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Abstract distortion in terms of certain fundamental properties @f th
metric (X, d).

The general case is well-understood. Bourgain [4]
showed that every.-point metric embeds intd., with
O(logn) distortion for any fixedp; it is shown in [26] that
then defined adim(X) = log, A\. A metric (or sequence of this bound is tight, for alp < 2, for the shortest path met-
metrics) is callecddoublingprecisely when its doubling di-  ric on constant-degree expander graphs. This was later ex-
mension is bounded. This is a robust class of metric spacedended in [27], showing a tight upper bound@qlﬂi—”) for
which contains many families of metrics that occur in ap- anyL, space.
plied settings. In light of this, a significant amount of effort has been

We give tight bounds for embedding doubling metrics made to understand the distortion achievable for restricte
into (low-dimensional) normed spaces. We consider bothclasses of metric spaces. So far, the restrictions consid-
general doubling metrics, as well as more restricted fami- ered have been mostly topological. Fbr embeddings,
lies such as those arising from trees, from graphs excludingthis is due partly to the intimate connection with multicom-
a fixed minor, and from snowflaked metrics. Our techniquesmodity flows and approximations for the sparsest cut, see
include decomposition theorems for doubling metrics, and e.g. [26, 3, 13, 33]. It is not too difficult to see that ev-
an analysis of a fractal in the plane due to Laakso [21]. Fi- ery tree metric embeds isometrically infa. MatouSek
nally, we discuss some applications and point out a central [28] showed that every tree embeds itip with distortion
open question regarding dimensionality reductiorLin O((loglogn)™™(:3)) and that this bound is tight for all
p > 1. Rao [34] showed that every planar graph embeds
into L, with distortion O(y/logn), and this in fact holds
for any family which excludes a fixed minor. A matching
lower bound, yielded by a family of series-parallel metrics
A basic goal in the study of finite metric spaces is to approx- was given in [30] (see also [20, 21, 22]). Gupta et al. [13]
imate some class of metric spaces by another more simpleshow thatk,-free (series-parallel) anHl, ;-free (outerpla-
or tractable class. Apart from being beautiful objects of nar) graphs embed intb, with constant distortion.
study lying at the intersection of analysis, combinatorics ~ Here, we consider restrictions not on the topology of the
and geometry, the ideas and techniques generated in thignetric, but on its geometry. More specifically, we exam-
field have led to a number of powerful algorithmic applica- ine how the “volume growth” of a metric affects its embed-
tions (see e.g. [15, 25, 29]). dability into L, spaces. The notion of growth that we use is

We consider embeddings of finite metric spaces ifo  well-studied, and is very similar to a notion of Assouad [2],
spaces. Given a metricX, d), the goal is to find a map  see also [14]. Our definition is technically slightly diféert
[ X = Lysuchthat| f(z)— f(y)||, is close tad(z, y) for from Assouad’s, but the flavor is left unaltered; in particu-
all z,y € X. The worst-case factor by which distances are |ar, the notion of bounded growth is equivalent under either
expanded or contracted is called ttlistortion of the map framework.

f. In general, our goal is to find bounds on the achievable  For a metric(X, d), let thedoubling constanbe be the
smallest value\ such that every ball id{ can be covered

The doubling constanbf a metric spacd X, d) is the
smallest valué such that every ball ik’ can be covered by
A balls of half the radius. Thdoubling dimensiorof X is
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by A balls of half the radius, and define tieubling di-
mensionof X asdim(X) = log, A. It can be shown, for
instance, that for every fixeg, the doubling dimension of
d-dimensiona¥,, space is roughly, and clearly for a finite
metricdim(X) < log|X|. A metric (or sequence of met-
rics) is calleddoublingprecisely when its doubling dimen-



sion is bounded. We discuss this notion more thoroughly in algorithmic using standard techniques.

Section 1.3. . L . ) . . In Section 4, we devise a number of embeddings, some
Not only are doubling metrics interesting objects intheir ¢ \yhich rely heavily on the clustering of Section 3. First,
own right, but they are also of practical concern. Growth we give a Bourgain-style embedding which shows that ev-

restrictions are very natural and are thought to occur in ery general doubling metricY, d) embeds intd,, with dis-
real-world phenomena such as peer-to-peer networks (Se?ortion O((log n)min(é%)) for7anyp e [Loo) ﬁnstead y

€.g. [31]) and dqta analyS'S (e.g.., when the input data re forming coordinates by taking the distance to arbitrary-sub
sides on a low-dimensional manifold, cf. [36]). In fact, : X .
: . : g sets ofX, we instead use only subsets of appropriately sized
various algorithms can be tailored to run efficiently on cer- . : o .
. . . netsin X (see Section 1.2 for the definition of a net). Using
tain classes of growth-restricted metrics, as demonstrate _, - ) . S
this embedding, along with another application of the local

in [9, 32, 17, 19]. The metrics considered there are either . :
. : ; lemma, we show that every doubling metric can be embed-
equivalent to or a subclass of those metrics which are dou- _ i 7 Ollog n) )
ded with1 + € distortion intol, *®™’. See Section 6 for an

bling; see Section 1.3. o ; :
application to distance labeling schemes.

