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Abstract an edge is given by a simple concave function: capacity can
berented with cost incurred on a per-unit of capacity basis,
We study themulticommodity rent-or-buy problema or bought which allows unlimited use after payment of a
type of network design problem with economies of scale.large fixed cost. Precisely, there are positive parameters
In this problem, capacity on an edge can teated with and M, with the cost of renting capacity equal totimes
cost incurred on a per-unit of capacity basis, bought the capacity required (per unit length), and the cost of buy-
which allows unlimited use after payment of a large fixed ing capacity equal td/ > u (per unit length). By scaling,
cost. Given a graph and a set of source-sink pairs, we seek ahere is no loss of generality in assuming that 1.
minimum-cost way of installing sufficient capacity on edges  TheMRoB problem is a simple model of network design
so that a prescribed amount of flow can be sent simultane-with economies of scaland is a central special case of the
ously from each source to the corresponding sink. The firstmore generabuy-at-bulk network desigproblem, where
constant-factor approximation algorithm for this problem the cost of installing capacity can be described by an arbi-
was recently given by Kumar et al. (FOCS '02); however, trary concave function. In addition, théRoB problem nat-
this algorithm and its analysis are both quite complicated, urally arises as a subroutine in multicommaodity versions of
and its performance guarantee is extremely large. the connected facility locatioproblem and thenaybecast
In this paper, we give a conceptually simple 12- problem of Karger and Minkoff [21]; see [24] for further
approximation algorithm for this problem. Our analysis of details on these applications.
this algorithm makes crucial use obst sharingthe task of The MRoB problem is easily seen to be NP- and MAX
allocating the cost of an object to many users of the object gNp-hard—for example, it contains the Steiner tree prob-
in a “fair” manner. While techniques from approximation |em as a special case [8]—and researchers have therefore
algorithms have recently yielded new progress on cost shar-soyght approximation algorithms for the problem. For
ing problems, our work is the first to show the converse— many years, the best known performance guarantee for
that ideas from cost sharing can be fruitfully applied in the \RoB was theO (log n log log n)-approximation algorithm
design and analysis of approximation algorithms. due to Awerbuch and Azar [3] and Bartal [5], whete=
|V'| denotes the number of nodes in the network. The first
) constant-factor approximation algorithm for the problem
1 Introduction was recently given by Kumar et al. [24]. However, both
the analysis and the primal-dual algorithm of [24] are quite
complicated, and the performance guarantee shown for the
algorithm is extremely largé The problem of obtaining an
algorithm with constant performance guaranteeN&oB

We study themulticommodity rent-or-buyMRoB) prob-
lem. In this problem, we are given an undirected graph
G = (V, E) with non-negative weights. on the edges and
asetD = {(s1,t1),.-.,(sk, tx)} of vertex pairs calledle- ) ) : -
mand pairs We seek a minimum-cost way of installing suf- while using only a transparlent algorlt.hm and/or obtaining a
ficient capacity on the edgé$s so that a prescribed amount reasonable constant has since remained open.

of flow can be sent simultaneously from each sousc® In a separate recent development, Gupta et al. [19]

_ _ o gorithms suffice to achieve best-known performance guar-
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ticest; are identical. However, the analysis of [19] re- Related Work: As stated above, the only previous
quired that the underlying “buy-only” problem (such as constant-factor approximation algorithm for théRoB

the Steiner tree problem for the single-sink special case ofproblem studied in this paper is due to Kumar et al. [24].
MRoB) admit a good greedy approximation algorithm (e.g., Additional papers that considered multicommodity network
the MST heuristic for Steiner tree, with Prim’s MST algo- design with economies of scale are Awerbuch and Azar [3],
rithm). Since the “buy-only” version of th®iRoB prob- Bartal [5], and Fakcharoenphol et al. [11], whose work
lem is the Steiner forest problem (see e.g. [1]), for which no gives anO(log n)-approximation for the more general mul-
greedy algorithm is known, it was not clear if the techniques ticommodity buy-at-bulk problem. The special case of
of [19] could yield good algorithms faviRoB. MRoB where all commodities share the same sink, and
the closely relatedconnected facility locatiorproblem,

: . o have been extensively studied [18, 19, 21, 22, 23, 27, 29].
ranQom|zed framework of [1.9] gives a 12-approximation al- The randomized 3.55-approximation algorithm of Gupta et
gor.|t_hm_forMRoB. The algorithmis conceptu_allyve_ry Sim= 4. [19] is the best known approximation algorithm for the

ple: it picks a random subset of the source-sink pairs, buys ag

Our Results: We show how a nontrivial extension of the

. _ . roblem. Swamy and Kumar [29] achieve a performance
set of edges spanning these chosen pairs, and greedily ren uarantee of 4.55 with a deterministic algorithm. Several
paths for the other source-sink pairs.

o vsis of the alqorithm is based | more general problems that retain the single-sink assump-
i Er ?na ysIS 0 e_ag?n mlls .S]se ons Tovr:e COMMEC-tion have also been intensively studied in recent years, in-
lon between approximation algorithms andst sharing cluding the Access Network Design problem [2, 16, 17, 26],
the task of allocating the cost of an object to many users of

the single-sink buy-at-bulk network desi bl 13,17
the object in a “fair” manner. This connection, rather than e single-sink buy-at-bulk network design problem [13

e ; . . 19, 28, 30], and the still more general problems where the
our specific results, is arguably the most important contri- capacity cost function can be edge-dependent [10, 25] or
bution of this paper. '

unknown to the algorithm [14]. The best known approxi-

CQSt _sharing has been exte.nsively studied in the_ €CO"mation ratios for these four problems are 68 [26], 73 [19],
nomics literature (see e.g. [31]); more recently, techegqu O(log n) [10, 25], andO(log n) [14], respectively.

from_ approximation algorithms have yielded new progress Finally, our high-level algorithm of randomly reducing

n th'.s field, see €.g. [20]. We be"ev? the presentwork to .be the MRoB problem to the Steiner forest problem, followed
the first showing the converse, that |de_as from cost Sha“ngby computing shortest paths, is similar to and partially in-
can lead to better approximation algorithms. A second keySloireol by previous work that gave online algorithms with

ingredient for our result is a simple but novel extension of polylogarithmic competitive ratios for many rent-or-buy-
the primal-dual algorithms of Agrawal et al. [1] and Goe- type problems [4, 6, 7].

mans and Williamson [15] for the Steiner forest problem.

