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Abstract

We study themulticommodity rent-or-buy problem, a
type of network design problem with economies of scale.
In this problem, capacity on an edge can berented, with
cost incurred on a per-unit of capacity basis, orbought,
which allows unlimited use after payment of a large fixed
cost. Given a graph and a set of source-sink pairs, we seek a
minimum-cost way of installing sufficient capacity on edges
so that a prescribed amount of flow can be sent simultane-
ously from each source to the corresponding sink. The first
constant-factor approximation algorithm for this problem
was recently given by Kumar et al. (FOCS ’02); however,
this algorithm and its analysis are both quite complicated,
and its performance guarantee is extremely large.

In this paper, we give a conceptually simple 12-
approximation algorithm for this problem. Our analysis of
this algorithm makes crucial use ofcost sharing, the task of
allocating the cost of an object to many users of the object
in a “fair” manner. While techniques from approximation
algorithms have recently yielded new progress on cost shar-
ing problems, our work is the first to show the converse—
that ideas from cost sharing can be fruitfully applied in the
design and analysis of approximation algorithms.

1 Introduction
We study themulticommodity rent-or-buy(MRoB) prob-
lem. In this problem, we are given an undirected graphG = (V;E) with non-negative weightsce on the edges and
a setD = f(s1; t1); : : : ; (sk; tk)g of vertex pairs calledde-
mand pairs. We seek a minimum-cost way of installing suf-
ficient capacity on the edgesE so that a prescribed amount
of flow can be sent simultaneously from each sourcesi to
the corresponding sinkti. The cost of installing capacity on�Department of Computer Science, Carnegie Mellon University, Pitts-
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an edge is given by a simple concave function: capacity can
berented, with cost incurred on a per-unit of capacity basis,
or bought, which allows unlimited use after payment of a
large fixed cost. Precisely, there are positive parameters�
andM , with the cost of renting capacity equal to� times
the capacity required (per unit length), and the cost of buy-
ing capacity equal toM > � (per unit length). By scaling,
there is no loss of generality in assuming that� = 1.

TheMRoB problem is a simple model of network design
with economies of scale, and is a central special case of the
more generalbuy-at-bulk network designproblem, where
the cost of installing capacity can be described by an arbi-
trary concave function. In addition, theMRoB problem nat-
urally arises as a subroutine in multicommodity versions of
theconnected facility locationproblem and themaybecast
problem of Karger and Minkoff [21]; see [24] for further
details on these applications.

TheMRoB problem is easily seen to be NP- and MAX
SNP-hard—for example, it contains the Steiner tree prob-
lem as a special case [8]—and researchers have therefore
sought approximation algorithms for the problem. For
many years, the best known performance guarantee for
MRoB was theO(logn log logn)-approximation algorithm
due to Awerbuch and Azar [3] and Bartal [5], wheren =jV j denotes the number of nodes in the network. The first
constant-factor approximation algorithm for the problem
was recently given by Kumar et al. [24]. However, both
the analysis and the primal-dual algorithm of [24] are quite
complicated, and the performance guarantee shown for the
algorithm is extremely large.1 The problem of obtaining an
algorithm with constant performance guarantee forMRoB
while using only a transparent algorithm and/or obtaining a
reasonable constant has since remained open.

In a separate recent development, Gupta et al. [19]
showed that extremely simple randomized combinatorial al-
gorithms suffice to achieve best-known performance guar-
antees for several network design problems, including the
single-sinkspecial case ofMRoB in which all sink ver-

1While this constant was neither optimized nor estimated in [24], the
approach of that paper only seems suitable to proving a performance guar-
antee of at least several hundred.
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tices ti are identical. However, the analysis of [19] re-
quired that the underlying “buy-only” problem (such as
the Steiner tree problem for the single-sink special case of
MRoB) admit a good greedy approximation algorithm (e.g.,
the MST heuristic for Steiner tree, with Prim’s MST algo-
rithm). Since the “buy-only” version of theMRoB prob-
lem is the Steiner forest problem (see e.g. [1]), for which no
greedy algorithm is known, it was not clear if the techniques
of [19] could yield good algorithms forMRoB.

Our Results: We show how a nontrivial extension of the
randomized framework of [19] gives a 12-approximation al-
gorithm forMRoB. The algorithm is conceptually very sim-
ple: it picks a random subset of the source-sink pairs, buys a
set of edges spanning these chosen pairs, and greedily rents
paths for the other source-sink pairs.

Our analysis of the algorithm is based on a novel connec-
tion between approximation algorithms andcost sharing,
the task of allocating the cost of an object to many users of
the object in a “fair” manner. This connection, rather than
our specific results, is arguably the most important contri-
bution of this paper.

Cost sharing has been extensively studied in the eco-
nomics literature (see e.g. [31]); more recently, techniques
from approximation algorithms have yielded new progress
in this field, see e.g. [20]. We believe the present work to be
the first showing the converse, that ideas from cost sharing
can lead to better approximation algorithms. A second key
ingredient for our result is a simple but novel extension of
the primal-dual algorithms of Agrawal et al. [1] and Goe-
mans and Williamson [15] for the Steiner forest problem.

Our performance guarantee of 12 is almost certainly not
the best achievable for theMRoB problem, but it is far bet-
ter than any other approximation ratio known for a network
design problem exhibiting economies of scale, with the ex-
ception of the single-sink special case ofMRoB (for which
a 3.55-approximation is known [19]). Single-sink buy-at-
bulk network design, where all commodities share a com-
mon sink but the cost of installing a given amount of capac-
ity can essentially be an arbitrary concave function, is only
known to be approximable to within a factor of 73 [19].
Keeping the single-sink assumption and placing further re-
strictions on the function describing the cost of capacity
yields theAccess Network Designproblem of Andrews and
Zhang [2], for which the best known approximation ratio is
68 [26]. (There are no known constant-factor approxima-
tion algorithms for the multicommodity versions of these
two problems.) The previous-best performance guarantee
for MRoB was still larger, at least several hundred [24]. The
present work is thus the first to suggest that restricting the
capacity cost function could yield a more tractable special
case of multicommodity buy-at-bulk network design than
the popular assumption that all commodities share a com-
mon sink.

