A Constant-Factor Approximation Algorithm for the Multico mmodity
Rent-or-Buy Problem

Amit Kumar * Anupam Gupta Tim Roughgardeh

Abstract {(s1,t1), ..., (sp, tp)} Of vertex pairs calledlemandswe
seek a minimum-cost way of installing sufficient capacity

We present the first constant-factor approximation algo- on the edge#’ so that a prescribed amount of flow can be
rithm for network design with multiple commodities and sent simultaneously from each soukgeto the correspond-
economies of scale. We consider tkat-or-buyproblem, ing sink t;,. We are interested in the scenario where the
a type of multicommodity buy-at-bulk network design in cost of installing capacity exhibits economies of scale, in
which there are two ways to install capacity on any given the sense that buying a large amount of capacity on a sin-
edge. Capacity can beented with cost incurred on a per- gle edge results in a high capacity-to-cost ratio (i.e.,dyoo
unit of capacity basis, obought which allows unlimited “bang for your buck”). Put differently, the cost of capacity
use after payment of a large fixed cost. Given a graph andis a concave function of the capacity bought.

a set Qf Sourge_'smk pairs_, we seek a minimum-cost way of The general problem described above goes by the name
installing sufficient capacity on edges so that a prescribed buy-at-bulk network desigand was introduced by Salman
amount of flow can be sent simultaneously from each source,; 7| [23]. The problem is NP-hard [23], and researchers

to the corresponding sink.) have therefore sought out good approximation algorithms
Recent work on buy-at-bulk network design has concen-g, e problem. The best algorithm currently known for

trated on the special case where all sinks are identical; . general problem is due to Awerbuch and Azar [3], who
existi.ng constant-factor gpproximation algorithms foisth give anO(log 1 log log n)-approximation based on Bartal's
special case make crucial use of the assumption that all o0 for probabilistically embedding general metri¢s in
commodities ship flow to the same sink vertex and do NOtee metrics [5], where is the number of nodes in the net-
obV|ousI_y extend to the multlcommod!ty_rent-or-buy pro_b- work. Improvements on the algorithm of [3] have been elu-
lem. P”‘?r to our work, the best he_unstlcs for the r_nultl.- sive, leading researchers to consider special cases of the
commodity rent-or-buy problem _achleved only quarlthmlc problem. Thesingle-sinkversion of buy-at-bulk network
performange guarantees and relied on the machln(_ery of re'design, where all sinks, are identical, has recently re-
laxed metrical task systems or of metric embeddings. BY;eiyeq much attention. Andrews and Zhang [2] designed an
contrast, we solve the ne_ztwork design problem directly via O(K?)-approximation algorithm for the single-sink prob-
a novel primal-dual algorithm. lem when the cost of installing capacity is a restricted type
of concave piecewise linear function witki breakpoints.
1 Introduction This problem is caIIed;cce_ss netwgrk design [2]. A
_ _ _ ~ constant-factor approximation algorithm for the access ne

We consider the problem of network design with multi- work design problem was later given by Guha et al. [12].
p!e commodlt_les and economies of scale. More precisely, Subsequently and independently, Garg et al. [7] gave an
given an undirected grapy = (V,E) and a setD = O(K)-approximation algorithm and Guha et al. [13] de-

*Lucent Bell Labs, 600 Mountain Avenue, Murray Hill NJ 07974. signed a ponstapt-factor approximation algorlthm for the
This work was done while the author was at Comell University general smg_le-smk bUY'at'bullk neFWOT!(design F’_rOblem
Ithaca NY 14853, and supported by NSF ITR/IM Grant 11S-00813 (with an arbitrary concave, piecewise linear function de-
and the ONR Young Investigator Award of Jon KIeinberg. Email Scribing the cost of insta”ing a given amount of Capaciw)_

am tk@ esear ch. bel | -1 abs. com .
fLucent Bell Labs, 600 Mountain Avenue, Murray Hill NJ 07974. The constant of [13] has recently been |mproved upon by
Email: anupang@ esear ch. bel | -1 abs. com Talwar [25].

fDepartment of Computer Science, Cornell University, IthatY : : :
14853, Supported by an NSF Graduate Fellowship, a Cornell Despite these recent successes for the single-sink prob

University Fellowship, and ONR grant N00014-98-1-0589. ##m |em, there have been few improvements over the algorithm
tinr @s. cornel | . edu. of Awerbuch and Azar [3] for any nontrivial version wiful-

ticommoditybuy-at-bulk network design. In this paper, we network design problem.