1.1 Results and techniques Although this Bourgain-style embedding is fairly simple,
and its distortion degrades badly (exponentially) withn (X).
Based on the clustering of Section 3, and an embedding
technique of Rao [34], we show that everypoint metric

(X, d) embeds intd,, with distortion at most

We are concerned with the broad roles of “volume”
“structure” in determining the embeddability of a met-

ric. For instance, in Section 2, we show that every dou-
bling tree metric admits a constant distortion embedding
into 6,?(1) (i.e., constant dimensiondl, space) for any

p € [1,00]. This exhibits a very natural class of met- 0 (dim(X) . (logn)min(%,%)) _

ric spaces which embed int with O(1) distortion, but

not isometrically. As discussed before, some tree metrics

requireQ(v/Toglogn) distortion to embed intd, [5, 28], This provides a smooth upper bound on the distortion of
while we prove that some doubling metrics require distor- general metrics in terms of their dimension. In the case
tion Q(y/logn) (see Section 5). Thus it is precisely the of Euclidean embeddings, for instance, it beats Bourgain’s
synthesis of these two properties that yields an enormousgeneral upper bound as longdisi (X) = o(v/logn).

Improvement in empeddab|l|ty. ) In[2], itis proved thatif( X, d) is a doubling metric, then

_ That these metrics can be embedded using 6Ml¥) tor any0 < o < 1, (X, d*) embeds inta% with distortion
dlme_nspns is p_erhaps even more surprising (see the dISD, wherek and D depend only on the doubling dimension
cussion in Section 2), and as we will soon see, proves as x Here, (X, d*) is the metric with all distances raised
special case of a conjecture of Assouad. Our embedding, the power (this metric is called anowflakedrersion of
makes use of a novel partitioning algorithm for doubling X). Unfortunately, the dependencelond D on dim(X)
trees. The partition is dgscribgd conveniently by a cog)rin is exponential. In Section 4, using a slight twist on the
of the edges. Our algorithm either finds a good coloring or 5,6ye embedding technique, we give an algorithmic version
a submetric which is a counterexample to the doubling as-4¢ Assouad’s proof, and drastically improve the dependence
sumption. To achieve an embedding ialol) dimensions, ¢ ;- andp to near-linear. Assouad also conjectured that the
we must reuse colors. We do this by defining a notion of ad- 5 gve result holds even when = 1. Although Semmes

jacency between paths, and arguing that the resulting graph3s) gisproved this conjecture, we have shown that it holds
(whose vertices are paths) has bounded chromatic ”Umberwheneven(X d) is a doubling tree metric.

In Section 3, we construct low-diameter decompositions . . ) .
for general metrics whose parameters depend smoothly on !N Section 5, we exhibit a family of series-parallel dou-
the doubling dimension. Such decompositions are the mainP!ing metrics which require8)(y/logn) distortion to em-
tool in many embedding results, as well as a number of peq |ntofz,_wh|ch.sh.ows that the upper bound_ of Section 4
other applications. To construct these decompositions, we!S tight. This family is based on the construction of.a frac-
adapt a probabilistic technique of [7]. For applications of @l dué to Laakso [21]. (It was brought to our attention that
the decomposition later in the paper, it is important that th @ Similar analysis was obtained independently in [22], but
probability space that we sample from be very compactly W|th01_1t an explicit depe_ndence on In addition, the proof
defined (e.g., of siz&(1) for the case of doubling metrics).  techniques are subtly different.)
For this purpose, we use some ideas from [18], in conjunc-  Finally, in Section 6, we mention some algorithmic ap-
tion with Lovasz Local Lemma, in order to exploit certain plications of our results, and point out a very intriguingap
locality properties of our decomposition. Our use of the lo- question regarding the roles of volume and structure in di-
cal lemma here, and elsewhere in the paper, can be madenensionality reduction in Euclidean spaces.



1.2 Preliminaries to work with balls rather than arbitrary sets. Thus we will

Here are some definitions used in the paper; the books byuse the definition given earlier (i.e., every ballincan be

Deza and Laurent [10] and by Heinonen [14] give more de- covered by\ balls of half the radius). It is easy to see that
tails on metric spacest Let (X, dx) and (Y, dy) be two moving between the two definitions affects the dimension

metric spaces, and consider an injective nfapX — Y. by only a factor of.

We define The seminal paper of Assouad [2] showed that this no-
tion attains several natural properties (see also [14, G]). 1
. B dx(a,b) For instance, it can be shown th#in(RF) = ©(k) when
contraction(f) = as;g{ dy (f(a), f(b))’ R* is endowed with the, norm. It follows that the upper

dy (f(a), f(b)) boundO(k) applies to any subset @. For a finite met-
expansion(f) = sup Ydi’b ric space, clearldim(X) < log|X|. The next proposition
apex  dx(a;b) will be key (throughout); it is proved by applying the defini-

Thedistortionof f is defined bylist(f) = expansion(f) - tion several times to obtain a cover with balls of_su_fflcmntl
. i} . ) . small radius, and then arguing that each net point is covered
contraction(f) = || f||Lip - [|f~*||Lip- The distortion with

which X embeds intd” is the infimum ofdist( f) over all by a distinct ball,

injective mapsf : X' — Y. Proposition 1.1. Let (X, d) be a metric with doubling con-

As usual, we define,(X) as the least distortion with  stant ). If all pairwise distances i’ C X are at leastr
Wh'_Ch)If emc?edilrélto SOT}‘ép 'tsr?ace. Lth_: (‘g E)Ibe " (e.g.,Y is anr-net of X), then for any pointr € X and
a simple undirected graph with non-negative edge lengths. _ . log 2t
The edge lengths oy induce a natural metridg (u, v) radiust 2 rwe haveB(x, t) N Y| < Al I
given by the length of a shortest path betweeandv in
G.

