2 ≤ 2i < 4d: this is at
most48d. By the analysis of [17], the rest of the sum, i.e.
the sum fori ≥ log 4d, is at most

∑log ∆
i≥log 4d 4 · 2i × 2d

2i log |Bu,2i)|
|Bu,2i−2)|



Since the above sum telescopes, it is at most

8d · 2 log (n/|Bu(d)|) ≤ O(d log 1/ε),

which proves the second inequality in (3). The first inequal-
ity in (3) holds trivially because all metricsdT generated by
the algorithm in [17] are dominating. 2

The above embedding intò1 can be made algorithmic
by sampling from the distribution and embedding each sam-
pled tree intò 1 using a fresh set of coordinates; however,
the number of trees now needed to give a small distortion
may be as large asΩ(n logn). We will see how to obtain
gracefully degrading distortion with a smaller number of di-
mensions in the next section.

A slightly modified analysis yields an embedding into a
single tree; we omit the details from this version.

Theorem 4.2 For any source metric(V, d) and any param-
eterε > 0 there exists an embedding into a dominating HST
metric withε-uniform slack and distortionO(1

ε log 1
ε ).

5 Low-dimensional Embeddings
with Gracefully Degrading Distortion

In this section we prove our result on embeddings into
`p, p ≥ 1 with gracefully degrading distortion:

Theorem 5.1 Consider a metric(V, d) which admitsβ-
padded decompositions. Then it can be embedded into`p,
p ≥ 1 with O(log2 n) dimensions and gracefully degrad-
ing distortionO(β)(log 1

ε )1/p. The embedding procedure is
given as a randomized algorithm which succeeds with high
probability.

The proof of this theorem builds on the well-known em-
bedding algorithms of Bourgain [11] and Linial et al. [33],
and combines ideas given in [40, 21, 29, 42, 31] with some
novel ones. To the best of our understanding, the embed-
dings given in the previous papers do not directly give us
gracefully degrading distortion, and hence the additional
machinery indeed seems to be required.

Let us fixk = O(log n), where the constant will be spec-
ified later. We will construct an embeddingϕ : V → `p
with 7k2 dimensions; the coordinates ofϕ will be indexed
by triples(i, j, l) ∈ [k] × [k] × [7].

We will show how to construct the mapϕ in rest of this
section, which has the following conceptual steps. We first
define a concrete notion of “distance scales” in Section 5.1,
in terms of which we can cast many previous embeddings,
and specify the desired properties for the distance scales in
our embedding. We then show how to construct the distance
scales as well as the claimed embeddingϕ in Section 5.2,
and show that it has gracefully degrading distortion in Sec-
tion 5.3.

5.1 Distance Scales and Scale Bundles

Our algorithm, just like the algorithms in [11, 33, 40,
21, 29, 31, 32], operates on distance scales that start around
the diameter of the metric, and go all the way down to the
smallest distance in the metric. Informally, the embedding
ϕ has block of coordinates for each distance scale, such that
if the trueuv-distance for some edgeuv is within this scale,
then theuv-distance in these coordinates ofϕ is roughly
equal to the true distance. These blocks of coordinates are
then combined into an embedding that works for all scales
simultaneously.

Different embeddings use very different notions of dis-
tance scales; in cases like the Rao-style embeddings, there
are clear coordinates for each distance that is a power of
2—but in Bourgain-style embeddings, this is not the case.
To be able to give a unified picture, let us formally define
a distance scalef to be a coordinate mapf : V → R. A
scale bundle{fij} is then a collection of coordinate maps
fij , such that for every fixed indexj and nodeu, the values
fij(u) aredecreasingwith i.

We can now cast and interpret previous embeddings in
this language: in the Bourgain-style embeddings [11, 33],
fij(u) is the radius of the smallest ball aroundu containing
2n−i nodes, and hence the cardinality ofBu(fij(u)) halves
as we increasei. In the Rao-style embeddings [40, 21], the
scales arefij(u) = diameter(V )/2i, and hence the distance
scales halve as we increasei. The measured descent embed-
ding in [31] essentially ensures a judicious mixture of the
above two properties: as we increasei, the ballBu(fij(u))
either halves in radius, or halves in cardinality, whichever
comes first.

For our embedding, we needboth the radius and the
cardinality ofBu(fij(u)) to halve—and hence have to de-
fine the scale-bundles accordingly. This would be easy to
achieve by itself; however, to give good upper bounds on
the embedded distance, we also need each distance scale to
be sufficiently smooth, by which we mean that all the dis-
tance scalesfij must themselves be 1-Lipschitz. In other
words, we want that|fij(u) − fij(v)| ≤ d(u, v). The con-
struction of the scale bundle{fij} with both halving and
smoothness properties turns out to be a bit non-trivial, the
details of which are given in the next section.

5.2 The Embedding Algorithm

Let us construct the embedding for Theorem 5.1. We
have not attempted to optimize the multiplicative constant
for distortion, having chosen the constants for ease of expo-
sition whilst ensuring that the proofs work.

First we will construct ascale bundle{fij : i, j ∈ [k]}.
For a fixedj, the mapsfij are constructed by an indepen-
dent random process, inductively fromi = 0 to i = k − 1.



We start withf(0,j)(·) equal to the diameterΦd of the met-
ric. Given fij , we constructf(i+1,j) as follows. LetUij

be a random set such that each nodeu is included indepen-
dently with probability1/|Bu(4fij(u))|. Claim 5.8.) De-
finef(i+1,j)(u) as the minimum ofd(u, Uij) andfij(u)/2.
This completes the construction of the scale bundle.

To proceed, let us state a lemma that captures, for our
purposes, the structure of the metric.

Lemma 5.2 Consider a source metric(V, d) which admits
β-padded decompositions. Then for any 1-Lipschitz coor-
dinate mapf there is a randomized embeddingg into `p,
p ≥ 1 with t = 6 dimensions so that

(a) each coordinate ofg is 1-Lipschitz and upper-bounded
byf ; and

(b) if f(u)/duv ∈ [ 14 ; 4] for some edgeuv then, with prob-
ability Ω(1), ‖g(u) − g(v)‖p ≥ Ω(duv t

1/p/β).

