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Abstract

The doubling constantof a metric space(X; d) is the
smallest value� such that every ball inX can be covered by� balls of half the radius. Thedoubling dimensionof X is
then defined asdim(X) = log2 �. A metric (or sequence of
metrics) is calleddoublingprecisely when its doubling di-
mension is bounded. This is a robust class of metric spaces
which contains many families of metrics that occur in ap-
plied settings.

We give tight bounds for embedding doubling metrics
into (low-dimensional) normed spaces. We consider both
general doubling metrics, as well as more restricted fami-
lies such as those arising from trees, from graphs excluding
a fixed minor, and from snowflaked metrics. Our techniques
include decomposition theorems for doubling metrics, and
an analysis of a fractal in the plane due to Laakso [21]. Fi-
nally, we discuss some applications and point out a central
open question regarding dimensionality reduction inL2.
1 Introduction
A basic goal in the study of finite metric spaces is to approx-
imate some class of metric spaces by another more simple
or tractable class. Apart from being beautiful objects of
study lying at the intersection of analysis, combinatorics,
and geometry, the ideas and techniques generated in this
field have led to a number of powerful algorithmic applica-
tions (see e.g. [15, 25, 29]).

We consider embeddings of finite metric spaces intoLp
spaces. Given a metric(X; d), the goal is to find a mapf : X ! Lp such thatjjf(x)�f(y)jjp is close tod(x; y) for
all x; y 2 X . The worst-case factor by which distances are
expanded or contracted is called thedistortion of the mapf . In general, our goal is to find bounds on the achievable�Department of Computer Science, Carnegie Mellon University, Pitts-
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distortion in terms of certain fundamental properties of the
metric(X; d).

The general case is well-understood. Bourgain [4]
showed that everyn-point metric embeds intoLp withO(log n) distortion for any fixedp; it is shown in [26] that
this bound is tight, for allp � 2, for the shortest path met-
ric on constant-degree expander graphs. This was later ex-
tended in [27], showing a tight upper bound ofO( log np ) for
anyLp space.

In light of this, a significant amount of effort has been
made to understand the distortion achievable for restricted
classes of metric spaces. So far, the restrictions consid-
ered have been mostly topological. ForL1 embeddings,
this is due partly to the intimate connection with multicom-
modity flows and approximations for the sparsest cut, see
e.g. [26, 3, 13, 33]. It is not too difficult to see that ev-
ery tree metric embeds isometrically intoL1. Matoušek
[28] showed that every tree embeds intoLp with distortionO((log logn)min( 12 ; 1p )) and that this bound is tight for allp > 1. Rao [34] showed that every planar graph embeds
into L2 with distortionO(plogn), and this in fact holds
for any family which excludes a fixed minor. A matching
lower bound, yielded by a family of series-parallel metrics
was given in [30] (see also [20, 21, 22]). Gupta et al. [13]
show thatK4-free (series-parallel) andK2;3-free (outerpla-
nar) graphs embed intoL1 with constant distortion.

Here, we consider restrictions not on the topology of the
metric, but on its geometry. More specifically, we exam-
ine how the “volume growth” of a metric affects its embed-
dability intoLp spaces. The notion of growth that we use is
well-studied, and is very similar to a notion of Assouad [2],
see also [14]. Our definition is technically slightly different
from Assouad’s, but the flavor is left unaltered; in particu-
lar, the notion of bounded growth is equivalent under either
framework.

For a metric(X; d), let thedoubling constantbe be the
smallest value� such that every ball inX can be covered
by � balls of half the radius, and define thedoubling di-
mensionof X asdim(X) = log2 �. It can be shown, for
instance, that for every fixedp, the doubling dimension ofd-dimensional̀ p space is roughlyd, and clearly for a finite
metricdim(X) � log jX j. A metric (or sequence of met-
rics) is calleddoublingprecisely when its doubling dimen-
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sion is bounded. We discuss this notion more thoroughly in
Section 1.3.

Not only are doubling metrics interesting objects in their
own right, but they are also of practical concern. Growth
restrictions are very natural and are thought to occur in
real-world phenomena such as peer-to-peer networks (see
e.g. [31]) and data analysis (e.g., when the input data re-
sides on a low-dimensional manifold, cf. [36]). In fact,
various algorithms can be tailored to run efficiently on cer-
tain classes of growth-restricted metrics, as demonstrated
in [9, 32, 17, 19]. The metrics considered there are either
equivalent to or a subclass of those metrics which are dou-
bling; see Section 1.3.

1.1 Results and techniques
We are concerned with the broad roles of “volume” and
“structure” in determining the embeddability of a met-
ric. For instance, in Section 2, we show that every dou-
bling tree metric admits a constant distortion embedding
into `O(1)p (i.e., constant dimensional̀p space) for anyp 2 [1;1]. This exhibits a very natural class of met-
ric spaces which embed intò2 with O(1) distortion, but
not isometrically. As discussed before, some tree metrics
require
(plog logn) distortion to embed intò2 [5, 28],
while we prove that some doubling metrics require distor-
tion 
(plogn) (see Section 5). Thus it is precisely the
synthesis of these two properties that yields an enormous
improvement in embeddability.

That these metrics can be embedded using onlyO(1)
dimensions is perhaps even more surprising (see the dis-
cussion in Section 2), and as we will soon see, proves a
special case of a conjecture of Assouad. Our embedding
makes use of a novel partitioning algorithm for doubling
trees. The partition is described conveniently by a coloring
of the edges. Our algorithm either finds a good coloring or
a submetric which is a counterexample to the doubling as-
sumption. To achieve an embedding intoO(1) dimensions,
we must reuse colors. We do this by defining a notion of ad-
jacency between paths, and arguing that the resulting graph
(whose vertices are paths) has bounded chromatic number.