Our performance guarantee of 12 is almost certainly not . . . .
the best achievable for ti¢RoB problem, but it is far bet- 2 ApprOX|mat|on via Cost Sha”ng

ter t_han any other apprpximation ra_\tio known forz_;t network In this section we show how an appropriate cost-sharing
de5|gn problem_ exhlblfung economies of scale, with _the eX- scheme gives a good approximation algorithm MRoB.
ception of the .smglle-s[nk special CasmOB (folr which We will give such a cost-sharing scheme in the technical
a 3.55—apprOX|ma_1t|on is known [19]). Slln.gle—smk buy-at- heart of the paper, Sections 3 and 4.

bulk ngtwork design, where a!l commod|t|es share a com- In Subsection 2.1, we define our desiderata for cost
mon sink but the cost of msta_LIIlng agen amoun_t of €apac- gpares. We give the main algorithm in Subsection 2.2, and
ity can essentially be_ an arb|trary_ concave function, igonl its analysis in Subsection 2.3.

known to be approximable to within a factor of 73 [19].
Keeping the single-sink assumption and placing further re-
strictions on the function describing the cost of capacity
yields theAccess Network Desigaroblem of Andrews and ~ We now describe precisely what we mean by a cost-sharing
Zhang [2], for which the best known approximation ratio is method, as well as the additional properties required by our
68 [26]. (There are no known constant-factor approxima- application. Cost-sharing methods can be defined quite gen-
tion algorithms for the multicommodity versions of these erally (see e.g. [31]); here, we take a narrower approach. In
two problems.) The previous-best performance guarantegpreparation for our first definition, recall that an instance
for MRoB was still larger, at least several hundred [24]. The of MRoB is defined by a weighted undirected graptiwe
present work is thus the first to suggest that restricting theleave the weight vectar implicit) and a setD of demand
capacity cost function could yield a more tractable special pairs. By aSteiner foresfor (G, D), we mean a subgraph
case of multicommodity buy-at-bulk network design than F' of G so that, for each demand pdit,t) € D, there is

the popular assumption that all commodities share a com-ans-t path inF. For such a subgraph, ¢(F) = . ce

mon sink. denotes its overall cost. Since we are only interested in so-

2.1 Some Definitions



lutions with small cost and edge costs are non-negative, we2.2 The Algorithm SimpleMROB

can always assume thatis a forest.

The next definition states that a cost-sharing method is
a way of allocating cost to the demand pairs of an instance

(G, D), with the total cost bounded above by the cost of an
optimal Steiner forest fofG, D).

Definition 2.1 A cost-sharing methods a non-negative
real-valued functiory defined on triplesG, D, (s, t)), for

a weighted undirected graph, a setD of demand pairs,
and a single demand pds,t) € D. Moreover, for every
instancg G, D) admitting a min-cost Steiner foregy,,

S X(G,D, (s,1)) < e(Fp).
(s,t)eD

Definition 2.1 permits some rather uninteresting cost-

We now state the main algorithm. In employs as a subrou-
tine a Steiner forest algorithed, which in our implementa-
tion will be a constant-factor approximation algorithm. No
cost-sharing method is needed for the description or imple-
mentation of the algorithm; cost shares arise only in the
algorithm’s analysis. We assume for simplicity that each
source-sink pair wants to route a single unit of flow. This
assumption is not hard to remove (details are deferred to the
full version).

1. Mark each pair(s;, t;) with probability 1/, and let
Donark: bE the set of marked demands.

2. Construct a Steiner foreBtonD,,, ..« using algorithm
A, andbuyall edges inF.

sharing methods, such as the function that always assigns
all demand pairs zero cost. The key additional property that 3. For each(s;,t;) pair outsideD,,.,«, rent edges to

we require of a cost-sharing method is that, intuitively, it

allocates costs to each demand pair commensurate with its

connects; andt¢; in a minimum-cost way (at cost
da/r(s,1))-

distance from the edges needed to connect all of the other
demand pairs. Put differently, no demand pair can be a“free2.3  Proof of Performance Guarantee

rider”, imposing a large burden in building a Steiner forest

but only receiving a small cost share. We call cost sharing

methods with this propertstrict.

To make this idea precise, we require further notion. Let
da(-,-) denote the shortest-path distancedn(w.r.t. edge
costs inG). Given a subseE’ C E of edges,G/E' is
the graph obtained fro¥ by contracting the edges i’
Note that the cheapest way of connecting verticesid¢
by renting edges, given that edgé%$ have already been
bought, is precisely /g (s, ). Our main definition is then
the following.