Section 5.4 and Appendix C contain two different proofs
of this lemma; the first one uses padded decomposition
techniques from [21, 31], and the other uses some Bourgain-
style ideas [11, 33] which we believe are novel and possibly
of independent interest.5

Fix a pair i, j ∈ [k]. Apply Lemma 5.2 to the map
fij and obtain a 6-dimensional embedding; denote these
6 coordinates asg(i, j, l), 1 ≤ l ≤ 6. Let Wij be a ran-
dom set such that each nodeu is included independently
with probability 1/|Bu(fij(u)/2)|. Defineg(i, j, 0)(u) as
the minimum offij(u) and d(u,Wij). Finally, we set
ϕ(i, j, l) = k−1/p g(i, j, l).

Lemma 5.3 The mapsfij , gij andϕ(i, j, l) are 1-Lipschitz.

Proof: Indeed,f(0,j) is 1-Lipschitz by definition, and
the inductive step follows since themin of two 1-Lipschitz
maps is 1-Lipschitz. For the same reason, the mapsg(i, j, l)

are 1-Lipschitz as well, and therefore so are the maps
ϕ(i, j, l). 2

Sincek = O(log n), it immediately follows that the em-
bedded distance is at mostO(log n) times the true distance.
In the next section, we will prove a sharper upper bound
of O(duv)(log 1

ε )1/p for any ε-long edgeuv, and a lower
boundΩ(duv/β) for any edge.

5.3 Analysis

In this section, we complete the proof of Theorem 5.1 by
giving bounds on the stretch and contraction of the embed-
dingϕ. The following definition will be useful: for a node

5More precisely, the second proof is for the important special case when
β is the doubling dimension. In this proof the target dimension becomes
t = O(β log β), which results in target dimensionO(log2 n)(β log β) in
Theorem 5.1.

u, an interval[a, b] is u-broad if a or b is equal toduv for
somev, a ≤ b/4 and|Bu(a)| ≤ 1

32 |Bu(b)|.
Let us state two lemmas that capture the useful properties

of the mapsfij andg(i, j, 0), respectively: note that these
properties are independent of the doubling dimension. The
proofs are deferred to Section 5.5.)

Lemma 5.4 With high probability it is the case that:

(a) for any 1-Lipschitz mapsf ′
ij ≤ fij and anyε-long

edgeuv
∑

ij f
′
ij(uv) ≤ O(kduv log 1

ε ).

(b) for each nodeu, eachu-broad interval contains values
fij for Ω(k) differentj’s.

Lemma 5.5 Fix edgeuv and indicesij; letR = fij(u) and
d = duv. Given thatR ≥ 4d and |Bu(d/4)| = c |Bu(R)|,
the eventg(i, j, 0)(uv) ≥ Ω(d) happens with conditional
probabilityΩ(c).

Proof of Theorem 5.1: Fix an ε-long edgeuv and let
d = duv. Sinceg(i, j, l) ≤ fij for eachl, by Lemma 5.4a
the embeddeduv-distance is upper-bounded byO(d log 1

ε )
for p = 1; the same argument gives an upper bound of
O(d)(log 1

ε )1/p for p > 1.
It remains to lower-bound the embeddeduv-distance by

Ω(d/β), whereβ is the parameter in Theorem 5.1 and
Lemma 5.2. Denote bygij(uv) the total`p-distance be-
tweenu andv in the coordinatesg(i, j, l), l ≥ 1. Denote by
Eij the event thatg(i, j, 0)(uv) or gij(uv) is at leastΩ(d/β).
It suffices to prove that with high probability eventsEij hap-
pen for at leastΩ(k) (i, j)-pairs. We consider two cases,
depending on whetherρu(ε/32) ≥ d/4.

Case (a). If ρu(ε/32) ≥ d/4 then the intervalI =
[d/4; d] isu-broad, so by Lemma 5.4b there areΩ(k) differ-
entj’s such thatfij(u) ∈ I for somei. By Lemma 5.2 and
Chernoff bounds (Lemma A.1a) forΩ(k) of theseij pairs
we havegij(uv) ≥ Ω(d/β), case (a) complete.

Case (b).Assumeρu(ε/32) < d/4; consider the interval
I = [d; max[4d, ρu(32ε)]]. We claim that

Pr [Eij | fij(u) ∈ I] ≥ Ω(1), for each(i, j)-pair. (4)

Indeed, fixij and supposef = fij(u) ∈ I. There are
two cases,f ∈ [d; 4d] andf ∈ (4d; ρu(32ε)]. In the first
case by Lemma 5.2gij(uv) ≥ Ω(d/β) with conditional
probability at leastΩ(1). In the second case

|Bu(d/4)| ≥ εn/32 ≥ 2−10 (32εn) ≥ 2−10 |Bu(f)|,

so by Lemma 5.5g(i, j, 0)(uv) ≥ Ω(d) with conditional
probabilityΩ(1). This proves (4). Since the intervalI is
u-broad, by Lemma 5.4b there areΩ(k) differentj’s such
thatfij(u) ∈ I for somei. Since for differentj’s the events
in (4) are independent, case (b) follows by Chernoff bounds
(Lemma A.1a). 2



5.4 Analysis: proof of Lemma 5.2

In this section we use padded decomposition techniques
from [21, 31] to prove Lemma 5.2. Let us recall the defini-
tions of apadded decompositionand adecomposition bun-
dle [21, 31].

Definition 5.6 Given a finite metric space(V, d), a positive
parameter∆ > 0 andβ : V → R, a ∆-boundedβ-padded
decompositionis a distributionΠ over partitions ofV such
that the following conditions hold.

(a) For each partitionP in the support ofΠ, the diameter
of every cluster inP is at most∆.

(b) If P is sampled fromΠ, then each ballBx( ∆
β(x)) is

partitioned byP with probability at most12 .

Given a functionβ : V × Z → R, a β-padded decom-
position bundleon V is a set of padded decompositions
{η(i) : i ∈ Z} such that eachη(i) is a 2i-boundedβ(·, i)-
padded decomposition ofV .

If a metric admits aβ-padded decomposition bundle
such thatβ is constant, we simply say that this metricad-
mitsβ-padded decompositions.

The randomized construction. Let η be aβ-padded de-
composition bundle. For eachu ∈ Z, let the decomposition
Pu be chosen according to the distributionη(u). We denote
Pu(x) to be the unique cluster inPu containingx.

Moreover, foru ∈ Z, let {σu(C) : C ⊆ V } be i.i.d.
unbiased{0, 1}-random variables. LetT = {0, 1, . . . , 5}.
Let u(x) := dlog2 f(x)e. For eacht ∈ T , we define a
(random) subset

W t := {x ∈ V : σu(x)−t(Pu(x)−t(x)) = 0}, (5)

from which we obtaingt(·) = min{d(·,W t), f(·)}.