If we have two mapg; : X — Y; andf, : X — Y5, we
define theidirect sumf; @ fo asthemag : X — Y; x Y5
given by f(z) = (f1(z), f2(z)). This extends naturally to
a direct sum of more than two functions.

We define theaspect ratioof (X, d) to be the ratio of
the largest distance to the smallestin Forz € X and
r > 0, we define theopen ball of radius: aboutz to be
B(z,r) ={y € X :d(z,y) <r}.

Finally, we say that a subséf of X is ane-net if
it satisfies (1) For every,y € Y,d(z,y) > € and (2)

X C U,y Bly,€). Such nets always exist for amy> 0.
For finite metrics, they can be constructed greedily. For ar
bitrary metrics, proof of their existence is an easy applica
tion of Zorn’s lemma.

The counting measure.Karger and Ruhl [17] considered
a notion of dimension that relies on the counting measure
(in finite metric spaces): LeK be the smallest constant
such thaiB(z,2r)| < K|B(z,r)| forallz € X, r > 0.
(Strictly speaking, the requirement in their definition was
enforced only whenB(z,r)| was at least some threshold
ng. We ignore this for simplicity, but most of our tech-
nigues are local and allow for such restrictions.) Through-
out, we refer toK as theKR-constanof X and define the
KR-dimensiorof X asdimggr(X) = log, K. The next
proposition shows that bounded KR-dimension is a more
stringentrequirementthan bounded doubling dimensiasn. It
proof is relatively simple and is omitted from this version.
“However, bounded KR-dimension means that the counting
measure is doubling, and thus this proposition is no more
than an instantiation of a well-known basic result: If a met-
ric space(X, d) has a doubling measure then the metric is
doubling. (See e.g. [14] for a thorough treatment of dou-
Here we consider some notions meant to capture the “vol-bling measures.)

ume growth” of arbitrary metric spaces and discuss relation N o )
between them. Proposition 1.2. For any finite metric(X, d), dim(X) <

1.3 Notions of dimension and volume

Doubling dimension. An alternative definition for the dou-

dius (of balls); that is, the doubling constant of a metric \ith hounded Assouad dimension whose KR-dimension is
space(X, d) is as the smallest such that every subset of Q(log|X|). For example, take an integer grid in the Eu-
X of diameter2r can be covered by at moatsubsets of  ¢ligean plane, and consider only the origin and the points
diameter at most. Again, the doubling dimensionof is in the annulus:/2 < ||z|| < n. This reflects certain frail-
then defined adim(X) = log, A. The main advantage of tjes in the definition of KR-dimension: Evendimgg (X)
this definition is that for any submetric C X, we have s pounded, this does not necessarily hold for submetrics
dim(Y) < dim(X). In what follows, we will find it easier  of x'. Furthermore, the annulus itself has a bounded KR-
1we are concerned mostly with finite metrics, but most of ostilts dimension, but this property is not maintained when even
extend to arbitrary metric spaces via standard compactrgssnents. one point (the origin) is added.




Local density. Finally, there is another natural notion of Algorithm BOUNDED-DISTORTION:

volume, which has been used widely in the study of the (Initially all the edges are uncolored.)

bandwidth of graphs [8, 11]. Given amweightedcon- 1. setk = [log, diam(T")] andYy = 0.

nected graplty = (V, E), the local density of7, denoted ~ 2.fori=1,... kdo

B(G), is the smallest valug such tha{ B(v,r)| < B for 3. setr; =2 “andlety; D Y; , ber;-net ofT.

allv € V,r > 0. Itis easy to see that sincgis unweighted =~ 4. for everyy € Y3\ Y;_; (in an arbitrary orderjio

and connected B(v,r)| > r, hence|B(v,2r)| < 26r < 5 color all the uncolored edgesH), with a new color
26| B(v,r)|, which implies thatlim(G) < 4dimkg(G) <

Figure 2.1. Edge-coloring the tree T
4(log B(GQ) +1). g J g

2 Trees the ancestor-descendant relationship is well-defined: Now
In this section we prove Assouad’s conjecture for trees, @ Monotone pattin T is the simple path between a vertex
showing that every doubling tree can be embedded with @nd one of its descendants. We call an edge-colqmiager
constant distortiorinto constant dimensiona, space for  if €ach color-class forms a monotone patiZinFinally, x
everyp € [1, ], where both constants depend only on the S ana-good coloringof 7' if  is proper, and for every ver-
doubling constant of the tree. Not many families of metrics ©€x v € V and every ancestar of v, the path fromu to

are known to have such powerful embeddings, and it may? I T contains a monqchromatlc pomon of length at least
be surprising that two seemingly orthogonal constrairgs ar @ * d(u,v). The following lemma is standard, and thus a
needed for such a result. However, as mentioned in the in-Proof is omitted (see, for instance, [28]).

troduction, a constant distortion Euclidean embedding can | o\ 221 et — (V,E) be a rooted tree with non-
not be achieved if either of the constraints is dropped. Fur'negative edge lengths. 711’ has ana-good coloring then
thermore, the tree requirement cannot be relaxed eitherc (T) < 2 forall p € [1,00]
topologically (i.e., to graphs excluding a fixed minor) or * - T

graph-theoretically (i.e., to bounded treewidth graphs), We now define a certain class of “bad comb” metrics,
even series-parallel graphs might requig/log n) distor- and then show that doubling metrics do not have submet-
tion in any Euclidean embedding (see Section 5). rics which are arbitrarily bad combs. /Acombis a metric

The fact that these results can be extended to constaninduced by an edge-weighted tr&ehaving the following
dimension is even more surprising, especially since recentproperties: It has a distinguished vertezalled thecenter
results of Brinkman and Charikar [6] (see also a short proof and k¥ edge-disjoint simple pathgs,, ... ,p, calledhairs.
of [24], which even generalizes to the metrics exhibited in For a constant, the comb is called-badif for some value
Section 5 [23]) show extremely strong lower bounds on the L. > max; d(c, p;), the length of every hair is in the interval
dimension required to embed simple series-parallel graphg L, L). We omit the proof of the next lemma, as it follows
into /. easily from Proposition 1.1.