Related Work: As stated above, the only previous
constant-factor approximation algorithm for theMRoB
problem studied in this paper is due to Kumar et al. [24].
Additional papers that considered multicommodity network
design with economies of scale are Awerbuch and Azar [3],
Bartal [5], and Fakcharoenphol et al. [11], whose work
gives anO(log n)-approximation for the more general mul-
ticommodity buy-at-bulk problem. The special case of
MRoB where all commodities share the same sink, and
the closely relatedconnected facility locationproblem,
have been extensively studied [18, 19, 21, 22, 23, 27, 29].
The randomized 3.55-approximation algorithm of Gupta et
al. [19] is the best known approximation algorithm for the
problem. Swamy and Kumar [29] achieve a performance
guarantee of 4.55 with a deterministic algorithm. Several
more general problems that retain the single-sink assump-
tion have also been intensively studied in recent years, in-
cluding the Access Network Design problem [2, 16, 17, 26],
the single-sink buy-at-bulk network design problem [13, 17,
19, 28, 30], and the still more general problems where the
capacity cost function can be edge-dependent [10, 25] or
unknown to the algorithm [14]. The best known approxi-
mation ratios for these four problems are 68 [26], 73 [19],O(log n) [10, 25], andO(log n) [14], respectively.

Finally, our high-level algorithm of randomly reducing
theMRoB problem to the Steiner forest problem, followed
by computing shortest paths, is similar to and partially in-
spired by previous work that gave online algorithms with
polylogarithmic competitive ratios for many rent-or-buy-
type problems [4, 6, 7].

2 Approximation via Cost Sharing
In this section we show how an appropriate cost-sharing
scheme gives a good approximation algorithm forMRoB.
We will give such a cost-sharing scheme in the technical
heart of the paper, Sections 3 and 4.

In Subsection 2.1, we define our desiderata for cost
shares. We give the main algorithm in Subsection 2.2, and
its analysis in Subsection 2.3.

2.1 Some Definitions

We now describe precisely what we mean by a cost-sharing
method, as well as the additional properties required by our
application. Cost-sharing methods can be defined quite gen-
erally (see e.g. [31]); here, we take a narrower approach. In
preparation for our first definition, recall that an instance
of MRoB is defined by a weighted undirected graphG (we
leave the weight vectorc implicit) and a setD of demand
pairs. By aSteiner forestfor (G;D), we mean a subgraphF of G so that, for each demand pair(s; t) 2 D, there is
ans-t path inF . For such a subgraphF , c(F ) =Pe2F ce
denotes its overall cost. Since we are only interested in so-



lutions with small cost and edge costs are non-negative, we
can always assume thatF is a forest.

The next definition states that a cost-sharing method is
a way of allocating cost to the demand pairs of an instance(G;D), with the total cost bounded above by the cost of an
optimal Steiner forest for(G;D).
Definition 2.1 A cost-sharing methodis a non-negative
real-valued function� defined on triples(G;D; (s; t)), for
a weighted undirected graphG, a setD of demand pairs,
and a single demand pair(s; t) 2 D. Moreover, for every
instance(G;D) admitting a min-cost Steiner forestF �D,X(s;t)2D�(G;D; (s; t)) � c(F �D):

Definition 2.1 permits some rather uninteresting cost-
sharing methods, such as the function that always assigns
all demand pairs zero cost. The key additional property that
we require of a cost-sharing method is that, intuitively, it
allocates costs to each demand pair commensurate with its
distance from the edges needed to connect all of the other
demand pairs. Put differently, no demand pair can be a “free
rider”, imposing a large burden in building a Steiner forest,
but only receiving a small cost share. We call cost sharing
methods with this propertystrict.

To make this idea precise, we require further notion. LetdG(�; �) denote the shortest-path distance inG (w.r.t. edge
costs inG). Given a subsetE0 � E of edges,G=E0 is
the graph obtained fromG by contracting the edges inE0.
Note that the cheapest way of connecting verticess andt
by renting edges, given that edgesE0 have already been
bought, is preciselydG=E0(s; t). Our main definition is then
the following.

Definition 2.2 Let A be a deterministic algorithm that,
given instance(G;D), computes a Steiner forest. A cost-
sharing method� is �-strict for A if for all (G, D) and(s; t) 2 D, the cost�(G;D; (s; t)) assigned to(s; t) by� is
at least a1=� fraction ofdG=F (s; t), whereF is the Steiner
forest returned for(G;D n f(s; t)g) by algorithmA.2

It is not cleara priori that strict cost-sharing methods
with small� exist: Definition 2.1 states that the aggregate
costs charged to demand pairs must be reasonable, while
Definition 2.2 insists that the cost allocated to each demand
pair is sufficiently large.

We note that strict cost-sharing methods are somewhat
reminiscent of some central concepts in cooperative game
theory, such as thecore and thenucleolus(see e.g. [31]).
However, we are not aware of any precise equivalence be-
tween strict cost-sharing methods and existing solution con-
cepts in the game theory literature.

2A cost-sharing method (which is defined independent of any Steiner
forest algorithm) can be�-strict for one algorithm and not for another,
as strictness depends on the distancedG=F (s; t), and the edge setF is
algorithm-dependent.