Bounding the contraction of the embedding. We fix
verticesx, y ∈ V and letd = d(x, y). Consider the embed-
ded distance between them. The aim is to show that under
some condition, there existst such that|gt(x)−gt(y)| ≥ ρd
happens with constant probability, whereρ depends on the
β-padded decomposition bundle.

Lemma 5.7 Supposef(x) ∈ [d
4 , 4d] andt ∈ T is the inte-

ger such that̂u := u(x) − t satisfies2û ∈ [d/8, d/4). Let
J := {−1, 0, 1} andρ := min{ 1

32β(x,u) : u ∈ û+J}. Then
the event|gt(x) − gt(y)| ≥ ρd happens with probability at
least 1/64.

Proof: Consider the random process that determine the
coordinategt. We like to show that the union of the follow-
ing two disjoint events happens with constant probability,
which implies our goal. There are two cases:

Case 1 The setW t containsx but is disjoint withBy(ρd).

Case 2 The setW t contains no points fromBx(2ρd) but at
least one point fromBy(ρd).

Let us define the following auxiliary events.

• EventE1 occurs whenx is contained inW t.

• EventE2 occurs whenW t is disjoint withBy(ρd).

• EventE3 occurs when for allz ∈ Bx(2ρd) andu ∈
û+ J , x andz are in the same cluster inη(u).

• EventE4 occurs if for allu ∈ û+ J , σu(Pu(x)) = 1.

Observe that the eventE1∩E2 implies the event in Case 1.
Note that given a decompositionη(û), the pointx lies in
a cluster different from those intersectingBy(ρd), because
2û < d

4 < (1 − ρ)d. Hence the eventsE1 andE2 are condi-
tionally independent, givenη(û); this in turn implies that

Pr [E1 ∩ E2| η(û)] = Pr [E1| η(û)] Pr [E2| η(û)]

=
1

2
Pr [E2| η(û)] .

Since this fact holds for all decompositionsη(û), it follows
thatPr[E1 ∩ E2] = 1

2Pr[E2]

Observe that the eventE3 ∩ E4 ∩ E2 implies the event in
Case 2. This follows from the fact that|u(x) − u(z)| ∈ J .
Sincef(x) ≥ d

4 , f is 1-Lipschitz andd(x, z) ≤ 2ρd ≤ d
8 , it

follows f(x) andf(z) are within a multiplicative factor of
2 from each other. Henceu(x) andu(z) differ by at most
one. Again, given the decompositionsη(u), u ∈ û+ J , the
eventE4 is independent of the eventE3 ∩ E2. Hence,

Pr
[

E3 ∩ E4 ∩ E2

]

= Pr [E4] Pr
[

E3 ∩ E2

]

= 1
8Pr

[

E3 ∩ E2

]

.

Finally, it follows that the union of the events in cases 1
and 2 happens with probability at least

1
2Pr[E2] + 1

8Pr[E3 ∩ E2]

≥ 1
8Pr[E3 ∩ E2] +

1
8Pr[E3 ∩ E2] = 1

8Pr[E3].

In order to show thatE3 happens with constant probability,
we make use of the properties ofβ-padded decomposition
bundle. Since for allu ∈ û+ J we have

2ρd ≤ 2/32β(x, u) · d ≤ 2u/β(x, u),

it follows that E3 happens with probability at least 1/8.
Therefore, it follows the desired event happens with proba-
bility at least 1/64. 2



5.5 Analysis: mapsfij and g(i, j, 0)

Here we prove Lemma 5.4 and Lemma 5.5. First we
prove part (a) of Lemma 5.4, which is essentially the upper
bound on the embedded distance for the casep = 1. We
start with a local smoothness property of the setsUij .

Claim 5.8 Fix i, j ∈ [k] and an edgeuv. Condition on the
mapfij , i.e. pause our embedding algorithm right afterfij

is constructed; letr = fij(u). If duv ≤ r/4 then

Pr[v ∈ Uij ] ≤ 1/|Bu(r)| ≤ Pr
[

v ∈ U(i+3,j)

]

.

Proof: Let B = Bu(r). For the RHS inequality, letting
r′ = f(i+3,j)(v) we have

4r′ ≤ fij(v)/2 ≤ (r + duv)/2 ≤ 17r/32,

so duv + 4r′ < r. It follows thatBv(r
′) ⊂ B, so v ∈

U(i+3,j) with probability1/|Bv(4r
′)| ≥ |B|.

For the LHS inequality, lettingr′ = fij(v) we have

4r′ ≥ 4(r − duv) ≥ r + duv,

so B ⊂ Bv(4r′). Thereforev ∈ Uij with probability
1/|Bv(4r

′)| ≤ 1/|B|. 2

Fix a nodeu; for simplicity assumek = 4k0 + 1. Let
Bij = Bu(fij) and letXij be the indicator random variable
for the event that|B(4i+4, j)| ≤ |B(4i, j)|/2. Note that for
a fixed j, the random variablesXij are not independent.
However, we can show that given all previous history, the
ij-th event happens with at least a constant probability.

Claim 5.9 For eachi ∈ [k0], j ∈ [k] andq = 1−e−1/2 we
havePr[Xij = 1 | flj, l < i] ≥ q.

Proof: Indeed, fix ij, let f = f(4i,j)(u) and f ′ =
f(4i+4,j)(u), and letB = Bu(r) be the smallest ball around
u that contains at least|B(4i, j)|/2 nodes. Clearly,Xij = 1
if and only if f ′ ≤ r. By definition of fij ’s we have
f ′ ≤ f/16, so we are done ifr ≥ f/16. Else by Claim 5.8
any nodev ∈ B included into the setU(4i+3,j) with proba-
bility at least1/2|B|, so the probability of including at least
one node inB into this set (in which casef ′ ≤ r) is at least
1 − (1 − 1/2|B|)|B| ≥ q. 2

For a random variableX define thedistribution function
FX(t) = Pr[X < t]. For two random variablesX and
Y , sayY stochastically dominatesX (written asY � X ,
or X � Y ) if FY (t) ≤ FX(t) for all t ∈ R. Note that
if X ≥ Y thenX � Y . Consider a sequence of i.i.d.
Bernoulli random variables{Yi} with success probability
q. By Claim 5.9 and Lemma A.3 (proved in Section A) we
have the following:

t
∑

i=0

Xij �
t

∑

i=0

Yi, for anyt ∈ [k0] and eachj ∈ [k]. (6)

We’ll use (6) to prove the following crucial claim:

Claim 5.10 Fix ε > 0; for eachj let Tj be the smallesti
such thatfij(u) ≤ ρu(ε), or k if no suchi exists. Then
∑

j Tj = O(k log 1
ε ) with high probability.