On a high level, our embeddings consist of two steps. )

Without loss of generality, we can assume that the tree is-8mma 2.2. A 27-bad k-comb (X, d) has doubling con-

- " tantAx > k1/(7+3),
rooted at some vertex. The first step partitions the edges of° X
the tree into monotone paths (i.e., those lying on some root-
leaf path), a process conveniently described by a coloringWh
of the tree edges. In the second step we identify the vari-
ous colors with distinct unit-length vectors, and map each Theorem 2.3. Let0 < a < 1/60. Then every tree metric
vertexv to the sum of the vectors corresponding to the col- has either ana-good coloring or a submetric which is a
ors of the edges along the path from the root ta\Ve first 4-bad(1/40a)-comb.
exhibit a simple constant distortion (but high-dimensipna
embedding in Section 2.1; we then show how to reduce the ~We prove here the unweighted case of Theorem 2.3; the

It thus suffices to exhibit good colorings for tree metrics
ich exclude bad combs.

dimensionality in Section 2.2. weighted case is more involved and thus deferred to the full
version. (Notice that subdividing edges might increase the
2.1 Constant distortion embeddings doubling constant; consider for instancerafeaf star with

edge lengthgi fori =1,... ,n.)
LetT = (V, E) be a tree rooted at with (positive) edge
lengths? : E — RT; by scaling, we can assume that all Proof of unweighted case.et P, be the set of edges in the
edge have at least unit length. Le&tenote the metric in-  path from the root te in the treeT’, and letP,, be the
duced onl’. An edge-coloringof T" with colors fromC is edges on the path betweemndy. We proceed by showing
simply a mapy : E — C. Since we have a rooted tree, an algorithm that finds an-good coloring, unless the tree



metric has at-bad(1/40«)-comb. The algorithm is given
in Figure 2.1.

Algorithm BoOuNDED-DISTORTIONClearly colors every
edge exactly once and thus defines an edge-colgfinge
claim y is proper. Indeed, the algorithm maintains the in-

haved(u,w;) < D/10 for each hai(w,,y;), So we indeed
obtained at-bad(1/40«)-comb. (For unit-weight trees we
actually get a.01-bad comb.) O

Theorem 2.4. Every doubling tree metri@’ hasc,(T') =

variant that the colored edges form a connected subtree of?(1)-

T containing the root. It follows that the edges colored in
any single execution of step 4 form a monotone path. Since
we use a new color each time around, the claim follows.

Now assume that is nota-good. Then there exist ver-
ticesu, v with u an ancestor of andD = d(u,v) = |Pyy|
with the following property: ifu = wg,wq,... ,w; = v
are thecolor-transition vertices onP,,,, i.e., the subpath
Puw;w;,. 1S @ maximal monochromatic segment for egch
thend(w;,w;+1) < aD forall j. For eachw;, consider
the execution of Step 5 in whid,,; , ., fallsin P, and is
colored, and ley; denote the vertey at this point in time.
(See Figure 2.2.)

vV =wp

Figure 2.2. An «-bad coloring.

Let m be such thaD /4 < r,, < D/2. We now claim
that for anyj, if d(v,w;) > D/2 theny; € Y,,. Indeed,
Y., is anr,, < D/2 net, henceB(v, D/2) must contain a
net pointy’ € Y,,. Furthermore, this net point must be a
descendant o; in 7. It follows that all the edges in the
pathP,  are colored by the timg’ is considered as a net
point. Since that path contaifs,,_, .,;, we know thaty; is
considered no later thayi, and thug; € Y,,.

Finally, consider all the vertices; with d(u,w;) <
D/10. We just proved that all the correspondigg are
in Yy,; sinceY,, is anry-net, d(y;,yj+1) > rm >
D/4. This implies that eithed(w;,y;) > D/10 or
d(wjt1,yj41) > D/10, as otherwise we would contra-
dict the triangle inequalityd(y;, yj+1) < d(yj,w;) +
d(wj,wjy1) + dwjy1,yj41). We can now obtain the
comb: for eacly, at least one oP,,;,, andP.,,, 4.,, is
a hair of length at leasb/10. (Since the edges are unit-
weighted, we can cut off the paths to a length of exactly

D/10). These hairs are edge-disjoint because they are col-

ored differently, and the total number of hairs is at least

L2 _3) > LI | ettingu be the center of the comb, we

5

Proof. Let A = A be the doubling constant of the met-
ric T'. Settingy = 2 in Lemma 2.2, the tre@” does not
contain ad-bad A5-comb. Leta = 1/40A5; sinceX > 2,

the parameter is bounded above by/60, and hence The-
orem 2.3 implies thaf’ has ana-good coloring. Finally,
applying Lemma 2.1 gives us an embedding with distortion
cp(T) < 80AC. O

2.2 Constant dimension or frugal coloring

The algorithm of Section 2.1 gave us a constant distortion
embedding intd?,, spaces; however, it used up to a linear
number of dimensions. In this section, we reduce this dras-
tically by embedding into aonstannumber of dimensions.