2.2 The Algorithm SimpleMROB
We now state the main algorithm. In employs as a subrou-
tine a Steiner forest algorithmA, which in our implementa-
tion will be a constant-factor approximation algorithm. No
cost-sharing method is needed for the description or imple-
mentation of the algorithm; cost shares arise only in the
algorithm’s analysis. We assume for simplicity that each
source-sink pair wants to route a single unit of flow. This
assumption is not hard to remove (details are deferred to the
full version).

1. Mark each pair(si; ti) with probability1=M , and letDmark be the set of marked demands.

2. Construct a Steiner forestF onDmark using algorithmA, andbuyall edges inF .

3. For each(si; ti) pair outsideDmark, rent edges to
connectsi and ti in a minimum-cost way (at costdG=F (s; t)).

2.3 Proof of Performance Guarantee
We now state the main theorem of this section: a constant-
factor approximation algorithm for Steiner forest with an
accompanyingO(1)-strict cost-sharing method yields a
constant-factor approximation algorithm forMRoB. The
proof is an extension of the techniques of [19], where the
connection to cost sharing was not explicit and only sim-
pler network design problems were considered.

Theorem 2.3 SupposeA is an�-approximation algorithm
for the Steiner forest problem that admits a�-strict cost
sharing method. Then algorithmSimpleMROB, employ-
ing algorithmA as a subroutine in Step (2), is an(� + �)-
approximation algorithm for the multicommodity rent-or-
buy problem.

Proof: Fix an arbitrary instance ofMRoB with an optimal
solutionOPT, and letZ� denote the cost ofOPT. LetB�
denote the cost of the bought edgesEb in OPT, andR� the
cost of the rented edgesEr. (Note thatB� = Mc(Eb),
andR� =Pe2Er cex�e , wherex�e is the amount of capacity
thatOPT reserves on edgee, or equivalently the number of
demand pairs that usee to route their flow). It suffices to
show that algorithmSimpleMROB incurs an expected cost
of at most�Z� in Step (2) and at most�Z� in Step (3). We
prove each of these bounds in turn.

For the first bound, it suffices to show that:E � cost of buying a min-cost Steiner forest on

the (random) set of demand pairsDmark � � Z�:
(2.1)

To prove this, it suffices to exhibit a (random) subgraph ofG that spans the vertices ofDmark that has expected cost at



mostZ�=M . To construct this subgraph, include all edges
of Eb, and every edgee of Er for which some demand pair
usinge in OPT is marked. The cost of the edges inEb is
deterministicallyB�=M . For each edge inEr, the expected
cost of including it isce�1=M�x�e = cex�e=M , since each
of thex�e demand pairs usinge in OPT contributes1=M to
the probability ofe being included. Summing over all edges
ofEr, the expected cost of including edges ofEr isR�=M ;
sinceZ� = B� +R�, inequality (2.1) is proved.

We now bound the expected cost incurred in Step (3).
We will say that demand pair(s; t) incurs buying costBi = �(G;Dmark; (s; t)) and renting costRi = 0 if(s; t) 2 Dmark, and buying costBi = 0 and renting costRi = dG=F (s; t) otherwise.

For a demand pair(si; ti), let Xi = Ri � �Bi denote
the random variable equal to the renting cost of this pair
minus� times its buying cost. We next condition on the
outcome of all of the coin flips in Step (1) except that for(si; ti). Since� is �-strict forA, this conditional expecta-
tion is at most 0. Since this inequality holds for any out-
come of the coin flips for demand pairs other than(si; ti),
it also holds unconditionally:E[Xi] � 0. Summing over
all i and applying linearity of expectations, we find thatE [PiRi] � � E [PiBi]. The left-hand side of this inequal-
ity is precisely the expected cost incurred in Step (3) of the
algorithm. By Definition 2.1, the sum

PiBi is at most the
cost of the min-cost Steiner forest on the setDmark of de-
mands; by (2.1), it follows thatE [Pi Ri] is at most�Z�,
and the proof is complete.

In Sections 3 and 4, we will give a 6-approximation al-
gorithm for Steiner forest that admits a 6-strict cost sharing
method. The main theorem of the paper is then a direct con-
sequence of Theorem 2.3.

Theorem 2.4 There is a 12-approximation algorithm for
MRoB.

3 The Steiner Forest Algorithm
We first motivate the algorithm. Linear programming du-
ality is well known to have an economic interpretation,
and moreover to be useful in cost sharing applications (see
e.g. [20] for a recent example). It is therefore natural
to expect strict cost-sharing methods to fall out of exist-
ing primal-dual approximation algorithms for the Steiner
forest problem, such as those by Agrawal et al. [1] and
Goemans and Williamson [15]. In particular, one might
hope that taking the subroutineA of algorithmSimpleM-
ROB to be such a primal-dual algorithm, and defining the
cost shares� according to the corresponding dual solution,
would be enough to obtain a constant-factor approximation
for MRoB.

Unfortunately, we have found examples showing that
naive implementations of this idea cannot give�-strict cost-

sharing methods for any constant�. On the other hand,
in these families of examples, anO(1)-strict cost-sharing
method can be defined if a few extra edges are bought. (Ex-
tra edges make Definition 2.2 easier to satisfy, since the
shortest-path distancedG=F relative to the bought edgesF
decreases.) Our main technical result is that buying a few
extra edges beyond what is advocated by the algorithms
of [1, 15] always sufficesfor defining anO(1)-strict cost-
sharing method, enabling the application of Theorem 2.3.

3.1 The Algorithm PD and the Cost Shares�
In this subsection we show how to extend the algorithms
of [1, 15] to “build a few extra edges” while remaining
constant-factor approximation algorithms for the Steiner
forest problem. We also describe our cost-sharing method.