In Section 3, we construct low-diameter decompositions
for general metrics whose parameters depend smoothly on
the doubling dimension. Such decompositions are the main
tool in many embedding results, as well as a number of
other applications. To construct these decompositions, we
adapt a probabilistic technique of [7]. For applications of
the decomposition later in the paper, it is important that the
probability space that we sample from be very compactly
defined (e.g., of sizeO(1) for the case of doubling metrics).
For this purpose, we use some ideas from [18], in conjunc-
tion with Lovász Local Lemma, in order to exploit certain
locality properties of our decomposition. Our use of the lo-
cal lemma here, and elsewhere in the paper, can be made

algorithmic using standard techniques.

In Section 4, we devise a number of embeddings, some
of which rely heavily on the clustering of Section 3. First,
we give a Bourgain-style embedding which shows that ev-
ery general doubling metric(X; d) embeds intòp with dis-

tortionO((log n)min( 12 ; 1p )) for anyp 2 [1;1). Instead of
forming coordinates by taking the distance to arbitrary sub-
sets ofX , we instead use only subsets of appropriately sized
netsin X (see Section 1.2 for the definition of a net). Using
this embedding, along with another application of the local
lemma, we show that every doubling metric can be embed-
ded with1+ � distortion into`O(logn)1 . See Section 6 for an
application to distance labeling schemes.

Although this Bourgain-style embedding is fairly simple,
its distortion degrades badly (exponentially) withdim(X).
Based on the clustering of Section 3, and an embedding
technique of Rao [34], we show that everyn-point metric(X; d) embeds intòp with distortion at mostO �dim(X) � (logn)min( 12 ; 1p )� :
This provides a smooth upper bound on the distortion of
general metrics in terms of their dimension. In the case
of Euclidean embeddings, for instance, it beats Bourgain’s
general upper bound as long asdim(X) = o(plogn).

In [2], it is proved that if(X; d) is a doubling metric, then
for any0 < � < 1, (X; d�) embeds intòk2 with distortionD, wherek andD depend only on the doubling dimension
of X . Here,(X; d�) is the metric with all distances raised
to the power� (this metric is called asnowflakedversion ofX). Unfortunately, the dependence ofk andD ondim(X)
is exponential. In Section 4, using a slight twist on the
above embedding technique, we give an algorithmic version
of Assouad’s proof, and drastically improve the dependence
of k andD to near-linear. Assouad also conjectured that the
above result holds even when� = 1. Although Semmes
[35] disproved this conjecture, we have shown that it holds
whenever(X; d) is a doubling tree metric.

In Section 5, we exhibit a family of series-parallel dou-
bling metrics which requires
(plogn) distortion to em-
bed into`2, which shows that the upper bound of Section 4
is tight. This family is based on the construction of a frac-
tal due to Laakso [21]. (It was brought to our attention that
a similar analysis was obtained independently in [22], but
without an explicit dependence onn. In addition, the proof
techniques are subtly different.)

Finally, in Section 6, we mention some algorithmic ap-
plications of our results, and point out a very intriguing open
question regarding the roles of volume and structure in di-
mensionality reduction in Euclidean spaces.
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1.2 Preliminaries
Here are some definitions used in the paper; the books by
Deza and Laurent [10] and by Heinonen [14] give more de-
tails on metric spaces.1 Let (X; dX) and(Y; dY ) be two
metric spaces, and consider an injective mapf : X ! Y .
We definecontraction(f) = supa;b2X dX(a; b)dY (f(a); f(b)) ;expansion(f) = supa;b2X dY (f(a); f(b))dX(a; b) :
Thedistortionof f is defined bydist(f) = expansion(f) �contraction(f) = jjf jjLip � jjf�1jjLip. The distortion with
whichX embeds intoY is the infimum ofdist(f) over all
injective mapsf : X ! Y .

As usual, we definecp(X) as the least distortion with
whichX embeds into somèp space. LetG = (V;E) be
a simple undirected graph with non-negative edge lengths.
The edge lengths onG induce a natural metricdG(u; v)
given by the length of a shortest path betweenu andv inG.

If we have two mapsf1 : X ! Y1 andf2 : X ! Y2, we
define theirdirect sumf1�f2 as the mapf : X ! Y1�Y2
given byf(x) = (f1(x); f2(x)). This extends naturally to
a direct sum of more than two functions.

We define theaspect ratioof (X; d) to be the ratio of
the largest distance to the smallest inX . For x 2 X andr � 0, we define theopen ball of radiusr aboutx to beB(x; r) = fy 2 X : d(x; y) < rg.

Finally, we say that a subsetY of X is an �-net if
it satisfies (1) For everyx; y 2 Y; d(x; y) � � and (2)X � Sy2Y B(y; �). Such nets always exist for any� > 0.
For finite metrics, they can be constructed greedily. For ar-
bitrary metrics, proof of their existence is an easy applica-
tion of Zorn’s lemma.

1.3 Notions of dimension and volume
Here we consider some notions meant to capture the “vol-
ume growth” of arbitrary metric spaces and discuss relations
between them.