Theorem 2.5. Every doubling tree metric embeds into
(9™ with O(1) distortion for every € [1, o).

The proof again proceeds by edge-coloring the free
(V, E), this time withO(1) colors; of course, the coloring
can no longer be proper, and we will have to reanalyze the
embedding. We will still make use of the ideas given in
Lemmas 2.1 and 2.3. In particular, we edge-color the tree
using only colors from a set of |C| = \°(°eA) colors;
essentially, we apply algorithfBounded-Distortion with
an unbounded number of temporary colors (not frén
and at the end of each iteration we replace the temporary
colors by colors front’. We prove here the unweighted case
and defer the extension to weighted trees to the full version

Proof of unweighted casd=or a pathp, let ¢(p) be the
length ofp. A coloringx : V. — C will be called a-
reasonabléf, for every pairu,v € V with z = Ica(u, v),
there exists a colar € C such that the following holds: If
P. is the set of paths betweanandu which are colored,
andP, is the same fov, then

ZpE'Pu U(p) — Epe’pv Lp)| > a-d(u,v).

It is straightforward that applying the embedding of
Lemma 2.1 to arx-reasonable coloring df' with £ col-
ors yields an embedding df into E’Ij with distortion at
mosta. (In fact, the dimension can be reduced further to
O(% log k) by using vectorss; that are near-orthogonal;
the details are omitted from this version of the paper.) Thus
it suffices to show thdf’ has amx-reasonable coloring.

We now color the edges ofl" using algorithm
BOUNDED-D&D given in Figure 2.2. Let\ be the dou-

bling constant ofl’, and seta = 1/40\° as in Theorem



2.4. LetC be a set ofC| = \3108(68/2) = \O(log \) colors,

To complete the proof of Theorem 2.5 it suffices to show
that this algorithm produces ary2-reasonable coloring

of 7" using only colors fronC. To this end, Lemma 2.7
below shows that the algorithm can be implemented with
these few colors, and Lemma 2.8 proves that the coloring
the algorithm produces is/4-reasonable. O

We will make use of the following proposition.

Proposition 2.6. Along any root-leaf path, the edges that
are colored in iterationi have total length at mor;. In
particular, £(p) < 2r; for every patlp € P;.

Proof of Proposition 2.6 We can assume > 1; the claim
is trivial for ¢ = 1 since2r; > diam(T"). For a leafv, let
S;.» be the subset of edges alohgthat are actually colored
in iterations. Consider the edger, y) of S, , farthest from
the root, withy € Y; \ Y;_1. Sincey ¢ Y;_;, there exists
y' € Y,y with d(y,y') < r;—1 = 2r;, and furthermore,
Si,o C Py \ Py. It follows thatS; , is contained in the
path betweery andlca(y, y'), and thus its length is at most
d(y,lca(y,y')) < d(y,y") < 2r;. O

Lemma 2.7. Step9 of algorithm Bounded-D&D can be
done greedily witHC| = A31o&(68/a),

Proof of Lemma 2.7The proof idea is very simple: For
each patlp € P, it suffices to show that the number of
paths that aradjacentto p and were permanently colored
beforep is less thanC| —1, and hence we can colpgreed-
ily. We will, in fact, show something slightly stronger: We
show that the number of pathé € P with p < p' is at
most|C| —1. Letz € p be its endpoint farther from the root.
Letp' € PF be adjacent tp, and lety’ € p' NY; be the net
point that causeg' to be colored (in some iteration no later
thani). We now split the pathg’ into two types.
Type 1: £(p') < %ri. In this case,y’ is close to
z; quantitatively,d(z,y') < {(p) + d(p,p') + L(p') <
2r; + 8 + Lr; < 2y, Hence each such paghcorre-
sponds to a distinct point' € B(z, %ri). Buty' belongs
to ther;-netY;, so Proposition 1.1 implies that the number
of such pointg)’, and hence the number of path(s is at
mostA/leg 68/l « |C|/2.

Type 2: {(p) > Ir;. These pathg' form hairs of
length at Ieas%r,v in a comb centered at (Since we are

Lemma 2.8. AlgorithmBounded-D&D computes awx/4-
reasonable coloring.

Proof of Lemma 2.8Let u,v € V with & Ica(u, v),
and assume without loss of generality that d(z,u) >
+d(u,v). Recall thatx = 1/40\% < 1/60; hence Theorem
2.4 guarantees a monochromatic patf length at leastvt
betweenr: andu. We will show that the lengths of all the
paths betweer andwv with color x(p) add up to at most
at/2, which immediately implies that is «/4-reasonable,
as desired.

Consider any maximal monochromatic pathbetween
z andv with x(p) = x(p'), and leti’ be the iteration in
which p' is colored. We claim that > iy + 2 wherei is
the maximum index such thai;, > at. (We may assume
thatat > 1 and thusr;, < at < 2r;,.) Assuming this
claim, let us prove the lemma. For every such valu¢ of
Proposition 2.6 implies that the corresponding pathsave
total length at mos2r; ; now summing over all values >
i0 + 2 shows that the total length of paths having col¢p)
isatmosty ;. o2 < drigys =14 /2 < at/2.