Recall that we are given a graphG = (V;E) and a
setD of source-sink pairsf(si; ti)g. Let D be the set of
demands— the vertices that are either sources or sinks inD (without loss of generality, all demands are distinct). It
will be convenient to associate a cost share�(D; j) with
each demandj 2 D; the cost share�(G;D; (s; t)) is then
just�(D; s) + �(D; t). Note that we have also dropped the
reference toG; in the sequel, the cost shares are always
w.r.t.G.

Before defining our algorithm, we review the LP relax-
ation and the corresponding LP dual of the Steiner forest
problem that was used in [15]:minPecexe (LP)x(Æ(S)) � 1 8 valid S (3.2)xe � 0maxPSyS (DP)PS�V :e2Æ(S) yS � ce (3.3)yS � 0;
where a setS is valid if for somei, it contains precisely one
of si; ti.

We now describe a general way to define primal-dual al-
gorithms for the Steiner forest problem. As is standard for
the primal-dual approach, the algorithm will maintain a fea-
sible (fractional) dual, initially the all-zero dual, and apri-
mal integral solution (a set of edges), initially the empty
set. The algorithm will terminate with a feasible Steiner
forest, which will be proved approximately optimal with the
dual solution (which is a lower bound on the optimal cost
by weak LP duality). The algorithms of [1, 15] arise as a
particular instantiation of the following algorithm. Our pre-
sentation is closer to [1], where the “reverse delete step” of
Goemans and Williamson [15] is implicit; this version of
the algorithm is more suitable for our analysis.



Our algorithm has a notion oftime, initially 0 and in-
creasing at a uniform rate. At any point in time, some de-
mands will beactiveand othersinactive. All demands are
initially active, and eventually become inactive. The vertex
set is also partitioned intoclusters, which can again be ei-
ther active or inactive. In our algorithm, a cluster will be
one or more connected components w.r.t. the currently built
edges. A cluster is defined to be active if it contains some
active demand, and is inactive otherwise.

Initially, each vertex is a cluster, and the demands are the
active clusters. We will consider different rules by which
demands become active or inactive. To maintain dual fea-
sibility, whenever the constraint (3.3) for some edgee be-
tween two clustersS andS0 becomes tight (i.e., first holds
with equality), the clusters aremergedand replaced by the
clusterS [ S0. We raise dual variables of active clusters
until there are no more such clusters.

We have not yet specified how an edge can get built. To-
ward this end, we define a (time-varying) equivalence rela-
tionR on the demand set. Initially, all demands lie in their
own equivalence class; these classes will only grow with
time. When two active clusters are merged, we merge the
equivalence classes of all active demands in the two clus-
ters. Since inactive demands cannot become active, this rule
ensures that all active demands in a cluster are in the same
equivalence class.

We build edges to maintain the following invariant: the
demands in the same equivalence class are connected by
built edges. This clearly holds at the beginning, since
the equivalence classes are all singletons. When two ac-
tive clusters meet, the invariant ensures that, in each clus-
ter, all active demands lie in a common connected compo-
nent. To maintain the invariant, we join these two com-
ponents by adding a path between them. Building such
paths without incurring a large cost is simple but some-
what subtle; Agrawal et al. [1] (and implicitly, Goemans and
Williamson [15]) show how to accomplish it. We will not
repeat their work here, and instead refer the reader to [1].

Remark 3.1 For the reader more familiar with the exposi-
tion of Goemans and Williamson [15], let us give an (in-
formal) alternate description of the network output by the
algorithm given above. Specifically, we grow active clus-
ters uniformly, and whenany two clusters merge, we build
an edge between them. At the end, we perform a reverse-
delete step—when looking at an edgee, if e lies on the path
between somex andy with (x; y) in the final relationR,
then we keep the edge, else we delete it. We assert that the
network output by this algorithm is the same as that of the
original algorithm.

Specifying the rule by which demands are deemed active
or inactive now gives us two different algorithms:

1. Algorithm GW(G;D): A demandsi is active if the

current cluster containing it does not containti. This
implementation of the algorithm is equivalent to the
algorithms of Agrawal et al. [1] and Goemans and
Williamson [15].

2. Algorithm Timed(G;D; T ): This algorithm takes as
an additional input a functionT : V ! R�0 which
assigns astopping timeto each vertex. (We can also
view T as a vector with coordinates indexed byV .) A
vertexj is active at time� if j 2 D and� � T (j). (T
is defined for vertices not inD for future convenience,
but such values are irrelevant.)

To get a feeling forTimed(G;D; T ), consider the fol-
lowing procedure: run the algorithmGW(G;D) and setTD(j) to be the time at which vertexj becomes inactive
during this execution. (Ifj =2 D, thenTD(j) is set to zero.)
Since the period for which a vertex stays active in the two
algorithmsGW(G;D) andTimed(G;D; TD) is the same,
they clearly have identical outputs.

TheTimed algorithm gives us a principled way to essen-
tially force theGW algorithm to build additional edges: run
theTimed algorithm with a vector of demand activity times
larger than what is naturally induced by theGW algorithm.

The Algorithm PD: The central algorithm,AlgorithmPD(G;D) is obtained thus: runGW(G;D) to get the time
vectorTD; then runTimed(G;D; 
TD)—the timed algo-
rithm with theGW-induced time vector scaled up by a pa-
rameter
 � 1—to get a forestFD. (We will fix the value
of 
 later in the analysis.)

We claim that the outputFD of this algorithm is a feasi-
ble Steiner network forD. Intuitively, this is true becauseTimed(G;D; 
TD) only builds more edges thanGW(G;D)
for 
 � 1. We defer a formal proof to the full version. We
now define the cost shares�.