Definition 2.2 Let A be a deterministic algorithm that,
given instancéG, D), computes a Steiner forest. A cost-
sharing methody is g-strict for A if for all (G, D) and
(s,t) € D, the costy (G, D, (s, t)) assigned tds, t) by y is

at least a /3 fraction ofdg (s, t), whereF' is the Steiner
forest returned fofG, D \ {(s,t)}) by algorithm.A4.2

It is not cleara priori that strict cost-sharing methods

We now state the main theorem of this section: a constant-
factor approximation algorithm for Steiner forest with an
accompanyingO(1)-strict cost-sharing method yields a
constant-factor approximation algorithm f&dRoB. The
proof is an extension of the techniques of [19], where the
connection to cost sharing was not explicit and only sim-
pler network design problems were considered.

Theorem 2.3 Supposed is ana-approximation algorithm
for the Steiner forest problem that admits@astrict cost
sharing method. Then algorith®impleMROB, employ-
ing algorithm.4 as a subroutine in Step (2), is da + 3)-
approximation algorithm for the multicommodity rent-or-
buy problem.

Proof: Fix an arbitrary instance dfIRoB with an optimal
solutionOPT, and letZ* denote the cost dDPT. Let B*
denote the cost of the bought eddgsin OPT, andR* the
cost of the rented edgds,. (Note thatB* = Mc(Ey),

with small 3 exist: Definition 2.1 states that the aggregate andR* =} ., cex;, wherez} is the amount of capacity
costs charged to demand pairs must be reasonable, whil¢hatOPT reserves on edgeg or equivalently the number of
Definition 2.2 insists that the cost allocated to each demanddemand pairs that useto route their flow). It suffices to
pair is sufficiently large. show that algorithnSimpleMROB incurs an expected cost
We note that strict cost-sharing methods are somewhatof at mostaZ* in Step (2) and at mogtZ* in Step (3). We

reminiscent of some central concepts in cooperative gameprove each of these bounds in turn.

theory, such as theore and thenucleolus(see e.g. [31]).

For the first bound, it suffices to show that:

However, we are not aware of any precise equivalence be-

tween strict cost-sharing methods and existing solution co
cepts in the game theory literature.

2A cost-sharing method (which is defined independent of aejnsit
forest algorithm) can be-strict for one algorithm and not for another,
as strictness depends on the distadge (s, t), and the edge st is
algorithm-dependent.

cost of buying a min-cost Steiner forestjon

< Z*.
the (random) set of demand palPs,o.x 1 —
(2.2)

E

To prove this, it suffices to exhibit a (random) subgraph of
G that spans the vertices B, ., that has expected cost at



mostZ* /M. To construct this subgraph, include all edges
of E,, and every edge of E,. for which some demand pair
usinge in OPT is marked. The cost of the edgesi is
deterministicallyB* /M. For each edge ift,, the expected
costofincluding itisce x 1/M x x} = c.x} /M, since each

of thez? demand pairs usingin OPT contributesl /M to

the probability ofe being included. Summing over all edges
of E,, the expected cost of including edgedgfis R*/M;;
sinceZ* = B* + R*, inequality (2.1) is proved.

We now bound the expected cost incurred in Step (3).
We will say that demand paifs,¢) incurs buying cost
B; = x(G,Dmnark, (s,t)) andrenting costR; = 0 if
(s,t) € Dpark, and buying cosB; = 0 and renting cost
R; = dgr(s,t) otherwise.

For a demand paifs;, t;), let X; = R; — $B; denote
the random variable equal to the renting cost of this pair
minus § times its buying cost. We next condition on the
outcome of all of the coin flips in Step (1) except that for
(si,t;). Sincey is B-strict for A, this conditional expecta-
tion is at most 0. Since this inequality holds for any out-
come of the coin flips for demand pairs other than ¢;),
it also holds unconditionallyE[X;] < 0. Summing over
all ¢ and applying linearity of expectations, we find that
E[},; Ri] < BE[Y_, B;]. Theleft-hand side of this inequal-
ity is precisely the expected cost incurred in Step (3) of the
algorithm. By Definition 2.1, the suiy, B; is at most the
cost of the min-cost Steiner forest on the B8t of de-
mands; by (2.1), it follows thak[) ", R;] is at most3Z*,
and the proof is complete. [ ]

In Sections 3 and 4, we will give a 6-approximation al-
gorithm for Steiner forest that admits a 6-strict cost ghri

sharing methods for any constafit On the other hand,

in these families of examples, &n(1)-strict cost-sharing
method can be defined if a few extra edges are bought. (Ex-
tra edges make Definition 2.2 easier to satisfy, since the
shortest-path distaneg; ;- relative to the bought edges
decreases.) Our main technical result is that buying a few
extra edges beyond what is advocated by the algorithms
of [1, 15] always suffice$or defining anO(1)-strict cost-
sharing method, enabling the application of Theorem 2.3.

3.1 The Algorithm PD and the Cost Sharesy

In this subsection we show how to extend the algorithms
of [1, 15] to “build a few extra edges” while remaining
constant-factor approximation algorithms for the Steiner
forest problem. We also describe our cost-sharing method.

Recall that we are given a gragh = (V,E) and a
setD of source-sink pairg(s;,t;)}. Let D be the set of
demands- the vertices that are either sources or sinks in
D (without loss of generality, all demands are distinct). It
will be convenient to associate a cost shg(®, j) with
each demand € D; the cost sharg (G, D, (s, t)) is then
justx(D, s) + x(D,t). Note that we have also dropped the
reference to; in the sequel, the cost shares are always
w.rt. G.

Before defining our algorithm, we review the LP relax-
ation and the corresponding LP dual of the Steiner forest
problem that was used in [15]:

method. The main theorem of the paper is then a direct con-

sequence of Theorem 2.3.

Theorem 2.4 There is a 12-approximation algorithm for
MRoB.