It remains to prove the claim. Assume for contradiction
thati’ < ig + 2. We now have two cases, depending on the
iterations at whichp was colored. The first case is when
i’ <i,andhence' € PF. Clearly,d(p,p') < d(u,v) < 2t,
and Proposition 2.6 implies that < 2r;; putting the two
together givesi(p,p') < %n. Hencep, p’ are adjacent at
iteration7 and cannot have the same color, which contra-
dicts the assumption that(p) = x(p'). The second case
is wherei < i’ < iy + 2, in which case € Pj;. A simi-
lar argument applies; sineép, p’) < 2t < ir;, < o7y,
we have thap, p’ are adjacent at iteratiaiy, giving us the
desired contradiction. O

3 Clustering

In this section, we give decomposition theorems (for gen-
eral metrics) whose performance behaves smoothly in terms
of their doubling dimension, yielding greatly improved re-
sults when the dimension is bounded.

3.1 The padded decomposition

First, we describe a useful low-diameter decomposition for
metric spaces. Under other guises, such decompositions
are the main tool in many embeddings, and have numerous

in a unit-weighted tree, we can truncate these paths to gepther applications.

the correct length.) The distance of each hair from the cen-
terz is d(z,p') < £(p) + d(p,p') < 2r; + Lr; < py,
Lemma 2.2 implies thatX cannot have a.01-bad A\3-
comb, and thus the number of such hairs (and thus the num
ber of pathg') is less tham* < |C|/4.
Hence the total number of path$ € P; that are adja-

cent to any single path € P; is less tharg|C] < |C| — 1,

and we can extend the coloringzo O

For a metric spacéX,d) and a subsef C X, let
diam(S) denote the diameter of the submetric induced on
S. LetP be the collection of all the partitions df. Given
a partitionP € P andz € X, define

mp(x) = sup{t: 3C € P with B(z,t) C C}.

Definition 3.1. An (r,¢)-padded probabilistic decomposi-
tion of a metric(X, d) is a distributiony overP satisfying:



Algorithm BouNDED-D&D: (Initially all the edges are uncolored.)
1. setk = [log, diam(7T")] andY, = 0.
2.fori=1,... ,kdo

3. setr; = 2% and letY; D Y;_; ber;-net of T.

4, for every pointy € Y; \ Y;_; (in an arbitrary orderjlo

5. temporarily color all the uncolored edgesPip with a single new color.

6. let P; be the set of temporarily colored paths.

7. let P = P; U {all paths colored with a color froifi}.

8. remark pathsp;,p. € P areadjacentwrittenp; <> pa, if d(p1,p2) < %r,v.

9. recolor the (temporarily colored) pathsiwith colors fromC

such thaty(p1) # x(p2) forall p1,p» € P} with p; < po.
Figure 2.3. Frugal edge-coloring of the tree T

1. Bounded diameterdiam(C') < r for every clusteilC and the latter quantity is at mo&t dim(X). Finally, note

in every partitionP in the support ofu. that whenB(z, t) is not cut, we haverp(x) > t. Setting
2. Padding:Pr,[rp(z) > er] > L forall z € X. t = framorry We getPrlmp(x) > ] > 5 as desired. [

Such decompositions have been given earlier for general . . .
metrics, wherdl /e = O(log |X|). We show that such de- 3.2 Locality and dimension
compositions exist where depends only on the doubling Decompositions like that given by Theorem 3.2 have seen
dimension ofX. The probabilistic technique we use is in- numerous applications in recent years. Often, one wants

spired by the analysis of [7]. a small distribution, i.e. a multi-set of, partitionsD =
Theorem 3.2. Let (X, d) be a finite metric space. Then for [F1; ... , Pm] such that the uniform distribution dh satis-
everyr > 0 there exists arir, ¢)-padded probabilistic de- ~ fies condition (2) of Definition 3.1. _

composition of{’ with 1/e < 64 dim(X). Usually, this is accomplished by choosimg= ©(logn)

independent partitions according to a Chernoff bound
then yields the desired result. Here, we show that=
O(dim(X)logdim (X)) partitions suffice. The idea is to
use the Lovasz Local Lemma along with some ideas bor-
rowed from [18] to exploit the locality of the padded de-
Cy={reX:zeB(y,R)ando(y) < o(z) composition.

forall z € N withz € B(z, R)}. Theorem 3.3. For a metric space(X,d), let 1/e =
Clearly,diam(C,) < 4r. Finally, letP = {C},},eny and 512 dim(X). Then for anyr > 0, there exists a multi-
note it is a partition ofX' becauseV is anr-net andR > r. setD = [Pi,...,Pp] of m = O(dim(X) log dim (X))

Proof. For ease of notation, we construc{4r, ¢)-padded
decomposition. LefV be anr-net of X. Let o be a ran-
dom permutation oV, and choose a radiug uniformly at
random from(r, 2r]. For eacty € N, define a cluster

Now fix a pointz € X and somet € [0,r]. Let partitions such that
W = B(x,2r +t) N N, and note that, = |W| < 84m(T)
by Proposition 1.1. Arrange the points, ... ,w,, € W in 1. ForeveryC e |J;*, P;, diam(C) < r.

order of increasing distance from and letl;, be the inter-
val [d(z, wy,) —t, d(z, w) +t]. Letus say thaB(z, t) is cut
by a clusterCy, if Cy, N B(z,t) # 0 but B(z,t) € Cy, -