Doubling dimension.An alternative definition for the dou-
bling constant considers diameter (of subsets) instead of ra-
dius (of balls); that is, the doubling constant of a metric
space(X; d) is as the smallest� such that every subset ofX of diameter2r can be covered by at most� subsets of
diameter at mostr. Again, the doubling dimension ofX is
then defined asdim(X) = log2 �. The main advantage of
this definition is that for any submetricY � X , we havedim(Y ) � dim(X). In what follows, we will find it easier

1We are concerned mostly with finite metrics, but most of our results
extend to arbitrary metric spaces via standard compactnessarguments.

to work with balls rather than arbitrary sets. Thus we will
use the definition given earlier (i.e., every ball inX can be
covered by� balls of half the radius). It is easy to see that
moving between the two definitions affects the dimension
by only a factor of2.

The seminal paper of Assouad [2] showed that this no-
tion attains several natural properties (see also [14, Ch. 10]).
For instance, it can be shown thatdim(Rk ) = �(k) whenRk is endowed with thèp norm. It follows that the upper
boundO(k) applies to any subset ofRk . For a finite met-
ric space, clearlydim(X) � log jX j. The next proposition
will be key (throughout); it is proved by applying the defini-
tion several times to obtain a cover with balls of sufficiently
small radius, and then arguing that each net point is covered
by a distinct ball.

Proposition 1.1. Let (X; d) be a metric with doubling con-
stant�. If all pairwise distances inY � X are at leastr
(e.g.,Y is an r-net ofX), then for any pointx 2 X and

radiust � r we havejB(x; t) \ Y j � �dlog 2tr e.
The counting measure.Karger and Ruhl [17] considered
a notion of dimension that relies on the counting measure
(in finite metric spaces): LetK be the smallest constant
such thatjB(x; 2r)j � KjB(x; r)j for all x 2 X , r � 0.
(Strictly speaking, the requirement in their definition was
enforced only whenjB(x; r)j was at least some thresholdn0. We ignore this for simplicity, but most of our tech-
niques are local and allow for such restrictions.) Through-
out, we refer toK as theKR-constantof X and define the
KR-dimensionof X as dimKR(X) = log2K. The next
proposition shows that bounded KR-dimension is a more
stringent requirement than bounded doubling dimension. Its
proof is relatively simple and is omitted from this version.
However, bounded KR-dimension means that the counting
measure is doubling, and thus this proposition is no more
than an instantiation of a well-known basic result: If a met-
ric space(X; d) has a doubling measure then the metric is
doubling. (See e.g. [14] for a thorough treatment of dou-
bling measures.)

Proposition 1.2. For any finite metric(X; d), dim(X) �4 � dimKR(X).
The converse, however, is not true; there are metrics

with bounded Assouad dimension whose KR-dimension is
(log jX j). For example, take an integer grid in the Eu-
clidean plane, and consider only the origin and the points
in the annulusn=2 < jjxjj � n. This reflects certain frail-
ties in the definition of KR-dimension: Even ifdimKR(X)
is bounded, this does not necessarily hold for submetrics
of X . Furthermore, the annulus itself has a bounded KR-
dimension, but this property is not maintained when even
one point (the origin) is added.
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Local density. Finally, there is another natural notion of
volume, which has been used widely in the study of the
bandwidth of graphs [8, 11]. Given anunweightedcon-
nected graphG = (V;E), the local density ofG, denoted�(G), is the smallest value� such thatjB(v; r)j � � r for
all v 2 V; r > 0. It is easy to see that sinceG is unweighted
and connected,jB(v; r)j � r, hencejB(v; 2r)j � 2�r �2�jB(v; r)j, which implies thatdim(G) � 4 dimKR(G) �4(log�(G) + 1).
2 Trees
In this section we prove Assouad’s conjecture for trees,
showing that every doubling tree can be embedded with
constant distortioninto constant dimensional̀p space for
everyp 2 [1;1], where both constants depend only on the
doubling constant of the tree. Not many families of metrics
are known to have such powerful embeddings, and it may
be surprising that two seemingly orthogonal constraints are
needed for such a result. However, as mentioned in the in-
troduction, a constant distortion Euclidean embedding can-
not be achieved if either of the constraints is dropped. Fur-
thermore, the tree requirement cannot be relaxed either
topologically (i.e., to graphs excluding a fixed minor) or
graph-theoretically (i.e., to bounded treewidth graphs),as
even series-parallel graphs might require
(plogn) distor-
tion in any Euclidean embedding (see Section 5).

The fact that these results can be extended to constant
dimension is even more surprising, especially since recent
results of Brinkman and Charikar [6] (see also a short proof
of [24], which even generalizes to the metrics exhibited in
Section 5 [23]) show extremely strong lower bounds on the
dimension required to embed simple series-parallel graphs
into `1.

On a high level, our embeddings consist of two steps.
Without loss of generality, we can assume that the tree is
rooted at some vertex. The first step partitions the edges of
the tree into monotone paths (i.e., those lying on some root-
leaf path), a process conveniently described by a coloring
of the tree edges. In the second step we identify the vari-
ous colors with distinct unit-length vectors, and map each
vertexv to the sum of the vectors corresponding to the col-
ors of the edges along the path from the root tov. We first
exhibit a simple constant distortion (but high-dimensional)
embedding in Section 2.1; we then show how to reduce the
dimensionality in Section 2.2.