3 The Steiner Forest Algorithm

We first motivate the algorithm. Linear programming du-
ality is well known to have an economic interpretation,

min ) cere (LP)
z(6(S)) >1 VvaldS (3.2)
Te >0
max ) | gys (DP)
Y sCviees(s) Us < ce (3.3)
ys 2 0,

where a sef is valid if for somei, it contains precisely one
of Siy L.

and moreover to be useful in cost sharing applications (see We now describe a general way to define primal-dual al-
e.g. [20] for a recent example). It is therefore natural gorithms for the Steiner forest problem. As is standard for
to expect strict cost-sharing methods to fall out of exist- the primal-dual approach, the algorithm will maintain a-fea
ing primal-dual approximation algorithms for the Steiner sible (fractional) dual, initially the all-zero dual, ancs-
forest problem, such as those by Agrawal et al. [1] and mal integral solution (a set of edges), initially the empty
Goemans and Williamson [15]. In particular, one might set. The algorithm will terminate with a feasible Steiner
hope that taking the subrouting of algorithm SimpleM- forest, which will be proved approximately optimal with the
ROB to be such a primal-dual algorithm, and defining the dual solution (which is a lower bound on the optimal cost
cost shareg according to the corresponding dual solution, by weak LP duality). The algorithms of [1, 15] arise as a
would be enough to obtain a constant-factor approximation particular instantiation of the following algorithm. Ourep
for MRoB. sentation is closer to [1], where the “reverse delete stép” o
Unfortunately, we have found examples showing that Goemans and Williamson [15] is implicit; this version of
naive implementations of this idea cannot gsstrict cost- the algorithm is more suitable for our analysis.



Our algorithm has a notion dfme initially O and in- current cluster containing it does not contajin This

creasing at a uniform rate. At any point in time, some de- implementation of the algorithm is equivalent to the
mands will beactiveand othersnactive All demands are algorithms of Agrawal et al. [1] and Goemans and
initially active, and eventually become inactive. The egrt Williamson [15].

set is also partitioned intolusters which can again be ei- _ _ _
ther active or inactive. In our algorithm, a cluster will be 2. Algorithm Timed(G, D,T): This algorithm takes as
one or more connected components w.r.t. the currently built ~ an additional input a functio” : V' — Rx>¢ which

edges. A cluster is defined to be active if it contains some ~ assigns atopping timeto each vertex. (We can also

active demand, and is inactive otherwise. view T' as a vector with coordinates indexedBy) A
Initially, each vertex is a cluster, and the demands arethe ~ Vertex; is active at timer if j € D andr < T'(j). (T

active clusters. We will consider different rules by which is defined for vertices not iy for future convenience,

demands become active or inactive. To maintain dual fea-  but such values are irrelevant.)

sibility, whenever the constraint (3.3) for some edgee-

tween two clusters and S’ becomes tight (i.e., first holds To get a feeling fofTimed(G, D, T'), consider the fol-

with equality), the clusters amergedand replaced by the  lowing procedure: run the algorith€W (G, D) and set
clusterS U S'. We raise dual variables of active clusters T'n(j) to be the time at which vertex becomes inactive
until there are no more such clusters. during this execution. (If ¢ D, thenTr(j) is set to zero.)
We have not yet specified how an edge can get built. To- Since the period for which a vertex stays active in the two
ward this end, we define a (time-varying) equivalence rela- algorithmsGW (G, D) and Timed(G, D, Tp) is the same,
tion R on the demand set. Initially, all demands lie in their they clearly have identical outputs.
own equivalence class; these classes will only grow with ~ TheTimed algorithm gives us a principled way to essen-
time. When two active clusters are merged, we merge thetially force theGW algorithm to build additional edges: run
equivalence classes of all active demands in the two clus-the Timed algorithm with a vector of demand activity times
ters. Since inactive demands cannot become active, tieis rul larger than what is naturally induced by G/ algorithm.
ensures that all active demands in a cluster are in the same
equivalence class. The Algorithm PD: The central algorithm Algorithm
We build edges to maintain the following invariant: the PD(G,D) is obtained thus: ruG@W (G, D) to get the time
demands in the same equivalence class are connected byectorTp; then runTimed(G, D, yTp)—the timed algo-
built edges. This clearly holds at the beginning, since rithm with the GW-induced time vector scaled up by a pa-
the equivalence classes are all singletons. When two acfametery > 1—to get a forest’p. (We will fix the value
tive clusters meet, the invariant ensures that, in each clus of -y later in the analysis.)
ter, all active demands lie in a common connected compo- We claim that the outpuF’p of this algorithm is a feasi-
nent. To maintain the invariant, we join these two com- ble Steiner network foD. Intuitively, this is true because
ponents by adding a path between them. Building suchTimed(G, D,~Tp) only builds more edges th&W (G, D)
paths without incurring a large cost is simple but some- for v > 1. We defer a formal proof to the full version. We
what subtle; Agrawal et al. [1] (and implicitly, Goemans and now define the cost shargs
Williamson [15]) show how to accomplish it. We will not
repeat their work here, and instead refer the reader to [1]. The Cost Sharesy: For a demang € D, the cost share

Remark 3.1 For the reader more familiar with the exposi- X(D,7) is the length of time during the rudW (G, D) in
tion of Goemans and Williamson [15], let us give an (in- which j was the _onl_y active vertex in its cluster. Fprmally,
formal) alternate description of the network output by the !€ta(j, 7) be the indicator variable for the event thas the
algorithm given above. Specifically, we grow active clus- Only active vertexin its cluster at time then
ters uniformly, and wheanytwo clusters merge, we build ] )

an edge between them. At the end, we perform a reverse- X(D,j) = [ a(j,)dr,
delete step—when looking at an edgéf e lies on the path
between some andy with (z,y) in the final relationR,
then we keep the edge, else we delete it. We assert that the
network output by this algorithm is the same as that of the Theorem3.2PD is a a = 2y-approximation for the
original algorithm. Steiner network problem, andis a8 = 6-/(2y — 3)-strict
cost-sharing method fd?D.