The Cost Shares�: For a demandj 2 D, the cost share�(D; j) is the length of time during the runGW(G;D) in
which j was the only active vertex in its cluster. Formally,
let a(j; �) be the indicator variable for the event thatj is the
only active vertex in its cluster at time� ; then�(D; j) = R a(j; �) d�; (3.4)

where the integral is over the execution of the algorithm.
In the sequel, we will prove our main technical result:

Theorem 3.2 PD is a � = 2
-approximation for the
Steiner network problem, and� is a� = 6
=(2
�3)-strict
cost-sharing method forPD.

Setting
 = 3 then gives us a6-approximation algorithm
that admits a6-strict cost-sharing method, as claimed in
Theorem 2.4.



4 Outline of Proof of Theorem 3.2
We first show that algorithmPD is a2
-approximation al-
gorithm for Steiner forest. We begin with a monotonicity
lemma stating that the set of edges made tight by algorithmPD is monotone in the parameter
. We omit its proof.

Lemma 4.1 LetT andT 0 be two time vectors withT (j) �T 0(j) for all demandsj 2 D. Then at any time� , the
set of tight edges inTimed(G;D; T ) is a subset of those inTimed(G;D; T 0).

We can now outline the proof of the claimed approxima-
tion ratio.

Lemma 4.2 The cost of the Steiner forestFD con-
structed by algorithmPD for instance(G;D) is at most2
PS yS � 2
 c(F �D), whereF �D is an optimal Steiner
forest for(G;D).
Proof: Let fySg be the dual variables constructed
by GW(G;D). If a(�) is the number of active clusters at
time � during this run, then

PS yS = R a(�)d� .
Similarly, let a0(�) be the number of active clusters at

time � during the execution ofTimed(G;D; 
TD), andfy0Sg be the dual solution constructed by it. As above,PS y0S = R a0(�)d� .
First, we claim that the cost ofFD is at most2PS y0S .

This follows from the arguments in Agrawal et al. [1],
since our algorithm builds paths between merging clusters
as in [1].

We next relate
PS y0S to the cost of an optimal Steiner

forest, via the feasible dual solutionfySg. Toward this end,
we claim thata0(
�) � a(�). Indeed, letC1; : : : ; Ck be
the active clusters inTimed(G;D; 
TD) at time
� . Each
active cluster must have an active demand – let these bej1; : : : ; jk. By the definition ofTD, these demands must
have been active at time� inGW(G;D), and by Lemma 4.1,
no two of them were in the same cluster at this time. With
this claim in hand, we can deriveZ a0(�)d� = 
 Z a0(
�)d� � 
 Z a(�)d� � 
XS yS :
Since

PS yS is a lower bound on the optimal costc(F �D)
(by LP duality), the lemma is proved.

Is is also easy to show that� is a cost-sharing method in
the sense of Definition 2.1.

Lemma 4.3 The function� satisfiesX(s;t)2D�(G;D; (s; t)) = Xj2D �(D; j) �XS yS � c(F �D):
Proof: For all � ,

Pj a(j; �) � a(�), since each ac-
tive cluster can have at most one demandj with non-zeroa(j; �). Thus

R Pj a(j; �)d� � R a(�)d� =PS yS .

4.1 Outline of Proof of Strictness
We first recall some notation we will use often. The algo-
rithm PD(G;D) first runsGW(G;D) to find a time vec-
tor TD, and then runsTimed(G;D; 
TD) to build a for-
est FD. Let (s; t) be a new source-sink pair. DefineD0 = D [ f(s; t)g, D0 = D [ fs; tg, andTD0 by the time
vector obtained by runningGW(G;D0). Our sole remain-
ing hurdle is the following theorem, asserting the strictness
of our cost-sharing method� for the algorithmPD.

Theorem 4.4 (Strictness)Let (s; t) be a source-sink pair62 D, and letD0 = D + (s; t) denote the demand set ob-
tained by adding this new pair toD. Then the length of the
shortest pathdG=FD (s; t) betweens and t in G=FD is at
most�(�(D0; s) + �(D0; t)), where� = 6
=(2
 � 3).
4.1.1 Simplifying our goals

The main difficulty in proving Theorem 4.4 is that the
addition of the new pair(s; t) may change the behav-
ior of primal-dual algorithms for Steiner forest in fairly
unpredictable ways. In particular, it is difficult to ar-
gue about the relationship between the two algorithms we
care about: (1) the algorithmTimed(G;D; 
TD) that gives
us the forestFD, and (2) the algorithmGW(G;D0) =Timed(G;D0; TD0) that gives us the cost-shares. The dif-
ficulty of understanding the sensitivity of primal-dual algo-
rithms to small perturbations of the input is well known, and
has been studied in detail in other contexts by Garg [12] and
Charikar and Guha [9].

In this section, we apply some transformations to the in-
put data to partially avoid the detailed analyses of [9, 12].
In particular, we will obtain a new graphH from G
(with analogous demand setsDH and D0H ), as well as
a new time vectorTH so that it now suffices to relate
(1’) the algorithmTimed(H;DH ; 
TH) and (2’) the algo-
rithm Timed(H;D0H ; TH). In the rest of this section, we
will define the new graph and time vector; Section 4.1.2 will
show that this transition is kosher, and then Sections 4.1.3
and 4.3 will complete the argument.

A simpler time vector T : To begin, let us note that the
time vectorsTD andTD0 may be very different, even though
the two are obtained from instances that differ only in the
presence of the pair(s; t). However, a monotonicity prop-
erty doeshold till time TD0(s) = TD0(t), as the following
lemma shows:

Lemma 4.5 The set of tight edges at time� � TD0(s) dur-
ing the run of the algorithmGW(G;D) is a subset of the set
of tight edges at the same time inGW(G;D0).
Proof: Since� � TD0(s), boths andt are active at time� in GW(G;D0). Any cluster that has not merged yet with
clusters containings or t has the same behavior in both runs.
A cluster that merges with a cluster containings or t will



continue to grow. So compared withGW(G;D), only more
edges can get tight inGW(G;D0).
Corollary 4.6 Let T be the vector obtained by truncatingTD0 at time TD0(s), i.e., T (j) = min(TD0(j); TD0(s)).
Then for all demandsj 2 D, T (j) � TD(j).
Proof: If TD0(s) � TD(j), the claim clearly holds. IfTD(j) < TD0(s), then there is a tight path fromj to its
partner at timeTD(j). But the monotonicity Lemma 4.5
implies that these edges must be tight inGW(G;D0) at timeTD(j) as well, and henceT (j) = TD0(j) � TD(j).