2.1 Constant distortion embeddings

Let T = (V;E) be a tree rooted atr with (positive) edge
lengths` : E ! R+ ; by scaling, we can assume that all
edge have at least unit length. Letd denote the metric in-
duced onT . An edge-coloringof T with colors fromC is
simply a map� : E ! C. Since we have a rooted tree,

Algorithm BOUNDED-DISTORTION:
(Initially all the edges are uncolored.)
1. setk = dlog2 diam(T )e andY0 = ;.
2. for i = 1; : : : ; k do
3. setri = 2k�i and letYi � Yi�1 beri-net ofT .
4. for everyy 2 Yi n Yi�1 (in an arbitrary order)do
5. color all the uncolored edges inPy with a new color

Figure 2.1. Edge-coloring the tree T
the ancestor-descendant relationship is well-defined: Now
a monotone pathin T is the simple path between a vertex
and one of its descendants. We call an edge-coloringproper
if each color-class forms a monotone path inT . Finally,�
is an�-good coloringof T if � is proper, and for every ver-
tex v 2 V and every ancestoru of v, the path fromu tov in T contains a monochromatic portion of length at least� � d(u; v). The following lemma is standard, and thus a
proof is omitted (see, for instance, [28]).

Lemma 2.1. Let T = (V;E) be a rooted tree with non-
negative edge lengths. IfT has an�-good coloring thencp(T ) � 2� for all p 2 [1;1].

We now define a certain class of “bad comb” metrics,
and then show that doubling metrics do not have submet-
rics which are arbitrarily bad combs. Ak-combis a metric
induced by an edge-weighted treeT having the following
properties: It has a distinguished vertexc called thecenter,
andk edge-disjoint simple pathsp1; : : : ; pk called hairs.
For a constant
, the comb is called
-badif for some valueL � maxi d(c; pi), the length of every hair is in the interval[L; 
L). We omit the proof of the next lemma, as it follows
easily from Proposition 1.1.

Lemma 2.2. A 2
-bad k-comb(X; d) has doubling con-
stant�X > k1=(
+3).

It thus suffices to exhibit good colorings for tree metrics
which exclude bad combs.

Theorem 2.3. Let 0 < � � 1=60. Then every tree metric
has either an�-good coloring or a submetric which is a4-bad(1=40�)-comb.

We prove here the unweighted case of Theorem 2.3; the
weighted case is more involved and thus deferred to the full
version. (Notice that subdividing edges might increase the
doubling constant; consider for instance ann-leaf star with
edge lengths2i for i = 1; : : : ; n.)

Proof of unweighted case.Let Pz be the set of edges in the
path from the root toz in the treeT , and letPxy be the
edges on the path betweenx andy. We proceed by showing
an algorithm that finds an�-good coloring, unless the tree
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metric has a4-bad(1=40�)-comb. The algorithm is given
in Figure 2.1.

Algorithm BOUNDED-DISTORTIONclearly colors every
edge exactly once and thus defines an edge-coloring�; we
claim � is proper. Indeed, the algorithm maintains the in-
variant that the colored edges form a connected subtree ofT containing the root. It follows that the edges colored in
any single execution of step 4 form a monotone path. Since
we use a new color each time around, the claim follows.

Now assume that� is not�-good. Then there exist ver-
ticesu; v with u an ancestor ofv andD = d(u; v) = jPuv j
with the following property: ifu = w0; w1; : : : ; w` = v
are thecolor-transition vertices onPuv , i.e., the subpathPwj wj+1 is a maximal monochromatic segment for eachj,
thend(wj ; wj+1) < �D for all j. For eachwj , consider
the execution of Step 5 in whichPwj�1 wj falls in Py and is
colored, and letyj denote the vertexy at this point in time.
(See Figure 2.2.)

D wjwj+1� �D yj+1 yj
u = w0
v = wl

Figure 2.2. An �-bad coloring.

Let m be such thatD=4 < rm � D=2. We now claim
that for anyj, if d(v; wj) � D=2 thenyj 2 Ym. Indeed,Ym is anrm � D=2 net, henceB(v;D=2) must contain a
net pointy0 2 Ym. Furthermore, this net point must be a
descendant ofwj in T . It follows that all the edges in the
pathPy0 are colored by the timey0 is considered as a net
point. Since that path containsPwj�1wj , we know thatyj is
considered no later thany0, and thusyj 2 Ym.

Finally, consider all the verticeswj with d(u;wj) �D=10. We just proved that all the correspondingyj are
in Ym; since Ym is an rm-net, d(yj ; yj+1) � rm >D=4. This implies that eitherd(wj ; yj) � D=10 ord(wj+1; yj+1) � D=10, as otherwise we would contra-
dict the triangle inequalityd(yj ; yj+1) � d(yj ; wj) +d(wj ; wj+1) + d(wj+1; yj+1). We can now obtain the
comb: for eachj, at least one ofPwj yj andPwj+1 yj+1 is
a hair of length at leastD=10. (Since the edges are unit-
weighted, we can cut off the paths to a length of exactlyD=10). These hairs are edge-disjoint because they are col-
ored differently, and the total number of hairs is at least12 (D=10�D �3) � 140� . Lettingu be the center of the comb, we

haved(u;wj) � D=10 for each hair(wj ; yj), so we indeed
obtained a4-bad(1=40�)-comb. (For unit-weight trees we
actually get a1:01-bad comb.)

Theorem 2.4. Every doubling tree metricT hascp(T ) =O(1).
Proof. Let � = �T be the doubling constant of the met-
ric T . Setting
 = 2 in Lemma 2.2, the treeT does not
contain a4-bad�6-comb. Let� = 1=40�6; since� � 2,
the parameter� is bounded above by1=60, and hence The-
orem 2.3 implies thatT has an�-good coloring. Finally,
applying Lemma 2.1 gives us an embedding with distortioncp(T ) � 80�6.
2.2 Constant dimension or frugal coloring
The algorithm of Section 2.1 gave us a constant distortion
embedding intò p spaces; however, it used up to a linear
number of dimensions. In this section, we reduce this dras-
tically by embedding into aconstantnumber of dimensions.