(3.4)

where the integral is over the execution of the algorithm.
In the sequel, we will prove our main technical result:

Specifying the rule by which demands are deemed active
or inactive now gives us two different algorithms: Settingy = 3 then gives us &-approximation algorithm
that admits a6-strict cost-sharing method, as claimed in
1. Algorithm GW(G,D): A demands; is active if the ~ Theorem 2.4.



4 OQutline of Proof of Theorem 3.2

We first show that algorithrRD is a2y-approximation al-
gorithm for Steiner forest. We begin with a monotonicity

4.1 Outline of Proof of Strictness

We first recall some notation we will use often. The algo-
rithm PD(G, D) first runsGW(G, D) to find a time vec-

lemma stating that the set of edges made tight by algorithmtor Tp, and then runsTimed(G, D,vTp) to build a for-

PD is monotone in the parameter We omit its proof.

Lemma4.1 LetT andT’ be two time vectors with'(j) <
T'(y) for all demandsj € D. Then at any time-, the
set of tight edges ifimed(G, D, T') is a subset of those in
Timed(G, D, T").

We can now outline the proof of the claimed approxima-
tion ratio.

Lemma 4.2 The cost of the Steiner foresk’, con-

structed by algorithnPD for instance(G, D) is at most
2y sys < 2yc(Fp), where F is an optimal Steiner
forest for(G, D).

Proof: Let {ys} be the dual variables constructed
by GW(G, D). If a(r) is the number of active clusters at
time 7 during this run, they" ; ys = [ a(r)dr.

Similarly, leta’(7) be the number of active clusters at
time 7 during the execution oflimed(G, D,~+Tp), and
{ys} be the dual solution constructed by it. As above,
Yosys = [d(r)dr.

First, we claim that the cost dfp is at mos2 ) ¢ y.
This follows from the arguments in Agrawal et al. [1],

est Fp. Let (s,t) be a new source-sink pair. Define
D' =DuU{(s,t)}, D' = DU {s,t}, andTp by the time
vector obtained by runninGW (G, D'). Our sole remain-
ing hurdle is the following theorem, asserting the strisge
of our cost-sharing methog for the algorithmPD.

Theorem 4.4 (Strictness)Let (s,t) be a source-sink pair
¢ D, and letD’ = D + (s,t) denote the demand set ob-
tained by adding this new pair tB. Then the length of the
shortest pathig /r, (s,t) betweens andt in G/Fp is at
most3(x (D', s) + x(D',t)), whereg = 6y/(2y — 3).

4.1.1 Simplifying our goals

The main difficulty in proving Theorem 4.4 is that the
addition of the new pair(s,t) may change the behav-
ior of primal-dual algorithms for Steiner forest in fairly
unpredictable ways. In particular, it is difficult to ar-
gue about the relationship between the two algorithms we
care about: (1) the algorithfimed(G, D,vTp) that gives

us the forestFp, and (2) the algorithnGW(G,D') =
Timed(G, D', Tp) that gives us the cost-shares. The dif-
ficulty of understanding the sensitivity of primal-dual alg

since our algorithm builds paths between merging clustersrithms to small perturbations of the inputis well known, and

asin[1].

We next relate) _ ; y to the cost of an optimal Steiner
forest, via the feasible dual solutidps}. Toward this end,
we claim thata’(y7) < a(r). Indeed, letCy,... ,Cy be
the active clusters ifimed(G, D,vTp) at time~y7. Each

has been studied in detail in other contexts by Garg [12] and
Charikar and Guha [9].

In this section, we apply some transformations to the in-
put data to partially avoid the detailed analyses of [9, 12].
In particular, we will obtain a new grapti/ from G

active cluster must have an active demand — let these bdwith analogous demand sef3y and D'%;), as well as

ji,---,Jx. By the definition ofl’p, these demands must
have been active attimein GW(G, D), and by Lemma 4.1,
no two of them were in the same cluster at this time. With
this claim in hand, we can derive

/a'(T)dT = v/a’(w)dT < v/a(T)dT < vzsjys-

Since) ¢ ys is a lower bound on the optimal costF},)
(by LP duality), the lemma is proved. [ ]

Is is also easy to show thgtis a cost-sharing method in
the sense of Definition 2.1.

Lemma 4.3 The functiony satisfies

> X(G,D,(s,1) = > x(D,j) <D ys < c(Fp).

(s,t)ED jeD s

Proof:  For all 7, 37, a(j,7) < a(r), since each ac-
tive cluster can have at most one demandgith non-zero
a(j,7). Thus[ 3=, a(j,7)dr < [a(r)dr = Y gys. M

a new time vectorl'y so that it now suffices to relate
(1") the algorithmTimed(H, Dy ,~vTxH) and (2’) the algo-
rithm Timed(H, D'y, Tr). In the rest of this section, we
will define the new graph and time vector; Section 4.1.2 will
show that this transition is kosher, and then Sections 4.1.3
and 4.3 will complete the argument.

A simpler time vector T:  To begin, let us note that the
time vectord’s andT’p may be very different, even though
the two are obtained from instances that differ only in the
presence of the pais,t). However, a monotonicity prop-
erty doeshold till time Tp (s) = T (t), as the following
lemma shows:

Lemma 4.5 The set of tight edges at time< T (s) dur-

ing the run of the algorithn&W (G, D) is a subset of the set
of tight edges at the same timeGwW (G, D').