The vectorT is now a time vector for which we can
say something interesting for both runs. Suppose we
were to now run the algorithmTimed(G;D; 
T ) as the
second step ofPD(G;D) (instead ofTimed(G;D; 
TD)
prescribed by the algorithm). By the monotonicity re-
sults in Lemma 4.1 and Corollary 4.6, the edges that are
made tight inTimed(G;D; 
T ) are a subset of those inTimed(G;D; 
TD). Hence it suffices to show that the
distance betweens and t in the forest resulting fromTimed(G;D; 
T ) is small; this is made precise by the fol-
lowing construction.

A simpler graph H : Let us look at the equivalence re-
lation defined by the run ofTimed(G;D; 
T ) over the
demands, which we shall denote byR. (Recall that forj1; j2 2 D, (j1; j2) 2 R if at some time� during the
run, they are both active and the clusters containing them
meet. Equivalently, at some time� , bothj1 andj2 are ac-
tive and some path between them becomes tight.) Simi-
larly, let the equivalence relationRD be obtained by run-
ning Timed(G;D; 
TD). Lemma 4.1 and Corollary 4.6
now imply that the former is a refinement of the latter, i.e.,R � RD. (Note that this also means that the equiva-
lence classes ofRD can be obtained by taking unions of
the equivalence classes ofR.)

SinceFD connects all the demands that lie in the same
equivalence class ofRD , the fact thatR � RD implies that
it connects up all demands in the same equivalence class inR as well. Hence, to show Theorem 4.4 that there is a shorts-t path inG=FD it suffices to show the following result.

Theorem 4.7 (Strictness restated)LetH be the graph ob-
tained fromG by identifying all the vertices that lie in the
same equivalence class ofR. Then the distance betweens
andt in H is at most�(�(D0; s) + �(D0; t)).
4.1.2 Relating the runs onG andH
We will need some new (but fairly obvious) notation: note
that each vertex inH either corresponds to a single ver-
tex in G, or to a subset of the demandsD that formed
an equivalence class ofR. The vertices of the latter type
are naturally called the demands inH , and denoted by

DH . The setD0H is just DH [ fs; tg. Each demandj 2 D0H has a setCj � D0 of demands that were identi-
fied to formj. A new time-vectorTH is defined by settingTH(s) = TH(t) = T (s) = T (t); furthermore, forj 2 DH ,
we setTH(j) = maxx2Cj T (x).
Going from Timed(G;D; 
TD) to Timed(H;DH ; 
TH):
Note thatH was obtained fromG by identifying some
demands; the edge sets ofG and H are exactly the
same. We now show that the two instances in some
sense behave identically. We denote the execution ofTimed(H;DH ; 
TH) byEEE .

We first require another monotonicity lemma, whose
proof we omit.

Lemma 4.8 For all 
 � 1, the set of tight edges
in Timed(H;DH ; 
TH) contains the tight edges
in Timed(G;D; 
T ). Similarly, the tight edges ofTimed(H;D0H ; 
TH) contain those inTimed(G;D0; 
T ).
Lemma 4.9 The set of tight edges in the two runsTimed(G;D; 
T ) andEEE at any time� are the same.

Proof: By Lemma 4.8, we know that the latter edges con-
tain the former; we just have to prove the converse. For a
demandj 2 DH , we claim that each demandx 2 Cj is in
some active cluster ofTimed(G;D; 
T ) till time 
TH(j).
Suppose not: letx 2 Cj be in an inactive cluster at time� < 
TH(j). By the definition of the equivalence relationR, no more demands are added to the equivalence class ofx (which isCj). But thenmaxy2Cj 
T (y) � � < 
TH(j),
a contradiction. Hence all demands inCj are in active clus-
ters till time
TH(j). Thus, in the runGW(G;D; 
T ), we
had grown regions around these demands till time� , giving
us the same tight edges as inEEE .

Corollary 4.10 For all 
 � 1, an active cluster at time� during the run ofEEE contains only one active demand. In
particular, two active clusters never merge during the entire
run of the algorithm.

Proof: Supposej 6= j0 2 DH are two active demands
in the same (active) cluster at time� . Let Cj andCj0 be
the corresponding sets of demands inD respectively. By
Lemma 4.9, the set of edges that become tight at time� is
the same as that inTimed(G;D; 
T ), and hence there must
be demandsx 2 Cj ; x0 2 Cj0 which lie in the same ac-
tive cluster ofTimed(G;D; 
T ) at time� . By an argument
identical to that in the proof of the previous lemma, there
must be active demandsy 2 Cj andy0 2 Cj0 in the same
cluster as well. HenceCj = C 0j by the definition of the
equivalence class, contradicting thatj 6= j0.

Note that this implies that the runEEE is very simple: each
demandj 2 DH grows a cluster around itself; though this
cluster may merge with inactive clusters, it never merges
with another active one.