Proof: Let α = dlog 1
ε e. Let Lj be the smallestt such

that
∑t

i=0Xij ≥ α, or k0 if sucht does not exist; note that
Tj ≤ 4Lj. For the sequence{Yi}, letZr be the number of
trials between the(r − 1)-th success and ther-th success.
LetAj =

∑jα
r=(j−1)α+1 Zr andZ =

∑kα
r=1Zr. By (6) for

any integert ∈ [k0]

Pr[Lj > t] = Pr
[

∑t
i=0Xij < α

]

≤ Pr
[

∑t
i=0 Yi < α

]

= Pr [
∑α

r=1 Zr > t] = Pr[A1 > t] (7)

Since{Aj} are i.i.d., by (7) and Lemma A.2 it follows that
∑

j Lj � ∑

j Aj = Z. Therefore by Lemma A.4

Pr
[

∑

Tj > 8kα/q
]

≤ Pr
[

∑

Lj > 2kα/q
]

≤ Pr[Z > 2kα/q] < (0.782)kα,

which is at most1/n3 when k = O(log n) with large
enough constant. 2

Now we have all tools to prove Lemma 5.4a.

Proof of Lemma 5.4a: UseTj = Tj(u) from Claim 5.10.
Fix someε-long edgeuv and let d = duv. Let tj =
max(Tj(u), Tj(v)). Then since by the 1-Lipschitz property
f ′

ij(uv) ≤ d for all ij; moreover, for anyij such thati ≥ tj
bothfij(u) andfij(v) are at mostd/2i−tj . Thenf ′

ij(uv)
is at most twice that much (sincef ′

ij ≤ fij), so taking the
sum of the geometric series we see that

∑

ij

f ′
ij(uv) ≤

∑

j

(

dtj +
∑

i≥tj
d/2i−tj

)

≤ ∑

j O(dtj) = O
(

kd log 1
ε

)

,

where the last inequality follows by Claim 5.10. 2

To prove part (b) Lemma 5.4, let us recall the definition
of a u-broad interval: for a nodeu, an interval[a, b] is u-
broad if a or b is equal toduv for somev, a ≤ b/4 and
|Bu(a)| ≤ 1

32 |Bu(b)|.

Proof of Lemma 5.4b: It suffices to consider theu-broad
intervals[a, b] such that one of the endpoints is equal toduv

for somev, and the other is the largestb or the smallesta,
respectively, such that the interval isu-broad. Call these
intervalsu-interesting; note that there are at most2n such
intervals for eachu.



Fix nodeu and au-broad intervalI = [a, b], fix j and
let ri = fij(u). It suffices to show that with constant prob-
ability someri lands inI. Indeed, then we can use Cher-
noff bounds (Lemma A.1a), and then we can take the Union
Bound over all nodesu and allu-interesting intervals.

Denote byEi the event thatri > b andri+1 < a; note
that these events are disjoint. Since someri lands inI if
and only if none of theEi’s happen, we need to bound the
probability of∪Ei away from 1.

For each integerl ≥ 0 define the interval

Il =
[

ρu

(

ε 2l
)

, ρu

(

ε 2l+1
))

, whereεn = |Bu(b)|.

For eachα ∈ {0, 1, 2, 3} let N(l,α) be the number ofi’s
such thatr4i+α ∈ Il. We claim thatE[N(l,α)] ≤ 1/q.

Consider the caseα = 0; other cases are similar. Let
Nl = N(l,α) and supposeNl ≥ 1. Let i0 be the smallesti
such thatr4i ≤ Il. ThenNl ≥ t impliesXij = 0 for each
i ∈ [i0; i0 + t− 2]. Recall that the construction of the maps
fij starts withf(0,j). Given the specific mapf = f(i0,j),
the construction of the mapsfij , i > i0 is equivalent to a
similarly defined construction that starts withf(i0,j) = f .
Therefore, by (6) (applied to this modified construction) we
have

Pr[Nl ≥ t] ≤ Pr
[

∑t−2
β=0X(i0+β, j) = 0

]

≤ Pr
[

∑t−2
β=0 Yβ = 0

]

= (1 − q)t−1;

E[Nl] =
∑∞

t=1 Pr [Nl ≥ t] ≤
∑∞

t=1(1 − q)t−1 = 1
q ,

claim proved. For simplicity assumek = 4k0+1; it follows
that

∑k−1
i=0 Pr[ri ∈ Il] =

∑3
α=0

∑k0−1
i=0 Pr[r4i+α ∈ Il]

=
∑3

α=0 E
[

N(l,α)

]

≤ 4/q (8)

By Claim 5.8 if ri ∈ Il thenri+1 ≤ a with conditional
probability at most|Bu(a)|/|Bu(ru)| ≤ 2−l/32. There-
fore,Pr[Ei | ri ∈ Il] ≤ 2−l/32. By (8) it follows that

Pr[∪Ei] =
∑k−1

i=0 Pr[Ei] =
∑k−1

i=0

∑∞
l=0 Pr [ri ∈ Il andEi]

≤ ∑k−1
i=0

∑∞
l=0 Pr[ri ∈ Il] × 2−l/32

= 1
32

∑∞
l=0 2−l

∑k−1
i=0 Pr[ri ∈ Il]

≤ 1
8q

∑∞
l=0 2−l = 1

4q < 1,

so someri lands inI with at least a constant probability.2

It remains to prove Lemma 5.5 about the mapsg(i, j, 0).