Theorem 2.5. Every doubling tree metric embeds into`O(1)p withO(1) distortion for everyp 2 [1;1].
The proof again proceeds by edge-coloring the treeT =(V;E), this time withO(1) colors; of course, the coloring

can no longer be proper, and we will have to reanalyze the
embedding. We will still make use of the ideas given in
Lemmas 2.1 and 2.3. In particular, we edge-color the tree
using only colors from a setC of jCj = �O(log �) colors;
essentially, we apply algorithmBounded-Distortion with
an unbounded number of temporary colors (not fromC),
and at the end of each iteration we replace the temporary
colors by colors fromC. We prove here the unweighted case
and defer the extension to weighted trees to the full version.

Proof of unweighted case.For a pathp, let `(p) be the
length of p. A coloring � : V ! C will be called�-
reasonableif, for every pairu; v 2 V with x = lca(u; v),
there exists a colorc 2 C such that the following holds: IfPu is the set of paths betweenx andu which are coloredc,
andPv is the same forv, then���Pp2Pu `(p)�Pp2Pv `(p)��� � � � d(u; v):
It is straightforward that applying the embedding of
Lemma 2.1 to an�-reasonable coloring ofT with k col-
ors yields an embedding ofT into `kp with distortion at
most�. (In fact, the dimension can be reduced further toO( 1�2 log k) by using vectors�i that are near-orthogonal;
the details are omitted from this version of the paper.) Thus
it suffices to show thatT has an�-reasonable coloring.

We now color the edges ofT using algorithm
BOUNDED-D&D given in Figure 2.2. Let� be the dou-
bling constant ofT , and set� = 1=40�6 as in Theorem
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2.4. LetC be a set ofjCj = �3 log(68=�) = �O(log �) colors.
To complete the proof of Theorem 2.5 it suffices to show
that this algorithm produces an�=2-reasonable coloring�
of T using only colors fromC. To this end, Lemma 2.7
below shows that the algorithm can be implemented with
these few colors, and Lemma 2.8 proves that the coloring
the algorithm produces is�=4-reasonable.

We will make use of the following proposition.

Proposition 2.6. Along any root-leaf path, the edges that
are colored in iterationi have total length at most2ri. In
particular, `(p) � 2ri for every pathp 2 Pi.
Proof of Proposition 2.6.We can assumei > 1; the claim
is trivial for i = 1 since2r1 > diam(T ). For a leafv, letSi;v be the subset of edges alongPv that are actually colored
in iterationi. Consider the edge(x; y) of Si;v farthest from
the root, withy 2 Yi n Yi�1. Sincey 62 Yi�1, there existsy0 2 Yi�1 with d(y; y0) � ri�1 = 2ri, and furthermore,Si;v � Py n Py0 . It follows thatSi;v is contained in the
path betweeny andlca(y; y0), and thus its length is at mostd(y; lca(y; y0)) � d(y; y0) � 2ri.
Lemma 2.7. Step9 of algorithm Bounded-D&D can be
done greedily withjCj = �3 log(68=�).
Proof of Lemma 2.7.The proof idea is very simple: For
each pathp 2 Pi, it suffices to show that the number of
paths that areadjacentto p and were permanently colored
beforep is less thanjCj�1, and hence we can colorp greed-
ily. We will, in fact, show something slightly stronger: We
show that the number of pathsp0 2 P �i with p $ p0 is at
mostjCj�1. Letz 2 p be its endpoint farther from the root.
Let p0 2 P �i be adjacent top, and lety0 2 p0 \ Yi be the net
point that causedp0 to be colored (in some iteration no later
thani). We now split the pathsp0 into two types.

Type 1: `(p0) � 17� ri. In this case,y0 is close toz; quantitatively,d(z; y0) � `(p) + d(p; p0) + `(p0) �2ri + 16� ri + 17� ri < 34� ri. Hence each such pathp0 corre-
sponds to a distinct pointy0 2 B(z; 34� ri). But y0 belongs
to theri-netYi, so Proposition 1.1 implies that the number
of such pointsy0, and hence the number of pathsp0, is at
most�dlog 68=�e � jCj=2.

Type 2: `(p0) > 17� ri. These pathsp0 form hairs of
length at least17� ri in a comb centered atz. (Since we are
in a unit-weighted tree, we can truncate these paths to get
the correct length.) The distance of each hair from the cen-
ter z is d(z; p0) � `(p) + d(p; p0) � 2ri + 16� ri � 17� ri.
Lemma 2.2 implies thatX cannot have a1:01-bad �3-
comb, and thus the number of such hairs (and thus the num-
ber of pathsp0) is less than�4 � jCj=4.

Hence the total number of pathsp0 2 P �i that are adja-
cent to any single pathp 2 Pi is less than34 jCj � jCj � 1,
and we can extend the coloring top.

Lemma 2.8. AlgorithmBounded-D&D computes an�=4-
reasonable coloring.

Proof of Lemma 2.8.Let u; v 2 V with x = lca(u; v),
and assume without loss of generality thatt = d(x; u) �12d(u; v). Recall that� = 1=40�6 � 1=60; hence Theorem
2.4 guarantees a monochromatic pathp of length at least�t
betweenx andu. We will show that the lengths of all the
paths betweenx andv with color �(p) add up to at most�t=2, which immediately implies that� is �=4-reasonable,
as desired.