Going from Timed(G;D0; TD0) to Timed(H;D0H ; TH):
Recall that the cost-shares�(D0; s) and�(D0; t) are defined
by runningGW(G;D0) = Timed(G;D0; T 0D) and using the
formula (3.4). The following lemma shows that it suffices
to look instead atTimed(H;D0H ; TH) in order to define
the cost-share. (LetEEE 0 be short-hand for the executionTimed(H;D0H ; TH).)
Lemma 4.11 In EEE 0, if s (respectively,t) is the only active
vertex in its cluster at time� , then a(s; �) = 1 (resp.,a(t; �) = 1) in the runTimed(G;D0; TD0).
Proof: Supposea(s; �) = 0 in Timed(G;D0; TD0), and
some active demandj 6= s lies in s’s cluster at time� .
By the definition ofT , j ands are both active in the same
cluster inTimed(G;D0; T ) as well. Now by Lemma 4.8,j ands must lie in the same cluster inEEE 0 too; furthermore,
they must both be active (by the definition ofTH). This
contradicts the assumption of the theorem.

Corollary 4.12 Letalone(s) be the total time in the runEEE 0
during whichs is the only active vertex in its cluster, and
definealone(t) analogously. Then�(D0; s) + �(D0; t) �alone(s) + alone(t).

A property similar to Corollary 4.10 can also be proved
about the runEEE 0.
Lemma 4.13 Let �st be the time at whichs and t become
part of the same cluster inEEE 0. For 
 � 2, any active cluster
at time� � �st in EEE 0 contains at most one active demand
fromDH , and at most one active demand from the setfs; tg.
Proof: Let C be an active cluster inEEE 0 at time � with
two active demandsj; j0 2 DH . If C contains neithers
nor t, thenC is also a cluster (with two active demands) inEEE at the same time� , which contradicts the implication of
Corollary 4.10.

HenceC must contain one ofs or t (in addition toj; j0);
it cannot contain both since� � �st. Suppose it hass; we
claim that we can prove thatj andj0 must lie in the same
cluster inEEE at time2 � . (For this to make sense, we have
to assume that
 � 2.) To prove this, consider a tight path
betweens andj in EEE 0 at time�—since they both lie in the
same cluster, such a path must exist. Sinces has been active
for time� , the portion of this path which is tight due to as’s
cluster has length at most� . Now consider the same path
in EEE at time� — all but a portion of length at most� of
this path must already be tight. (Note that though we have
dropped boths andt, we lose only� , since no part of the
path could have been made tight byt’s cluster. If this were
to happen, then�st < � , which is assumed not to happen.)
Hence the cluster containingj will contain s after another� units of time. The same argument can be made forj0. But
this would imply thatj andj0 would lie in the same cluster
in EEE at time2� , contradicting Corollary 4.10.

4.1.3 The path betweens and t
Lemma 4.14 The verticess andt lie in the same tree in the
Steiner forest output byEEE 0.
Proof: By the definition ofT , s and t lie in the same
cluster at timeT (s) = T (t). SinceTH(s) = TH(t) =T (s), applying Lemma 4.8 implies thats and t lie in the
same cluster inEEE 0 as well. Since they are both active at
the time their clusters merge, they lie in the same connected
component of the Steiner forest.

This simple lemma gives us a pathP betweens and t
in H whose length we will argue about. Note that this path
is already formed at time�st, and hence the rest of the ar-
gument can (and will) be done truncating the time vector at
time �st instead of atTH(s).

A useful fact to remember is that all edges inP must be
tight in the run ofEEE 0. The proof of the following theorem,
along with Corollary 4.12, will complete the proof of The-
orem 4.7.

Theorem 4.15 (Strictness restated again)The length of
the pathP is bounded by�(alone(s) + alone(t)).

We will prove the theorem with� = 6
=(2
�3). Before
we proceed, here is some more syntactic sugar:

Given an execution of an algorithm, alayer is a tuple(C; I = [�1; �2)), whereC � V is an active cluster be-
tween times�1 and�2. If I = [�1; �2) is a time interval, its
thicknessis �2 � �1. A layeringL of an execution is a set
of layers such that, for every time� and every active clusterC, there is exactly one layer(C; I) 2 L such that� 2 I .

Given any layeringL, another layeringL0 can be ob-
tained bysplitting some layer(C; I) 2 L—i.e., replac-
ing it with two layers (C; [�1; �̂)); (C; [�̂ ; �2)) for some�̂ 2 (�1; �2). Conversely, two layers with the same setC
and consecutive time intervals can be merged. It is easy to
see that given some layering of an execution, all other lay-
erings of the same execution can be obtained by splittings
and mergings.

We fix layerings of the two executionsEEE andEEE 0, which
we denote byL andL0 respectively. The only property we
desire of these layerings is this: if(C; I) 2 L and(C 0; I 0) 2L0 with 1=
I \ I 0 6= ;, thenI = 
I 0. (I.e.,I = [
�1; 
�2)
andI 0 = [�1; �2).) It is easy to see that such a condition can
be satisfied by making some splittings inL andL0.

Lemma 4.13 implies that each active layer(C; I) 2 L0
is categorized thus:� lonely: The only active demand inC is eithers andt.

Assignthe layer to that demand.� shared: C contains one active demand fromDH and
one ofs andt. The layer isassignedto the active de-
mand fromDH .



� unshared: The only active demand inC is fromDH .
Again, the layer isassignedto that demand.

Note that the total thickness of the lonely layers is a lower
bound onalone(s)+alone(t). Furthermore, sinceP consists
only of tight edges inEEE 0, the length ofP is exactly the total
thickness of the layers ofL0 thatP crosses. IfL, S, andU
denote the total thickness of the alone, shared and unshared
layers thatP crosses, thenlen(P) = L+ S + U (4.5)

Of course, any layer(C; I) 2 L0 that crossesP must haveI � [0; �st], since the path is tight at time�st. Hence their
corresponding layers have time intervals that lie in[0; 
�st].