Finally, write & for the event thatv,, is the minimal ele- PP;YD[”P(:”) >er] 2
ment inWW (according tar) for which Cy,, N B(x,t) # 0
andC,, cutsB(zx,t). Then,

2. If P is chosen uniformly fror®?, then for allz € X,

N)I»—l

Proof of Theorem 3.3Letr > 0 be fixed and lej: be as in

] Theorem 3.2 (note that depends on). Let P,..., Py,
Pr[B(z,t)iscuf < > Pr&] be partitions ofX chosen according tp (for somem to

be chosen later). Far € X, letY, be the number of’;

for which7p, (z) < 2er. The probability of the latter event
is at most% according to the analysis of Theorem 3.2, and
" thusEY, < 4. Finally, let&" be the event that, > 5 =

3 2t 1 2 ), 4EY, . A standard Chernoff bound (see e.g. [1]) shows that
FE Pr{€r] < (9/10)™

= ) Pr[ReI}]-Pr[&| R € I}
k=1

IA



Claim 3.4. If N is aner-netin X thenPr [/\yeN ﬁ] >
0.

Notice that the above claim suffices to prove the Theo-

rem. Indeed, ifrp(y) > 2er for everyy € N, then by the
triangle inequalitysrp (x) > er for everyz € X.

In proving the claim, we will require the following sym-
metric form of the Lovasz Local Lemma (see, e.g., [1]).

Lemma 3.5 (Lovasz Local Lemma). Let A;,... , A, be

events in an arbitrary probability space. Suppose that each (1 + €)-embeds intdo

A; is mutually independent of all but at maesbther events
A;, and suppose thd?r[Ai]_g pforalll < i < n. If
ep(d + 1) < 1thenPr[Al A;] > 0.

We now claim thatf;" is mutually independent of all
events¢, for which d(y,y’) > 4r. To see this, note that
every cluster formed under (according to Theorem 3.2)
has diameter at most thus no such cluster can simultane-
ously cutB(y,r) and B(y',r); the claimed independence
follows.

It follows that we can upper bound the number of
events that are non-mutually independentgf by d =
|B(y,4r) N N| < dim(X)°m(X) (by Proposition 1.1).
Now if Pr[€;"] < ;i then the local lemma implies
Claim 3.4. But this is easily accomplished by choosing
somem = O(dim(X) log dim(X)). O

4 Upper bounds for doubling metrics

4.1 Bourgain-style embeddings via nets

Here, we give a simple proof that doubling metrics em-
bed into Euclidean space with(y/log n) distortion. This

is based on Bourgain’s proof for general metrics, with the
added twist that we take distances from subsetgai§
rather than subsets of the entire metric. A full proof is de-
ferred to the full version.

Theorem 4.1. For any n-point doubling metric(X,
the distortion required to embed into ¢5 is c2(X)

O(vlogn).

Proof (sketch).For every scal@” k € Z, construct &*-
net of X and define a mapy; : X — { by pi(x) =
V1/2IYel (d(z, A)) acy,, , whereYy, is the set of all subsets
of this 2k-net. The final map is basically the normalized di-
rect sum of all such maps, i.e;2~2V¢lp,, though stan-

d),

dard considerations must be made to achieve a distortion_Lemma 4.4. Pr

which depends only on and not the aspect ratio 6f. [

It turns out that the dependence of the distortion on
dim(X) in the above theorem is exponential, and its worst-
case performance is much worse than Bourgaif{l®g n)
bound. We will remedy this in the next section, using the
decomposition theorems of Section 3.

By adapting the analysis of the above proof we can prove
the following theorem. In order to reduce the dimension
to O(logn), we first bound the distortion among points in
certain nets using the Lovasz Local Lemma, and then use it
to deduce a bound on the distortion among all points. The
1 + € distortion is achieved by suitably modifying various
constants in the proof.

Theorem 4.2. For any fixede > 0, every doubling metric
log n)

4.2 Embeddings via clustering

In this section, we obtain embeddings that degrade grace-
fully with the doubling dimension; these are based on the
decomposition theorems of Section 3. The next theorem
uses an embedding technique due to Rao [34]. Our analysis
requires considerably more effort since we must keep tight
control on the dimension of our embedding (this improves
the dimension of the host space by a factodog ), say,

for doubling metrics, and is essential for Section 4.2.1).

Theorem 4.3. For any metric(X, d) and anyp € [1, 00),

cp(X) =0 (dim(X) - (log n)min%’%)) .

Proof (outline). Let (X, d) be an arbitrary metric and fix a
valuer > 0. We discuss the cage= 2; the proof for other
values ofp is similar. We produce amap, : X — R* with

k = O(dim(X)logdim(X)) as follows. LetP,,..., P,

be the multi-set of decompositions guaranteed by Theo-
rem 3.3. Fix someé € {1,...,m}, and for every cluster

C € P;, choose a valuggn(C) € {—1,+1} uniformly at
random. Following Rao [34] (see also [29, Ch. 15]), define
the mapp; : X — R by

> sgn(C) - d(z, X \ O).

CePr;

pi(z)

Finally, set®, = ﬁ(% DD Pm)-

Lete be as in Theorem 3.3, I€X,. be ang;-net, and set
S, = {{z,y} € N? : d(z,y) > r}. For{z,y} € S,,
let £, , be the event tha{®, (z) — ®,(y)|| < Ler. The
following lemma is deferred to the full version.