Consider any maximal monochromatic pathp0 betweenx andv with �(p) = �(p0), and leti0 be the iteration in
which p0 is colored. We claim thati0 > i0 + 2 wherei0 is
the maximum index such that2ri0 � �t. (We may assume
that�t � 1 and thusri0 � �t � 2ri0 .) Assuming this
claim, let us prove the lemma. For every such value ofi0,
Proposition 2.6 implies that the corresponding pathsp0 have
total length at most2ri0 ; now summing over all valuesi0 >i0+2 shows that the total length of paths having color�(p)
is at most

Pi0>i0+2 2ri0 � 4ri0+3 = ri0=2 < �t=2.
It remains to prove the claim. Assume for contradiction

thati0 � i0 + 2. We now have two cases, depending on the
iterationi at whichp was colored. The first case is wheni0 � i, and hencep0 2 P �i . Clearly,d(p; p0) � d(u; v) � 2t,
and Proposition 2.6 implies that�t � 2ri; putting the two
together givesd(p; p0) � 4�ri. Hencep; p0 are adjacent at
iteration i and cannot have the same color, which contra-
dicts the assumption that�(p) = �(p0). The second case
is wherei < i0 � i0 + 2, in which casep 2 P �i0 . A simi-
lar argument applies; sinced(p; p0) � 2t � 4�ri0 � 16� ri0 ,
we have thatp; p0 are adjacent at iterationi0, giving us the
desired contradiction.

3 Clustering
In this section, we give decomposition theorems (for gen-
eral metrics) whose performance behaves smoothly in terms
of their doubling dimension, yielding greatly improved re-
sults when the dimension is bounded.

3.1 The padded decomposition
First, we describe a useful low-diameter decomposition for
metric spaces. Under other guises, such decompositions
are the main tool in many embeddings, and have numerous
other applications.

For a metric space(X; d) and a subsetS � X , letdiam(S) denote the diameter of the submetric induced onS. LetP be the collection of all the partitions ofX . Given
a partitionP 2 P andx 2 X , define�P (x) = supft : 9C 2 P with B(x; t) � Cg:
Definition 3.1. An (r; ")-padded probabilistic decomposi-
tion of a metric(X; d) is a distribution� overP satisfying:
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Algorithm BOUNDED-D&D: (Initially all the edges are uncolored.)
1. setk = dlog2 diam(T )e andY0 = ;.
2. for i = 1; : : : ; k do
3. setri = 2k�i and letYi � Yi�1 beri-net ofT .
4. for every pointy 2 Yi n Yi�1 (in an arbitrary order)do
5. temporarily color all the uncolored edges inPy with a single new color.
6. letPi be the set of temporarily colored paths.
7. letP �i = Pi [ fall paths colored with a color fromCg.
8. remark pathsp1; p2 2 P �i areadjacent, writtenp1 $ p2, if d(p1; p2) � 16� ri.
9. recolor the (temporarily colored) paths inPi with colors fromC

such that�(p1) 6= �(p2) for all p1; p2 2 P �i with p1 $ p2.
Figure 2.3. Frugal edge-coloring of the tree T

1. Bounded diameter:diam(C) � r for every clusterC
in every partitionP in the support of�.

2. Padding:Pr�[�P (x) � "r] � 12 for all x 2 X .

Such decompositions have been given earlier for general
metrics, where1=" = O(log jX j). We show that such de-
compositions exist where" depends only on the doubling
dimension ofX . The probabilistic technique we use is in-
spired by the analysis of [7].

Theorem 3.2. Let (X; d) be a finite metric space. Then for
everyr > 0 there exists an(r; ")-padded probabilistic de-
composition ofX with 1=" � 64 dim(X).
Proof. For ease of notation, we construct a(4r; ")-padded
decomposition. LetN be anr-net ofX . Let � be a ran-
dom permutation onN , and choose a radiusR uniformly at
random from(r; 2r]. For eachy 2 N , define a clusterCy = �x 2 X : x 2 B(y;R) and�(y) < �(z)

for all z 2 N with x 2 B(z;R)	:
Clearly,diam(Cy) � 4r. Finally, letP = fCygy2N and
note it is a partition ofX becauseN is anr-net andR � r.

Now fix a point x 2 X and somet 2 [0; r]. LetW = B(x; 2r + t) \N , and note thatm = jW j � 8dim(T )
by Proposition 1.1. Arrange the pointsw1; : : : ; wm 2 W in
order of increasing distance fromx, and letIk be the inter-
val [d(x;wk)�t; d(x;wk)+t]. Let us say thatB(x; t) is cut
by a clusterCwk if Cwk \ B(x; t) 6= ; butB(x; t) * Cwk .
Finally, write Ek for the event thatwk is the minimal ele-
ment inW (according to�) for whichCwk \ B(x; t) 6= ;
andCwk cutsB(x; t). Then,Pr[B(x; t) is cut] � mXk=1Pr[Ek]= mXk=1Pr[R 2 Ik ] � Pr[Ek jR 2 Ik ]� mXk=1 2tr � 1k � 2tr (1 + lnm);

and the latter quantity is at most8tr dim(X). Finally, note
that whenB(x; t) is not cut, we have�P (x) � t. Settingt = 4r64 dimC(X) , we getPr[�P (x) � t] � 12 as desired.

3.2 Locality and dimension

Decompositions like that given by Theorem 3.2 have seen
numerous applications in recent years. Often, one wants
a small distribution, i.e. a multi-set ofm partitionsD =[P1; : : : ; Pm] such that the uniform distribution onD satis-
fies condition (2) of Definition 3.1.

Usually, this is accomplished by choosingm = �(logn)
independent partitions according to�; a Chernoff bound
then yields the desired result. Here, we show thatm =O(dim(X) log dim(X)) partitions suffice. The idea is to
use the Lovász Local Lemma along with some ideas bor-
rowed from [18] to exploit the locality of the padded de-
composition.