Proof: Sincer < T (s), boths andt are active at time
7in GW(G, D’). Any cluster that has not merged yet with
clusters containing ort has the same behavior in both runs.

A cluster that merges with a cluster containingr ¢ will



continue to grow. So compared wiW (G, D), only more
edges can get tight i6BW (G, D’). ]

Corollary 4.6 Let T be the vector obtained by truncating
Tp at time TDI(S), ie., T(]) = min(Tp/(j),Tpr(s)).
Then for alldemandg € D, T'(j) < Tp(j).

Proof: If Tp(s) < T'p(j), the claim clearly holds. If
Tp(j) < Tp(s), then there is a tight path from to its
partner at timel’r(j). But the monotonicity Lemma 4.5
implies that these edges must be tighG\W (G, D') at time
Tp(j) as well, and henc€(j) = Tp (j) < Tp(4)- [ |

The vectorT is now a time vector for which we can
say something interesting for both runs.
were to now run the algorithnTimed(G, D,~T') as the
second step oPD(G, D) (instead of Timed(G, D, yTp)
prescribed by the algorithm). By the monotonicity re-

Suppose we

Dy. The setD%; is just Dy U {s,t}. Each demand
j € Dy has a seC; C D' of demands that were identi-
fied to formj. A new time-vectofl'y is defined by setting
Ti(s) = Tu(t) = T(s) = T'(t); furthermore, forj € Dy,
we setl’y (j) = maxeec,; T'(x).

Going from Timed(G, D,vTp) to Timed(H, D, vTH):
Note that H was obtained fromG by identifying some
demands; the edge sets 6f and H are exactly the
same. We now show that the two instances in some
sense behave identically. We denote the execution of
Timed(H, DH,’}/TH) byg

We first require another monotonicity lemma, whose
proof we omit.

Lemma4.8 For all v >
in Timed(H,DH,fyTH)
in Timed(G, D,~T).

1, the set of tight edges
contains the tight edges
Similarly, the tight edges of

sults in Lemma 4.1 and Corollary 4.6, the edges that are Timed(H, D7;,7Ty) contain those iflimed(G, D', 7T).

made tight inTimed(G, D,~+T) are a subset of those in
Timed(G, D,vyTp). Hence it suffices to show that the
distance betweers and ¢ in the forest resulting from
Timed(G, D,~T) is small; this is made precise by the fol-
lowing construction.

A simpler graph H: Let us look at the equivalence re-
lation defined by the run offimed(G, D,vT') over the
demands, which we shall denote . (Recall that for
Ji1,j2 € D, (j1,j2) € R if at some timer during the

Lemma 4.9 The set of tight edges in the two runs
Timed(G, D,~vT) and& at any timer are the same.

Proof: By Lemma 4.8, we know that the latter edges con-
tain the former; we just have to prove the converse. For a
demandj € Dy, we claim that each demande C; is in
some active cluster ofimed(G, D,~T) till time T (j).
Suppose not: let € C; be in an inactive cluster at time

T < vTy(j). By the definition of the equivalence relation
R, no more demands are added to the equivalence class of

run, they are both active and the clusters containing thema (which isCj). But thenmax,cc; vT'(y) < 7 < 7TH(j),

meet. Equivalently, at some time bothj; andj, are ac-

a contradiction. Hence all demands(if are in active clus-

tive and some path between them becomes tight.) Simi-ters till time~Ty(j). Thus, in the rurtGW(G, D,~T), we

larly, let the equivalence relatioR p, be obtained by run-
ning Timed(G, D,yTp). Lemma 4.1 and Corollary 4.6

now imply that the former is a refinement of the latter, i.e.,
(Note that this also means that the equiva-

R C Rp.
lence classes oRp can be obtained by taking unions of
the equivalence classes&f)

had grown regions around these demands till timgiving
us the same tight edges a<fin ]

Corollary 4.10 For all v+ > 1, an active cluster at time
7 during the run off contains only one active demand. In
particular, two active clusters never merge during thementi
run of the algorithm.

Since Fp connects all the demands that lie in the same

equivalence class @& p, the fact thalR C R p implies that Proof: Supposej # j' € Dy are two active demands
it connects up all demands in the same equivalence class ifin the same (active) cluster at time Let C; andC;: be
R as well. Hence, to show Theorem 4.4 that there is a Shortthe Corresponding sets of demandsl)nrespective|y_ By
s-t path inG/ Fp it suffices to show the following result. Lemma 4.9, the set of edges that become tight at tirise
Theorem 4.7 (Strictness restated)Let H be the graph ob-  the same as that ifiimed(G, D,~T'), and hence there must
tained fromG by identifying all the vertices that lie in the be demands € C;,z' € Cj which lie in the same ac-
same equivalence class Bf Then the distance between tive cluster ofTimed(G, D,+T') at timer. By an argument
andt in H is at most3(x (D', s) + x(D', t)). identical to that in the proof of the previous lemma, there
must be active demangsc C; andy’ € Cj in the same
cluster as well. Henc€’; = C;] by the definition of the
equivalence class, contradicting thag j'. [ ]

4.1.2 Relating the runs onG and H

We will need some new (but fairly obvious) notation: note
that each vertex irf{ either corresponds to a single ver-
tex in G, or to a subset of the demands that formed
an equivalence class ®&. The vertices of the latter type
are naturally called the demands Hi, and denoted by

Note that this implies that the ruhis very simple: each
demandj € Dy grows a cluster around itself; though this
cluster may merge with inactive clusters, it never merges
with another active one.