Proof of Lemma 5.5: Let’s pause our embedding al-
gorithm right after the mapfij is chosen, and consider

the probability space induced by the forthcoming random
choices. LetXw = fij(w). First we claim that

Pr
[

g(i, j, 0)(u) ≤ r | r ≤ X/8
]

≥ Ω(βr), (9)

whereβr = |Bu(r)|/|Bu(X)|. Indeed, supposer ≤ X/8,
letB = Bu(r) and consider anyw ∈ B. Then by (12):

Pr[w ∈ Wij ] = 1/|Bw(Xw/2)|
≥ 1/|Bu(X)| ≥ βr|B|

Pr
[

g(i, j, 0)(u) ≤ r
]

= Pr[Wij hitsB]

≥ 1 − (1 − βr|B|)|B|

≥ 1 − e−βr ≥ Ω(βr),

proving (9). Now letB = Bv(Xv/8); then by (12) any
w ∈ B is included into the setWij with probability at most
1/B, so

Pr
[

g(i, j, 0)(v) ≥ Xv/8
]

= Pr[Wij missesB]

≥ (1 − 1/|B|)|B| ≥ 1/4. (10)

Finally, let’s combine (9) and (10) to prove the claim. Let
r = d/4 and supposeX ≥ 4d. SinceXv ≥ X − duv ≥ 3d,
by (10) eventg(i, j, 0)(v) ≥ 3d/8 happens with probability
at least1/4. This event and the one in (9) are indepen-
dent since they depend only on what happens in the balls
Bu(d/4) andBv(3d/8), respectively, which are disjoint.
Therefore with probability at leastΩ(βr) both events hap-
pen, in which caseg(i,j,0)(uv) ≥ d/8. 2

6 Lower Bounds on Embeddings with Slack

In this section, we describe a general technique to derive
lower bounds forε-slack embeddings from lower bounds
for ordinary embeddings. The bounds obtained by this tech-
nique are given in Corollary 6.5, the most notable of which
is the lower bound ofΩ

(

log(1
ε )/p

)

for embedding any met-
ric into `p.

We make use of the following definitions from [10]

Definition 6.1 LetH be a metric space, assume we have a
collection of disjoint metric spacesCx associated with the
elementsx ofH , and letC = {Cx}x∈H . Theβ-composition
of H andC, for β ≥ 1

2 , denotedĤ = Cβ [H ], is a metric

space on the disjoint unioṅ
⋃

xCx. Distances inC are de-
fined as follows: letx, y ∈ H andu ∈ Cx, v ∈ Cy, then:

dĤ(u, v) =

{

γ−1dCx
(u, v) x = y

βdH(x, y) x 6= y

whereγ = maxx∈H diam(Cx)
minx,y∈H dH(x,y) , guarantees that̂H is indeed a

metric space.



Definition 6.2 Given a familyH of metric spaces, consider
compβ(H), its closure underβ′-composition forβ′ ≥ β.
H is called nearly closed under compositionif for every
δ > 0 there exists someβ ≥ 1/2, such that for everyM ∈
compβ(H) there isM̃ ∈ H and an embedding ofM into
M̃ with distortion at most1 + δ.

Remark Among the families nearly closed under com-
position we can find the following [10]: Trees, planar
graphs, minor-excluded graphs, normed spaces. In the spe-
cial case that each of the composed metricsCx is of equal
size, also doubling metrics are closed under composition.

Theorem 6.3 Let X be a family of target metric spaces.
SupposeH is a family of metrics nearly closed under com-
position such that for eachk,Hk ∈ H hask points and any
embedding ofHk intoX has distortion at leastD(k). Then
for arbitrarily small ε > 0, there existsH ′ ∈ H such that
the embedding ofH ′ into X hasε-slack distortion at least
Ω(D( 1

3
√

ε
)).

Remark We can takeX to be a family of metrics in
`p with limited dimension, thus obtainingε-slack lower
bounds on the dimension in terms ofε as well.
Note that this result can be used to translate, e.g., the
Brinkman and Charikar [14] lower bound for dimension-
ality reduction in`1 into the realm ofε-slack as well.

Let us now prove Theorem 6.3, first we show how to con-
struct a family of metric spaces with the desired properties.
SupposeH ∈ H is a metric such that|H | = k. Moreover,
H embeds intoX with distortion at leastD. For anyn that
is a multiple of3k, we can define a metriĉH with n points
in the following way.

Let C = {Cx}x∈H where eachCx ∈ H is in sizen
k , and

let Ĥ = Cβ [H ] be itsβ-composition forβ ≥ D satisfying
thatĤ can be embedded intoH with distortion 2.

We now proceed to the proof; indeed, the following
lemma implies Theorem 6.3.

Lemma 6.4 LetĤ be the metric defined as above. Letε :=
1/9k2. Then,Ĥ embeds intoX with ε-slack distortion at
leastD/4.

Remark. If we wanted to obtain lower bounds forε-
uniform slackembeddings instead of just forε-slack embed-
dings, we would setε = 1/3k, since the number of ignored
edges incident on any node is at mostεn by the very defini-
tion; the rest of the proof remains essentially unchanged.
Proof: Suppose, on the contrary,ϕ is an embedding of̂H
intoX with ε-slack distortionR < D/4 that ignores the set
E of edges. Then consider a subsetT ⊆ Ĥ containing all
v ∈ Ĥ such thatv intersects at most

√
εn edges inE, by a

simple counting argument|T | ≥ (1 −√
ε)n.

For eachx ∈ H , the setCx containsn
k = 3

√
εn points

and hence there exists some point inT ∩Cx, which we call
vx.

Let x, y ∈ H . Sincevx andvy are inT , each of them
has at most

√
εn neighbors. Observing that|Cy| = 3

√
εn,

it follows that there exists a pointt ∈ Cy such that neither
{vx, t} nor {vy, t} is contained inE. We can assume that
for {u, v} 6∈ E, dĤ(u, v) ≤ ||ϕ(u) − ϕ(v)|| ≤ RdĤ(u, v).

Hence, it follows that

‖ϕ(vx) − ϕ(vy)‖ ≤‖ϕ(vx) − ϕ(t)‖ + ‖ϕ(t) − ϕ(vy)‖
≤R(dĤ(vx, t) + dĤ(t, vy))

=R

(

βdH(x, y) +
dCy

(t, vy)

γ

)

≤R
(

βdH(x, y) + min
u,v∈H

dH(u, v)

)

≤2RβdH(x, y) = 2RdĤ(vx, vy)

since
dCy (t,vy)

γ ≤ minu,v∈H dH(u, v). Similarly,

‖ϕ(vx) − ϕ(vy)‖ ≥‖ϕ(vx) − ϕ(t)‖ − ‖ϕ(t) − ϕ(vy)‖
≥dĤ(vx, t) −RdĤ(t, vy)

=βdH(x, y) −R
dCy

(t, vy)

γ

≥βdH(x, y) − β

4
min

u,v∈H
dH(u, v)

≥β
2
dH(x, y) =

1

2
dĤ(vx, vy)

usingR < D/4 ≤ β/4. Notice that the metric induced on
the set{vx}x∈H is isomorphic (up to scaling) toH , there-
foreϕ embedsH into X with distortion at most4R < D,
and we obtain the desired contradiction. 2

To finish the proof of Theorem 6.3 it remains to notice
thatĤ 2-embeds into someH ′ ∈ H, thereforeH ′ embeds
intoX with ε-slack distortion at leastD/8 = Ω(D( 1

3
√

ε
)).