[/\{w}es,,%] > 0. In other words,

there exists a magp, such that for all{z,y} € S,,
|12 (2) — @, (y)]| > ger-

Foranyi € Z,let®(®) = &,;, and se® = @, _, (.
The proof that® satisfies the statement of Theorem 4.3 ap-
pears in the full version. O



4.2.1 Assouad’s Theorem

Recall that fol0 < « < 1, (X, d%) is the metric that arises
from a metric(X, d) by raising all distances to the power

In his seminal paper [2], Assouad proved the following (per-
haps surprising) result: For any doubling metric, and every
fixed0 < a < 1, there exist constanfsand D (depend-
ing only on the doubling constant df) such that( X, d*)
embeds intd% with distortion at mosD.

Although Assouad'’s proof is easily converted to an al-
gorithm, the parametedsand D grow exponentially with
dim(X). We present an algorithmic version based on the
formation of coordinates in Section 4.2 and a trick of As-
souad [2] to avoid interaction between scales. The values
andD that we achieve are both nearly lineardim (X).

Theorem 4.5. Let (X, d) be an arbitrary metric, and fix
avalue0 < a < 1. Then there exist valuek
O(dim(X)logdim(X)) and D = O(dim (X)) such that
(X, d*) can be embedded int§ with distortion at mosD.

We now show the construction of the embedding. A
proof is deferred to the full version. Let = m(«), choose
{e1, ... ,en} 1o bean orthonormal basis Bf*, and extend
it to an infinite periodic sequende; };cz. Now simply de-
fine® : X — RF by

o(z) =Y 22 (z) @e;.

i€EL

5 Lower bounds on distortion

In this section we show that the dependencenom the

upper bounds of Theorems 4.1 and 4.3 is necessary. In fact

the next theorem shows that for Euclidean embeddings (

2) of doubling metrics, the aforementioned upper bounds
are existentially tight. (It extends easily to a tight lower
bound for any fixegh > 2.)

Theorem 5.1. There exists a family of metric&7y, di)
which are uniformly doubling and series-parallel, suchttha

c2(Gi) = Q(/log |Gi).

We now describe the metri¢&7,, di.); they are shortest
path metrics on weighted series-parallel graghgsconsists
of a single edge of weight 1G, is obtained fromGy,
by replacing every edge ifu,v) in Gy with the six-edge
configuration shown in Figure 5.4. The weight of each new
edge ist*. Itis easy to see thdt7}, di) is a submetric of
(Gry1,dry1)-

In[20, 21] it is shown that a similar family of metrics is
uniformly doubling (see [22] for a very simple proof). The
lower bound follows from an appropriate Poincaré inequal-
ity whose basis is the following geometric fact: For any six
pointss, t,a,b,c,d € Ly, we have

[ls = tI[> + 1o = d|* < 4(lla — s|]* + [lc — t]]*)
+2(la = blI* + [Ib = cl” + [le — dI|* + ||d — al|*).

By summing appropriately weighted versions of this in-
equality over all six-point subsets corresponding to “espi

of G4, it is possible to obtain a simple Poincaré inequality
which immediately yields the desired lower bound.

Figure 5.4. The lower bound graphs.

6 Discussion

Applications. We briefly mention several algorithmic ap-
plications of our results, deferring details to the final-ver
sion. Using the decomposition theorems in Section 3, we
can show that doubling metrics adnfit, /log n)-volume
respecting embeddings for &) doubling metrics can also
be embedded into distributions dbublingtrees (HSTs of
bounded degree) with distortiah(logn), and they embed
into the line with constant average distortion. These tssul
can be used to improve approximation algorithms and on-
line algorithms for doubling metrics.

The approximation ratio of the minimum bandwidth (lin-
ear ordering) problem can be improved using our results to
O(log® n) for doubling trees an@ (log® n) for general dou-
bling graphs, improving over the general case\dygn
and+/Toglogn factors respectively. Furthermore, our tree
coloring in conjunction with a modification of [12] show
that the bandwidth of a graph with local densitys at most
O(B*®log” n).

Distance-labeling®f graphs assign labels to vertices so
that the distance between two vertices can be computed (ap-
proximately) from their labels alone. For simplicity, assl
that all pairwise distances are integers and are bounded by
A. Theorem 4.2 can then be used to give labels for dou-
bling metrics withO(log n log A) bits, allowing to approx-
imate the distances within@ + ¢) factor. This has an ex-
ponential dependence @l (X ), which can be improved
to O(dim(X) log A logn (2)4m(X)) bits per label for any
0 < e < 1, using techniques from Section 3.

Finally, the techniques of Section 3 can be used to exhibit



an O(dim(7"))-approximation for the 0-extension problem [13]
where(T, d) is the metric on terminals.

Dimensionality reduction. In previous sections, we stud-
ied the distortion of general metrics in terms of their dou-
bling dimension. Here, let us consider anpoint set
X C (3 with dim(X) O(1). In other words, al-
though X inhabits some high-dimensional space, it looks
very low-dimensional in terms of volume. The Johnson- [1g]
Lindenstrauss flattening lemma [16] tells us that there is a

1 + ¢ embedding ofX into 53(6_21(’“). We pose the fol-
lowing intriguing question which was asked independently

in [22].

[14]

[15]

[17]

Question 1. Can every doubling submetric 6§ be O(1)- (18]

embedded intég(l)?

. . . [19]
It can be shown that no linear projection can achieve
such a result (as in [16]), but there are a number reasons t(fzo]
believe that its resolution might be positive; these are dis
cussed in the full version.
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