Going from Timed(G, D', Tp/) to Timed(H, D'y, TH):
Recall that the cost-sharg$D’, s) andy (D', t) are defined
by runningGW (G, D’) = Timed(G, D', T},) and using the
formula (3.4). The following lemma shows that it suffices
to look instead afTimed(H, D', Tx) in order to define
the cost-share. (Lef’' be short-hand for the execution
Timed(H, DYy, TH).)

Lemma4.11In &', if s (respectivelyt) is the only active
vertex in its cluster at time-, thena(s,7) = 1 (resp.,
a(t,7) = 1) in the runTimed(G, D', Tp/).

Proof: Supposei(s,7) = 0 in Timed(G, D', T'p/), and
some active demangl # s lies in s's cluster at timer.
By the definition ofI", j ands are both active in the same
cluster inTimed(G, D', T) as well. Now by Lemma 4.8,
j ands must lie in the same cluster & too; furthermore,
they must both be active (by the definition Bf;). This
contradicts the assumption of the theorem. [ ]

Corollary 4.12 Letalone(s) be the total time in the rué’
during whichs is the only active vertex in its cluster, and
definealone(t) analogously. Then(D’,s) + x(D',t) >
alone(s) + alone(t).

A property similar to Corollary 4.10 can also be proved
about the rurg’.

Lemma 4.13 Let r,; be the time at whick and¢ become
part of the same cluster if’. For v > 2, any active cluster
attimer < 7, in & contains at most one active demand
from D g, and at most one active demand from the{set }.

Proof: Let C be an active cluster i’ at time 7 with
two active demandg, ;' € Dy. If C contains neitheg
nort, thenC' is also a cluster (with two active demands) in
£ at the same time, which contradicts the implication of
Corollary 4.10.

HenceC' must contain one of or ¢ (in addition toj, j');
it cannot contain both since < 7,;. Suppose it has; we
claim that we can prove thatand;’ must lie in the same
cluster in€ at time2 7. (For this to make sense, we have
to assume thay > 2.) To prove this, consider a tight path
betweens andj in £ at timer—since they both lie in the
same cluster, such a path must exist. Sinbas been active
for time 7, the portion of this path which is tight due ta'a
cluster has length at most Now consider the same path
in £ at timer — all but a portion of length at most of

this path must already be tight. (Note that though we have

dropped boths andt¢, we lose onlyr, since no part of the
path could have been made tight &y cluster. If this were
to happen, them,; < 7, which is assumed not to happen.)
Hence the cluster containingwill contain s after another
7 units of time. The same argument can be madeg'foBut
this would imply thatj and;j’ would lie in the same cluster
in £ at time2, contradicting Corollary 4.10. [ ]

4.1.3 The path betweers and ¢

Lemma 4.14 The vertices andt lie in the same tree in the
Steiner forest output b/

Proof: By the definition of7’, s andt¢ lie in the same
cluster at timeT'(s) = T'(t). SinceTy(s) = Tu(t)
T'(s), applying Lemma 4.8 implies thatandt lie in the
same cluster ir€’ as well. Since they are both active at
the time their clusters merge, they lie in the same connected
component of the Steiner forest. ]

This simple lemma gives us a pathbetweens andt
in H whose length we will argue about. Note that this path
is already formed at time,;, and hence the rest of the ar-
gument can (and will) be done truncating the time vector at
time 7, instead of afl'; (s).

A useful fact to remember is that all edgesfiust be
tight in the run of€’. The proof of the following theorem,
along with Corollary 4.12, will complete the proof of The-
orem4.7.

Theorem 4.15 (Strictness restated againYhe length of
the pathP is bounded by} (alone(s) + alone(t)).

We will prove the theorem with = 6+/(2y—3). Before
we proceed, here is some more syntactic sugar:

Given an execution of an algorithm,layer is a tuple
(C,I = [m,72)), whereC C V is an active cluster be-
tween timesn andr. If I = [, ™) is a time interval, its
thicknesds » — ;. A layering £ of an execution is a set
of layers such that, for every timeand every active cluster
C, there is exactly one layéC, I) € £ such that € I.

Given any layeringC, another layeringC’ can be ob-
tained bysplitting some layer(C,I) € L—i.e., replac-
ing it with two layers (C, [, 7)), (C,[7,72)) for some
7 € (m, 7). Conversely, two layers with the same gét
and consecutive time intervals can be merged. It is easy to
see that given some layering of an execution, all other lay-
erings of the same execution can be obtained by splittings
and mergings.

We fix layerings of the two executiodsand&’, which
we denote byC andL’ respectively. The only property we
desire of these layerings is this({, I) € Land(C',I') €
L'with 1/4INI" # 0, thenl =~I'". (l.e.,I = [y1,772)
andI' = [ry,1).) Itis easy to see that such a condition can
be satisfied by making some splittingsdrand£’.

Lemma 4.13 implies that each active layét 1) € L'
is categorized thus:

¢ lonely: The only active demand i@’ is eithers andt.
Assignthe layer to that demand.

e shared: C contains one active demand fraby and
one ofs and¢. The layer isassignedo the active de-
mand fromD g.



¢ unshared: The only active demand i@' is from Dg.
Again, the layer isssignedo that demand.