Contracting Embeddings with Slack.Let us mention that
allowing arbitraryexpansionsis crucial to our results: if we
insisted thatnone of the pairwise distances should increase,
the lower bound ofΩ( 1

p logn) distortion [34] for embed-
dings into`p holds even withε-slack; the simple details are
deferred to the full version of this paper.

Corollary 6.5 For any1/n < ε < 1

1. Ω

(

log( 1

ε )
p

)

distortion forε-slack embedding intòp.

2. Any ε-slack embedding with distortionα into `p re-
quires dimensionΩ(logα

1
ε ).

3. Ω( 1√
ε
) distortion forε-slack embedding into trees.



4. Ω(1
ε ) distortion for uniformε-slack embedding into

trees.

5. Ω
(

log
(

1
ε

))

distortion in randomizedε-slack embed-
ding into distribution of trees.

6. Ω(
√

log(1/ε)) distortion for ε-slack embedding of
doubling metrics intol2.

7. Ω(
√

log(1/ε)) distortion for ε-slack embedding ofl1
into l2.

8. Ω(
√

log log(1/ε)) distortion forε-slack embedding of
trees intol2.

This follows from known lower bounds:(1) from [34], (2)
from equilateral dimension considerations,(3) and(4) from
[39], (5) from [5], (6) from [21], (7) from [16] and(8) from
[12].

7 Extensions and Further Directions

The main question left open by this work is whether
every metric admits a low-dimensional embedding into
`p, p ≥ 1 with gracefully degrading distortionD(ε).
This has been answered affirmatively in Abraham, Bartal
and Neiman [1], withD(ε) = O(log 1

ε ) and dimension
O(log n), using a new type of more advanced metric de-
compositions.

For specific families of metrics it is still interesting to
provide embeddings intòp with gracefully degrading dis-
tortion D(ε) = o(log 1

ε ); recall that Theorem 5.1 gives
such embedding for decomposable metrics. In particular,
we would like to ask this question for embedding arbitrary
subsets of̀1 into `2.
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[34] J. Matoušek. On embedding expanders intolp spaces.Israel
J. Math., 102, 1997.

[35] M. Mendel and S. Har-Peled. Fast construction of nets in
low dimensional metrics, and their applications. In21st
SoCG, 2005.

[36] T. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. InIEEE INFOCOM,
2002.

[37] T. Ng and H. Zhang. A network positioning system for the
Internet. InUSENIX, 2004.

[38] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment.Theory Comput. Syst., 32(3), 1999.

[39] Y. Rabinovich and R. Raz. Lower bounds on the distortionof
embedding finite metric spaces in graphs.Discrete Comput.
Geom., 19(1), 1998.

[40] S. B. Rao. Small distortion and volume preserving embed-
dings for planar and Euclidean metrics. In15th SoCG, 1999.

[41] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in euclidean space. InIEEE INFOCOM,
2003.

[42] A. Slivkins. Distributed approaches to triangulationand em-
bedding. In16th SODA, 2005.

[43] K. Talwar. Bypassing the embedding: Algorithms for low-
dimensional metrics. In36th STOC, 2004.

A Tools from Probability Theory

Here we state some tools from Probability Theory that
we used in Section 5. We prove some of these results in the
full version.

Lemma A.1 (Chernoff Bounds) Consider the sumX ofn
independent random variables on[0,∆].

(a) for anyµ ≤ E(X) and anyε ∈ (0, 1) we have
Pr[X < (1 − ε)µ] ≤ exp(−ε2µ/2∆).

(b) for anyµ ≥ E(X) and anyβ ≥ 1 we have

Pr[X > βµ] ≤
[

1
e (e/β)β

]µ/∆
.

Lemma A.2 Consider two sequences of independent ran-
dom variables,{Xi} and{Yi}, such that allXi andYi have
finite domains andXi � Yi for eachi. Then for eachk we
have

∑k
i=1Xi �

∑k
i=1 Yi.

Lemma A.3 Consider two sequences of Bernoulli random
variables,{Xi} and{Yi}, such that variables{Yi} are in-
dependent andPr[Xi = 1 | Xj , j < i] ≥ Pr[Yi = 1] for
eachi. Then

∑k
i=1Xi �

∑k
i=1 Yi for eachk.

Lemma A.4 Consider a sequence of i.i.d. Bernoulli ran-
dom variables{Yi} with success probabilityq. LetZr be
the number of trials between the(r − 1)-th success and the

r-th success. ThenPr
[

∑k
r=1Zr > 2k/q

]

≤ (0.782)k.

B Proofs from Section 3

Proof of Theorem 3.1(b): The idea of the proof is to
choose a constant set of beacons and embed them, then for
all the other points, choose the “best” beaconin each coor-
dinate, and then add some auxiliary coordinates. Formally,
let τ = d100 logne and denoteT = {t ∈ N | 1 ≤ t ≤ τ}.
Let m = d 1

ε e. For eacht ∈ T , letBt be a uniformly dis-
tributed random set ofm points inX .

For eacht ∈ T let ~g(t) = (η
(t)
1 g

(t)
1 , . . . , η

(t)
β(m)g

(t)
β(m)) be

a strongly non-expansive embedding fromBt into `p with
distortionα(m) and dimensionβ(m). Let I = {i ∈ N |
1 ≤ i ≤ β(m)}. When clear from the context we omit
the~g(t) superscript and simply write~g. Again, let{σt(u) |
u ∈ X, t ∈ T } be i.i.d symmetric{0, 1}-valued Bernoulli
random variables. Define the following functions:

ht(u) = σt(u)ρu(ε)

for all u ∈ X andt ∈ T .

f t
i (u) = η

(t)
i min

b∈Bt

{d(u, b) + g
(t)
i (b)}

for all u ∈ X, i ∈ I, t ∈ T.

Let f t = (f t
1, . . . , f

t
β(m)), f = (f1, . . . , f τ ), andh =

(h1, . . . , hτ ), the final embedding will beϕ = f ⊕ h. Let
D = {(u, v) | d(u, v) ≤ min{ρu(ε), ρv(ε)}} and by defini-
tionG =

(

X
2

)

\D.
We begin by an upper bound for all(u, v) ∈ G. Fix

t ∈ T, i ∈ I, and w.l.o.g. assumef t
i (u) ≥ f t

i (v) and
let bti ∈ Bt be the beacon that minimizesf t

i (v). Hence,
|minb∈Bt

{d(u, b)+ gi(b)}−minb∈Bt
{d(v, b) + gi(b)}| ≤

d(u, bti) + gi(b
t
i) − d(v, bti) − gi(b

t
i) ≤ d(u, v).