Theorem 3.3. For a metric space(X; d), let 1=" =512 dim(X). Then for anyr � 0, there exists a multi-
setD = [P1; : : : ; Pm] of m = O(dim(X) log dim(X))
partitions such that

1. For everyC 2 Smi=1 Pi, diam(C) � r.
2. If P is chosen uniformly fromD, then for allx 2 X ,PrP2D[�P (x) � "r] � 12 :

Proof of Theorem 3.3.Let r > 0 be fixed and let� be as in
Theorem 3.2 (note that� depends onr). Let P1; : : : ; Pm
be partitions ofX chosen according to� (for somem to
be chosen later). Forx 2 X , let Yx be the number ofPi
for which�Pi(x) � 2"r. The probability of the latter event
is at most18 according to the analysis of Theorem 3.2, and
thusEYx � m8 . Finally, letEmx be the event thatYx > m2 =4 EYx . A standard Chernoff bound (see e.g. [1]) shows thatPr[Emx ] � (9=10)m.
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Claim 3.4. If N is an"r-net inX thenPr hVy2N Emy i >0.

Notice that the above claim suffices to prove the Theo-
rem. Indeed, if�P (y) � 2"r for everyy 2 N , then by the
triangle inequality,�P (x) � "r for everyx 2 X .

In proving the claim, we will require the following sym-
metric form of the Lovász Local Lemma (see, e.g., [1]).

Lemma 3.5 (Lovász Local Lemma). Let A1; : : : ; An be
events in an arbitrary probability space. Suppose that eachAi is mutually independent of all but at mostd other eventsAj , and suppose thatPr[Ai] � p for all 1 � i � n. Ifep(d+ 1) � 1 thenPr[^ni=1Ai] > 0.

We now claim thatEmy is mutually independent of all
eventsEmy0 for which d(y; y0) > 4r. To see this, note that
every cluster formed under� (according to Theorem 3.2)
has diameter at mostr, thus no such cluster can simultane-
ously cutB(y; r) andB(y0; r); the claimed independence
follows.

It follows that we can upper bound the number of
events that are non-mutually independent ofEmy by d =jB(y; 4r) \ N j � dim(X)O(dim(X)) (by Proposition 1.1).
Now if Pr[Emy ] � 1e(d+1) , then the local lemma implies
Claim 3.4. But this is easily accomplished by choosing
somem = O(dim(X) log dim(X)).
4 Upper bounds for doubling metrics
4.1 Bourgain-style embeddings via nets
Here, we give a simple proof that doubling metrics em-
bed into Euclidean space withO(plogn) distortion. This
is based on Bourgain’s proof for general metrics, with the
added twist that we take distances from subsets ofnets,
rather than subsets of the entire metric. A full proof is de-
ferred to the full version.

Theorem 4.1. For any n-point doubling metric(X; d),
the distortion required to embedX into `2 is c2(X) =O(plogn).
Proof (sketch).For every scale2k; k 2 Z, construct a2k-
net ofX and define a map'k : X ! `2 by 'k(x) =p1=2jYkj (d(x;A))A2Yk , whereYk is the set of all subsets
of this2k-net. The final map is basically the normalized di-
rect sum of all such maps, i.e.�k2� 12 jYkj'k , though stan-
dard considerations must be made to achieve a distortion
which depends only onn and not the aspect ratio ofX .

It turns out that the dependence of the distortion ondim(X) in the above theorem is exponential, and its worst-
case performance is much worse than Bourgain’sO(log n)
bound. We will remedy this in the next section, using the
decomposition theorems of Section 3.

By adapting the analysis of the above proof we can prove
the following theorem. In order to reduce the dimension
to O(log n), we first bound the distortion among points in
certain nets using the Lovász Local Lemma, and then use it
to deduce a bound on the distortion among all points. The1 + � distortion is achieved by suitably modifying various
constants in the proof.

Theorem 4.2. For any fixed� > 0, every doubling metric(1 + �)-embeds intòO(logn)1 .

4.2 Embeddings via clustering

In this section, we obtain embeddings that degrade grace-
fully with the doubling dimension; these are based on the
decomposition theorems of Section 3. The next theorem
uses an embedding technique due to Rao [34]. Our analysis
requires considerably more effort since we must keep tight
control on the dimension of our embedding (this improves
the dimension of the host space by a factor of
(log n), say,
for doubling metrics, and is essential for Section 4.2.1).

Theorem 4.3. For any metric(X; d) and anyp 2 [1;1),cp(X) = O �dim(X) � (log n)min( 12 ; 1p )� :
Proof (outline). Let (X; d) be an arbitrary metric and fix a
valuer � 0. We discuss the casep = 2; the proof for other
values ofp is similar. We produce a map�r : X ! Rk withk = O(dim(X) log dim(X)) as follows. LetP1; : : : ; Pm
be the multi-set of decompositions guaranteed by Theo-
rem 3.3. Fix somei 2 f1; : : : ;mg, and for every clusterC 2 Pi, choose a valuesgn(C) 2 f�1;+1g uniformly at
random. Following Rao [34] (see also [29, Ch. 15]), define
the map'i : X ! R by'i(x) = XC2Pi sgn(C) � d(x;X n C):
Finally, set�r = 1pm ('1 � � � � � 'm).

Let " be as in Theorem 3.3, letNr be an"r64 -net, and setSr = ffx; yg 2 N2r : d(x; y) > rg. For fx; yg 2 Sr,
let Ex;y be the event thatjj�r(x) � �r(y)jj < 18"r. The
following lemma is deferred to the full version.