Note that the total thickness of the lonely layers is a lower
bound oralone(s)+alone(t). Furthermore, since consists
only of tight edges i€’ the length ofP is exactly the total
thickness of the layers af’ thatP crosses. IfL, S, andU

Proof:  The proof of the claim is similar to that of
Lemma 4.13; we just sketch the idea again. Consider a tight
path betweery ands at timer; at most ar; portion of it

can be tight due t8. Hence by timeyr, > 27, the path
must be completely tight. ]

denote the total thickness of the alone, shared and unshared4.2  Finally, the book-keeping

layers that? crosses, then

len(P)=L+S+U (4.5)

Of course, any layefC,I) € L' that crosse® must have

I C [0, 7], since the path is tight at time;. Hence their

corresponding layers have time intervals that liginy7s;].
Note that the total thickness of the layers Hfthat [P

Note that boths andt both contribute separately fhand A
till time 7, and hence
S+ L=214. (4.6)

Let ¢/ = (C',I) € L' be an unshared layer th&t
crosses, and let its corresponding layef be (C,vI) € L.

crosses is a lower bound on its length. This suggests thdf v € PN C’ is a vertex on the path, thane P N C by

following plan for the rest of the proof: for each shared or
unshared layer itf’, there is a corresponding distinct layer
in £ that is-y times thicker. In an ideal world, each crossing
of a layer in£’ would also correspond to a crossing of the
corresponding layer if; in this casey (S + U) < len(P),
and hencd > *=Llen(P). Sadly, we do not live in an ideal
world and the argument is a bit more involved than this,
though not by much.

Mapping shared and unshared layers of£’: Each such
layer¢’ = (C',1) is assigned to a demande Dy N C".
Sincej is active during the intervall in £, there must be
alayert = (C,~I) € L containingj—this is defined to be
the layer corresponding . (The properties of the layer-
ings ensure that the two time intervals are just rescalifigs o
each other by a factoy.) Furthermore, since each layer in
L contains only one active vertex, the mapping is one-one.
It remains to show that crossingsbby layers is preserved
(approximately) by this correspondence.

Lemma 4.16 Eachunshared layet' = (C',I = [1r1, 7))
is crossed byP either zero or two times. Furthermore, if its
corresponding layer i¢ = (C,~I), thenC’ C C.

Proof: SinceP begins and ends outsidg it must cross
¢' an even number of times. FurthermoFecannot cross
¢' more than twice—if it does so, there must exist vertices
Jj1, j2, andjs visited byP (in order), such thaf,, j3 € C’,
but j, ¢ C’. However, our algorithms ensure thatjif
and j; lie in the same cluste€’, then the edges joining
them lie withinC” as well. This implies that there must be
two disjoint paths betweejy andj,, contradicting that the
algorithms construct a forest.

For the second part, note thatGf is assigned tg and
does not contair or ¢ at timer,, then the cluster containing
j attimeyr,, i.e.,C must contairC’. [ |

Lemma4.17If ¢! = (C',I = [r1,72)) is ashared layer
containings (resp.,t) which assigned tg, and~y > 2, then
its corresponding layef = (C,~I) containss (resp.,t).

Lemma 4.16. If boths andt are outside”, thenP crosses
C twice as well, and we get a contribution ®f times the
thickness of’. Suppose not, ande C ort € C: then we
lose~ times the thickness dffor each such infringement.
For shared layerg’ (which map to¢ € £), Lemma 4.17
implies that we lose only whes andt¢ both lie insidel.
Hence, ifi¥’ denotes the wastage, the
len(P) >~y(S+U) - W. 4.7)
We bound the wastage in two ways: firstly, the wastage only
occurs whers or t lie in layers inL they are “not supposed
to”. However,s andt can only lie in one layer at a time,
and hence they can only waste;; amount each, which
by (4.6) gives
W <~(S+1L). (4.8)
For another bound, lef 7,,,..: be the earliest time that
andt lie in the same layer irC (not to be confused with
Tst, Which is the earliest time they lie in the same layer in
L"). We can be very pessimistic and claim that all the con-
tribution due to the unshared layers (i.e./) is lost. A
shared layer’ (C',I) (containings, say) mapped to
¢ = (C,~I) canincur loss only whetalso lies inC—and
hencel C [Tneet, Tst]. But now we claim that must have
been lonely. Indeed, suppose not, and thatas sharing
layer?' € L' assigned tg, and/' was assigned t¢'. But
then both these layers would be mapped,toontradicting
the fact that the mapping was one-one.
Hence we can charge the loss for each shared layer to a
lonely layer, and bound the wastage by:

W <~(U + L). (4.9)
Averaging (4.8) and (4.9), and plugging into (4.7), we get

len(P) < %(S +U - 2L). (4.10)



Subtracting this frony, times (4.5), we get [8]

3y

El

alone(s) + alone(t) > L > 2Ien([["), (4.11)

3

proving Theorem 4.15 witl# = .
the next subsection show how to improve thisite-

The calculations of [0l

6y
2y-3"

[11]
4.3 Tightening the constants

One can get a better bound than givenin (4.11). Suppose wét?]
were split each of the various quantitiess, U, W in two [13]
(L, L, etc.) to account for layers @}’ that correspond to
layers before and after time, ... Then, analogousto (4.8),

we have
[14]

Wy < (81 + Ly)
Wy S’Y(SQ +L2)

(4.12)

(413)  pg

The reasoning of (4.9) implied> < ~ (Us + L2). How-

ever, before time,,,..;, we can do the following argument:  [16]
each unshared layer gets mapped to a layer that can contain
only one ofs or ¢, and hence loses at most one crossing with [17]
IP (while each shared layer loses no crossings at all), giving

us that 18]

Wy <~yU, /2
Wy < ’Y(UQ +L2)

(4.14)

(4.15) (9]

Multiplying (4.12-4.15) by
adding, we get

,2,2, % respectively, and -
~y [21]
W=W; +Wy < g[Sl +252+L1+2L2+U1+U2].

[22]
Now using the fact thas, < L., which follows from the ~ [23]
basic argumentbehind (4.9), and algebra, welpaie(s) +

alone(t) > L > 5*2len(P), as desired.

[24]
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