Also notice thatmax{ρu(ε), ρv(ε)} ≤ 2dX(u, v) since
B(u, ρv(ε) + dX(u, v)) contains at leastεn points.

‖ϕ(u) − ϕ(v)‖p
p = ‖f(u) − f(v)‖p

p + ‖h(u) − h(v)‖p
p

≤ ∑

t∈T

∑

i∈I |f t
i (u) − f t

i (v)|p +
∑

t∈T max{ρu(ε), ρv(ε)}p

≤ ∑

t∈T

∑

i∈I |η
(t)
i

(

minb∈Bt
{d(u, b) + gi(b)}

− min
b∈Bt

{d(v, b) + gi(b)}
)

|p + τ(2d(u, v))p

≤
∑

t∈T

∑

i∈I |η
(t)
i d(u, v)|p + τ(2d(u, v))p



≤ 3τd(u, v)p.

(Recall that
∑

i∈I η
p
i = 1)

We now partitionG into two setsG1 = {(u, v) ∈ G |
max {ρu(ε), ρv(ε)} ≥ d(u,v)

16α(m)} andG2 = G \G1. For any
(u, v) ∈ G1, t ∈ T , assume w.l.o.g thatρε̂(u) ≥ ρε̂(v), and
let Et(u, v) be the event

Et(u, v) = {ht(u) = ρu(ε) ∧ ht(v) = 0}

ThenPr [Et(u, v)] = 1
4 . LetA(u, v) =

∑

t∈T 1Et(u,v), then
E[A(u, v)] = τ/4, using Chernoff’s bound we can bound
the probability thatA(u, v) is smaller than half it’s expecta-
tion:

Pr [A(u, v) ≤ τ/8] ≤ e−τ/50 ≤ 1/n2

Therefore with probability greater than1/2, for any
(u, v) ∈ G1, A(u, v) ≥ τ/8. In such a case we can lower
bound the contribution for any(u, v) ∈ G1 :

‖ϕ(u) − ϕ(v)‖p
p ≥ ∑

t∈T |ht(u) − ht(v)|p

≥ (τ/8) (ρε̂(u))
p ≥ τ

8

(

d(u,v)
16α(m)

)p

.

For any(u, v) ∈ G2, t ∈ T let bu, bv ∈ Bt the nearest
beacons tou, v respectively. Let

Ft(u, v) = {bu ∈ B
(

u, ρu(ε)
)

∧ bv ∈ B
(

v, ρv(ε)
)

}

Then Pr [Ft(u, v)] ≥ 1 − 2/e > 1/4, since for any
u ∈ X , Pr[d(u,Bt) > ρu(ε)] = (1 − ε̂)1/ε ≤ e−1. Let
h(u, v) =

∑

t∈T 1Ft(u,v), thenE[h(u, v)] ≥ τ/4, using
Chernoff’s bound we can bound the probability thath(u, v)
is smaller than half its expectation:

Pr [h(u, v) ≤ τ/8] ≤ e−τ/50 ≤ 1/n2

Therefore with probability greater than1/2 for any(u, v) ∈
G2, h(u, v) ≥ τ/8.

For anyt ∈ T such thatFt(u, v) happened we have

max
{

d(u, bu), d(v, bv)
}

≤ d(u,v)
16α(m)

In such a case letbi ∈ Bt be the beacon minimizingf t
i (u);

since for everyi ∈ I, gi(bu) − gi(bi) ≤ d(bu, bi) we get

f t
i (u) = d(u, bi) + gi(bi)

≥ d(u, bi) + gi(bu) − d(bu, bi)

≥ gi(bu) − d(u, bu);

moreover

f t
i (v) ≤ d(v, bv) + gi(bv)

Claim B.1 Let J = {i ∈ I | |gi(bu) − gi(bv)| ≥ d(u,v)
4α(m)}.

Then
∑

i∈J η
p
i |gi(bu) − gi(bv)|p ≥

[ d(u,v)
4α(m)

]p
.

Proof: Assume by contradiction that it is not the case, then

‖~g(bu) − ~g(bv)‖p
p =

∑

i∈J η
p
i |gi(bu) − gi(bv)|p

+
∑

i/∈J η
p
i |gi(bu) − gi(bv)|p

<
[ d(u,v)
4α(m)

]p
+

∑

i/∈J η
p
i

[ d(u,v)
4α(m)

]p

≤ 2
[ d(u,v)
4α(m)

]p
<

[ d(bu,bv)
α(m)

]p

The last inequality follows sinced(bu, bv) ≥ d(u, v) −
2 d(u,v)

16α(m) ≥ 7
8d(u, v). This contradicts the fact that~g has

distortionα(m) onBt. 2

Finally, we can now bound the distortion of the mapf t.

‖f t(u) − f t(v)‖p
p =

∑

i∈I η
p
i |f t

i (u) − f t
i (v)|p

≥ ∑

i∈J η
p
i |gi(bu) − d(u, bu) − d(v, bv) − gi(bv)|p

≥ ∑

i∈J η
p
i

∣

∣ |gi(bu) − gi(bv)|
−2 max{d(u, bu), d(v, bv)}

∣

∣

p

≥
∑

i∈J η
p
i |

∣

∣gi(bu) − gi(bv)
∣

∣ − 2 1
4

∣

∣gi(bu) − gi(bv)
∣

∣|p

≥
(

d(u,v)
8α(m)

)p

SinceFt(u, v) happened for at leastτ/8 indexes fromT we
have the lower bound

‖ϕ(u) − ϕ(v)‖p
p ≥ ∑

t∈T ‖f t(u) − f t(v)‖p
p

≥ τ/8
(

d(u,v)
8α(m)

)p

2

C Bourgain-style proof of Lemma 5.2
for the special case of doubling metrics.

In this section we use the ideas of [11, 33] to derive an
alternative proof of Lemma 5.2 for the important special
case whenβ is the doubling dimension.6 Let us note that
in the well-known embedding algorithms of Bourgain [11]
and Linial et al. [33] any two nodes are sampled with the
same probability, i.e. with respect to the counting measure.
Here use a non-trivial extension of the Bourgain’s technique
where we sample with respect to a doubling measure trans-
formed with respect to a given 1-Lipschitz map.