Lemma 4.4. Pr hVfx;yg2Sr Ex;yi > 0. In other words,

there exists a map�r such that for all fx; yg 2 Sr,jj�r(x)� �r(y)jj � 18"r.
For anyi 2 Z, let �(i) = �2i , and set� = Li2Z�(i).

The proof that� satisfies the statement of Theorem 4.3 ap-
pears in the full version.
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4.2.1 Assouad’s Theorem

Recall that for0 < � � 1, (X; d�) is the metric that arises
from a metric(X; d) by raising all distances to the power�.
In his seminal paper [2], Assouad proved the following (per-
haps surprising) result: For any doubling metric, and every
fixed 0 < � < 1, there exist constantsk andD (depend-
ing only on the doubling constant ofX) such that(X; d�)
embeds intòk2 with distortion at mostD.

Although Assouad’s proof is easily converted to an al-
gorithm, the parametersk andD grow exponentially withdim(X). We present an algorithmic version based on the
formation of coordinates in Section 4.2 and a trick of As-
souad [2] to avoid interaction between scales. The valuesk
andD that we achieve are both nearly linear indim(X).
Theorem 4.5. Let (X; d) be an arbitrary metric, and fix
a value 0 < � < 1. Then there exist valuesk =O(dim(X) log dim(X)) andD = O(dim(X)) such that(X; d�) can be embedded intòk2 with distortion at mostD.

We now show the construction of the embedding. A
proof is deferred to the full version. Letm = m(�), choosefe1; : : : ; emg to be an orthonormal basis ofRm , and extend
it to an infinite periodic sequencefeigi2Z. Now simply de-
fine� : X ! Rk by�(x) =Xi2Z2�i�(i)(x)
 ei:
5 Lower bounds on distortion
In this section we show that the dependence onn in the
upper bounds of Theorems 4.1 and 4.3 is necessary. In fact,
the next theorem shows that for Euclidean embeddings (p =2) of doubling metrics, the aforementioned upper bounds
are existentially tight. (It extends easily to a tight lower
bound for any fixedp � 2.)

Theorem 5.1. There exists a family of metrics(Gk; dk)
which are uniformly doubling and series-parallel, such thatc2(Gk) = 
(plog jGkj).

We now describe the metrics(Gk; dk); they are shortest
path metrics on weighted series-parallel graphs.G0 consists
of a single edge of weight 1.Gk+1 is obtained fromGk
by replacing every edge in(u; v) in Gk with the six-edge
configuration shown in Figure 5.4. The weight of each new
edge is4�k. It is easy to see that(Gk; dk) is a submetric of(Gk+1; dk+1).

In [20, 21] it is shown that a similar family of metrics is
uniformly doubling (see [22] for a very simple proof). The
lower bound follows from an appropriate Poincaré inequal-
ity whose basis is the following geometric fact: For any six
pointss; t; a; b; c; d 2 L2, we havejjs� tjj2 + jjb� djj2 � 4(jja� sjj2 + jjc� tjj2)+ 2(jja� bjj2 + jjb� cjj2 + jjc� djj2 + jjd� ajj2):

By summing appropriately weighted versions of this in-
equality over all six-point subsets corresponding to “copies”
of G1, it is possible to obtain a simple Poincaré inequality
which immediately yields the desired lower bound.

G1

G0

G2

G3

a

b

d

c ts

Figure 5.4. The lower bound graphs.

6 Discussion
Applications. We briefly mention several algorithmic ap-
plications of our results, deferring details to the final ver-
sion. Using the decomposition theorems in Section 3, we
can show that doubling metrics admit(k;plogn)-volume
respecting embeddings for allk; doubling metrics can also
be embedded into distributions ofdoublingtrees (HSTs of
bounded degree) with distortionO(log n), and they embed
into the line with constant average distortion. These results
can be used to improve approximation algorithms and on-
line algorithms for doubling metrics.

The approximation ratio of the minimum bandwidth (lin-
ear ordering) problem can be improved using our results toO(log2 n) for doubling trees andO(log3 n) for general dou-
bling graphs, improving over the general case by

plogn
and

plog logn factors respectively. Furthermore, our tree
coloring in conjunction with a modification of [12] show
that the bandwidth of a graph with local density� is at mostO(�1:5 log2 n).

Distance-labelingsof graphs assign labels to vertices so
that the distance between two vertices can be computed (ap-
proximately) from their labels alone. For simplicity, assume
that all pairwise distances are integers and are bounded by�. Theorem 4.2 can then be used to give labels for dou-
bling metrics withO(log n log�) bits, allowing to approx-
imate the distances within a(1 + �) factor. This has an ex-
ponential dependence ondim(X), which can be improved
toO(dim(X) log� logn ( 4� )dim(X)) bits per label for any0 < � < 1, using techniques from Section 3.

Finally, the techniques of Section 3 can be used to exhibit
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anO(dim(T ))-approximation for the 0-extension problem
where(T; d) is the metric on terminals.

Dimensionality reduction. In previous sections, we stud-
ied the distortion of general metrics in terms of their dou-
bling dimension. Here, let us consider ann-point setX � `n2 with dim(X) = O(1). In other words, al-
thoughX inhabits some high-dimensional space, it looks
very low-dimensional in terms of volume. The Johnson-
Lindenstrauss flattening lemma [16] tells us that there is a1 + � embedding ofX into `O(��2 log n2 ). We pose the fol-
lowing intriguing question which was asked independently
in [22].

Question 1. Can every doubling submetric of`2 beO(1)-
embedded intòO(1)2 ?

It can be shown that no linear projection can achieve
such a result (as in [16]), but there are a number reasons to
believe that its resolution might be positive; these are dis-
cussed in the full version.
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