Note that the total thickness of the layers ofL that P
crosses is a lower bound on its length. This suggests the
following plan for the rest of the proof: for each shared or
unshared layer inL0, there is a corresponding distinct layer
in L that is
 times thicker. In an ideal world, each crossing
of a layer inL0 would also correspond to a crossing of the
corresponding layer inL; in this case,
(S + U) � len(P),
and henceL � 
�1
 len(P). Sadly, we do not live in an ideal
world and the argument is a bit more involved than this,
though not by much.

Mapping shared and unshared layers ofL0: Each such
layer`0 = (C 0; I) is assigned to a demandj 2 DH \ C 0.
Sincej is active during the interval
I in EEE , there must be
a layer` = (C; 
I) 2 L containingj—this is defined to be
the layer corresponding tò0. (The properties of the layer-
ings ensure that the two time intervals are just rescalings of
each other by a factor
.) Furthermore, since each layer inL contains only one active vertex, the mapping is one-one.
It remains to show that crossings ofP by layers is preserved
(approximately) by this correspondence.

Lemma 4.16 Eachunshared layer̀0 = (C 0; I = [�1; �2))
is crossed byP either zero or two times. Furthermore, if its
corresponding layer is̀ = (C; 
I), thenC 0 � C.

Proof: SinceP begins and ends outside`0, it must cross`0 an even number of times. Furthermore,P cannot cross`0 more than twice—if it does so, there must exist verticesj1, j2, andj3 visited byP (in order), such thatj1; j3 2 C 0,
but j2 =2 C 0. However, our algorithms ensure that ifj1
and j3 lie in the same clusterC 0, then the edges joining
them lie withinC 0 as well. This implies that there must be
two disjoint paths betweenj1 andj2, contradicting that the
algorithms construct a forest.

For the second part, note that ifC 0 is assigned toj and
does not contains or t at time�2, then the cluster containingj at time
�2, i.e.,C must containC 0.
Lemma 4.17 If `0 = (C 0; I = [�1; �2)) is a shared layer
containings (resp.,t) which assigned toj, and
 � 2, then
its corresponding layer̀ = (C; 
I) containss (resp.,t).

Proof: The proof of the claim is similar to that of
Lemma 4.13; we just sketch the idea again. Consider a tight
path betweenj ands at time�1; at most a�1 portion of it
can be tight due tos. Hence by time
�1 � 2�1, the path
must be completely tight.

4.2 Finally, the book-keeping
Note that boths andt both contribute separately toS andA
till time �st, and henceS + L = 2 �st: (4.6)

Let `0 = (C 0; I) 2 L0 be an unshared layer thatP
crosses, and let its corresponding layer be` = (C; 
I) 2 L.
If v 2 P \ C 0 is a vertex on the path, thenv 2 P \ C by
Lemma 4.16. If boths andt are outsideC, thenP crossesC twice as well, and we get a contribution of2
 times the
thickness of̀ 0. Suppose not, ands 2 C or t 2 C: then we
lose
 times the thickness of̀ for each such infringement.
For shared layers̀0 (which map to` 2 L), Lemma 4.17
implies that we lose only whens and t both lie inside`.
Hence, ifW denotes the wastage, thelen(P) � 
(S + U)�W: (4.7)

We bound the wastage in two ways: firstly, the wastage only
occurs whens or t lie in layers inL they are “not supposed
to”. However,s andt can only lie in one layer at a time,
and hence they can only waste
 �st amount each, which
by (4.6) gives W � 
(S + L): (4.8)

For another bound, let
 �meet be the earliest time thats
and t lie in the same layer inL (not to be confused with�st, which is the earliest time they lie in the same layer inL0). We can be very pessimistic and claim that all the con-
tribution due to the unshared layers (i.e.,
 U ) is lost. A
shared layer̀ 0 = (C 0; I) (containings, say) mapped to` = (C; 
I) can incur loss only whent also lies inC—and
henceI � [�meet; �st]. But now we claim thatt must have
been lonely. Indeed, suppose not, and thatt was sharing
layer`0 2 L0 assigned toj, and`0 was assigned toj0. But
then both these layers would be mapped to`, contradicting
the fact that the mapping was one-one.

Hence we can charge the loss for each shared layer to a
lonely layer, and bound the wastage by:W � 
(U + L): (4.9)

Averaging (4.8) and (4.9), and plugging into (4.7), we getlen(P) � 
2 (S + U � 2L): (4.10)



Subtracting this from
2 times (4.5), we getalone(s) + alone(t) � L � 3

 � 2 len(P); (4.11)

proving Theorem 4.15 with� = 3

�2 . The calculations of

the next subsection show how to improve this to� = 6
2
�3 .

4.3 Tightening the constants
One can get a better bound than given in (4.11). Suppose we
were split each of the various quantitiesL; S; U;W in two
(L1; L2 etc.) to account for layers ofL0 that correspond to
layers before and after time�meet. Then, analogous to (4.8),
we have W1 � 
(S1 + L1) (4.12)W2 � 
(S2 + L2) (4.13)

The reasoning of (4.9) impliesW2 � 
 (U2 + L2). How-
ever, before time�meet, we can do the following argument:
each unshared layer gets mapped to a layer that can contain
only one ofs or t, and hence loses at most one crossing withP (while each shared layer loses no crossings at all), giving
us that W1 � 
 U1=2 (4.14)W2 � 
 (U2 + L2) (4.15)

Multiplying (4.12-4.15) by 13 ; 23 ; 23 ; 13 respectively, and
adding, we getW =W1 +W2 � 
3 [S1 + 2S2 + L1 + 2L2 + U1 + U2]:
Now using the fact thatS2 � L2, which follows from the
basic argument behind (4.9), and algebra, we getalone(s)+alone(t) � L � 6
2
�3 len(P), as desired.
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