We state our result as follows:

Lemma C.1 Consider a finite metric(V, d) equipped with
a non-degenerate measureµ and a 1-Lipschitz coordinate
mapf ; write fu = f(u). For every nodeu let

βµ(u) = 2µ[Bu(fu) ] / µ[Bu(fu/16) ].

Then for anyk, t ∈ N there is a randomized embeddingg
into `p, p ≥ 1 with dimensionkt so that:

6In this proof the target dimension becomest = O(β log β), which
results in target dimensionO(log2 n)(β log β) in Theorem 5.1.



(a) each coordinate map ofg is 1-Lipschitz and upper-
bounded byf ; and

(b) ‖g(u)− g(v)‖p ≥ Ω(duv/t)(kt)
1/p with failure prob-

ability at mostt/2Ω(k) for any edgeuv such that

f(u)/duv ∈ [1/4; 4] and max
w∈{u,v}

βµ(w) ≤ 2t.

(11)

To prove Lemma 5.2 for a metric of doubling dimension
β, recall that for any such metric there exists a2β-doubling
measureµ. Plug this measure in Lemma C.1, witht = 4β+
1 andk = O(log β); note thatβµ(u) ≤ 2t for every node
u. We get the embedding iǹp with O(β log β) dimensions
that satisfies the conditions in Lemma 5.2.

We’ll need the following simple fact:

If duv ≤ f(u)/8 for some edgeuv, then

Bu(f(u)/8) ⊂ Bv(f(v)/2) ⊂ Bu(f(u)) (12)

Indeed, lettingfu = f(u) the first inclusion follows since
fv/2 ≥ (fu − duv)/2 ≥ fu/8 + duv, and the second one
holds sinceduv + fv/2 ≤ duv + (fu + duv)/2 < fu.

Proof of Lemma C.1: Define the transformation ofµ
with respect tof asµf (u) = µ(u)/2µ(B), whereB =
Bu(fu/2). Fix k = c logn wherec is an absolute con-
stants to be specified later. The coordinates are indexed
by ij, where i ∈ [t] and j ∈ [k]. For each(i, j)-
pair construct a random setUij by selectingd2iµf (V )e
nodes independently according to the probability distribu-
tion µf (·)/µf (V ). Let us define theij-th coordinate ofu
asgij(u) = min (fu, d(u, Uij)).

Note that each mapgij is 1-Lipschitz as the minimum
of two 1-Lipschitz maps. Therefore part (a) holds trivially.
The hard part is part (b). Fix an edgeuv; let d = duv.
For any nodew let αw(ε) be the smallest radiusr such that
µf [Bw(r)] ≥ ε, and let

ρi = max[ψu(2−i), ψv(2−i)], where

ψw(ε) = min[αw(ε), d/2, fw].

Claim C.2 For eachi ≥ 1 and eachj ∈ [k] with probabil-
ity Ω(1) we havegij(uv) := |gij(u)− gij(v)| ≥ ρi − ρi+1.

Then by Chernoff bounds (Lemma A.1(a)) w.h.p. we have

∑

ij

gij(uv) ≥
t

∑

i=1

Ω(k)(ρi−ρi+1) = Ω(k)(ρ1−ρt). (13)

Proof of Claim C.2: Fix i ≥ 1 and j, and note that if
ρi+1 = d/2 thenρi = d/2, in which case the claim is triv-
ial. So let’s assumeρi+1 < d/2 and without loss of gener-
ality supposeψu(2−i) ≥ ψv(2−i). Consider the open ball
B of radiusρi aroundu. Sinceρi = ψu(2−i) ≤ αu(2−i),
it follows thatµf (B) ≤ 2−i. Now there are two cases:

• If ρi+1 = fv then the desired eventgij(uv) ≥ ρi −
ρi+1 happens wheneverUij missesB, which happens
with at least a constant probability sinceµf (B) ≤ 2−i.

• If ρi+1 < fv then the desired event happens when-
everUij missesB and hitsB′ = Bv(ρi+1). This hap-
pens with at least a constant probability by Claim C.4
sinceρi+1 ≥ ψv(1/2i+1) ≥ αv(1/2i+1) and there-
foreµf (B′) ≥ 1/2i+1, and the two ballsB andB′ are
disjoint.

This completes the proof of the claim. 2

Claim C.3 For any nodew we haveαw(1
2 ) ≥ fw/8 and

αw(1/βµ(w)) ≤ fw/16.

Proof: LetB = Bw(fw/8). By (12) for anyw′ ∈ B

µ(w) / 2µ[Bw(fw) ] ≤ µf (w′) ≤ µ(w)/2µ(B),

soµf (B) ≤ 1
2 andµf [Bw(fw/16) ] ≥ 1/βµ(w). 2

Suppose that (11) holds; letx = max(fu, fv). Then
using Claim C.3 and the definitions ofρi andψw we have:

ρ1 ≥ max
w∈{u,v}

min(fw/8, d/2) ≥ min(x/8, d/2),

ρt ≤ max
w∈{u,v}

αw(2−t) ≤ max
w∈{u,v}

αw (1/βµ(w))

≤ max
w∈{u,v}

fw/16 ≤ x/16.

By (13) forp = 1 it remains to show thatρ1 − ρt ≥ Ω(d).
There are two cases:

• if fv ≤ 4d thenρ1 ≥ x/8, soρ1−ρt ≥ x/16 ≥ Ω(d).

• if fv > 4d thenρ1 ≥ d/2 and (sincef is 1-Lipschitz)

ρt ≤ fv/16 ≤ (fu + d)/16 ≤ 5d/16,

soρ1 − ρt ≥ 3d/16.

This completes the proof for the casep = 1. To extend it to
p > 1, note that the embeddeduv-distance is

(

∑

ij gij(uv)
p
)1/p

= (kt)1/p
(

1
kt

∑

ij gij(uv)
p
)1/p

≥ (kt)1/p
(

1
kt

∑

ij gij(uv)
)

≥ Ω(d/t) (kt)1/p

This completes the proof of the Lemma. 2

In the above proof we used the following claim which
is implicit in [33] and also stated in [29]; for the sake of
completeness, we prove this claim in the full version.

Claim C.4 Let µ be a probability measure on a finite set
V . Consider disjoint eventsE,E′ ⊂ V such thatµ(E) ≥
q andµ(E′) ≤ 2q < 1/2 for some numberq > 0. Let
S be a set ofd1/qe points sampled independently fromV
according toµ. ThenS hitsE and missesE′ with at least
a constant probability.