present the first constant-factor approximation algoritbm

such a problem. As all of the techniques employed in recentAPplication to Maybecast. In addition to being a non-
papers[2, 7,12, 13, 17, 25] make crucial use of the assump.trivial special case of buy-at-bulk network design, thetren
tion that all commodities ship flow to the same sink vertex Or-buy problem arises in important applications. For exam-
and do not obviously extend to the multicommodity setting, P€, Karger and Minkoff [17] introduced the so-callehy-
our algorithm and analysis require several new ideas. Webecastproblem, defined as follows. There is an underlying
also avoid reliance on metric embedding techniques (un_undirected networkz, with a source vertex from which a

like [3]), instead attacking the network design problem di- multicast transmission will emanate, and aBeif demand
rectly via a novel primal-dual algorithm. vertices that wish to receive the transmission. The problem

of building the min-cost network that connects the source
The Rent-or-Buy Problem. In this paper, we consider to all of the demands is the classical min-cost Steiner tree
therent-or-buyproblem, a type of multicommodity buy-at- problem. Karger and Minkoff [17] proposed a probabilis-
bulk network design with a simple function describing the tic version of this problem: each demand vertecontacts
cost of installing capacity. In the rent-or-buy problenert the sources independently with probability;. Relative to
are two ways to install capacity on any given edge. Capacity 3 fixed Steiner tree ofis} U D, when a demand contacts
can berented with cost incurred on a per-unit of capacity the sources, all edges on the path joining it toare said to
basis, obought which allows unlimited use after payment pecomeactive The goal is then to build the Steiner tree that
of a Iarge fixed cost. We model this scenario with pOSi- minimizes the expected cost of the active edges_

tive parameterg and M, with the cost of renting capacity Our solution to the rent-or-buy problem provides a con-
equal tou times the capacity required (per unit length), and stant factor approximation for the followingulticommod-
the cost of buying capacity equal fo (per unit length). ity version of the maybecast problem. Instead of a single

There is no loss of generality in assuming that: 1. The sources, we are given a set of sourcés Each demand
multicommodity rent-or-buy problem was previously stud- wants to receive data from one sourcesinand it contacts

ied in an online setting by Awerbuch et al. [4] (where it was that source with some probability. As in the previous prob-
called thenetwork connectivity leasing problgrand Bar- |em, we seek paths between the demands and the sources
tal et al. [6], who used the framework of relaxed metrical they wish to contact so that the expected number of active
task systems to give)(log” n)- andO(log n)-competitive edges is minimized. This problem reduces, modulo a small

algorithms for the problem, respectively. constant factor in the approximation ratio, to rent-or-buy
Buy-at-bulk network design was originally defined in network design (see [17]).

terms of installingcableson edges, with different cable
types offering different amounts of capacity and carrying Application to Connected Facility Location. Our results
different costs [3, 23]. Andrews and Zhang [2] showed that also give a constant-factor approximation algorithm for a
this problem can be rephrased (with a loss of a small con-multicommodity version ofconnected facility locationa
stant factor in the approximation ratio) with each cablestyp problem that has recently received attention in both the op-
carrying afixed cos{which must be paid irrespective of the erations research literature [19, 20, 21] and the computer
capacity needed) and arcremental cosfwhich is paid for science community [14, 17, 18]. In the previously studied
each unit of capacity required). The rent-or-buy problem version of the connected facility location problem, the in-
therefore corresponds to the special case of one cable typ@ut is a setF' of facilities, a setD of demandsa graph
with an incremental cost but no fixed cost, and one cableG = (V, E) with V = F U D and costs, on edges:,
type with a fixed cost but no incremental cost. and a parametel/ > 1. A solution consists of an assign-
We believe the rent-or-buy problem captures much of the ment of demands to facilities and a subgraphGospan-
essence of buy-at-bulk network design. Most of the diffi- ning the open facilities (a Steiner tree). If demagnid as-
culty of network design problems in which capacities obey signed to facilityi(j) and the length of the shortest path
economies of scale stems from the following tension: on the between them it (w.r.t. ¢) is d(j,4(j)), then the cost of a
one hand, we would like to route flow between a source andsolution is}_ ;. , d(j,(j)) + M >_ .y ce (WhereT'is the
sink on an (approximately) shortest path; on the other, we Steiner tree spanning the open facilities). The first corista
would like to gather flow from many different commodities factor approximation algorithm for this problem was given
togetherin order to purchase large quantities of capanilya by Karger and Minkoff [17], and Gupta et al. [14] sub-
take advantage of economies of scale. This issue of “routesequently gave an algorithm with improved performance
vs. gather” is clearly present in the rent-or-buy problem, guarantee. Very recently, Swamy and Kumar [24] obtained
and we believe that overcoming the difficulties caused by a 5-approximation algorithm for this problem.
multiple commaodities in this simple setting will lead to fur In the multicommodity version of connected facility lo-
ther progress on the general multicommodity buy-at-bulk cation, we are in addition given sevecaimmodities Each

demand belongs to one of these commodities. We again2 Preliminaries
open facilities and assign demands to them, but now require

only a subgrapfi’ such that, for any commodity, the set of)] ~]
facilities serving demands of commodityare connected. SI9n (MROB) is specified by an undirected gragh =
(V, E'), a nonnegative cost. for each edge, a setD =

In solving the rent-or-buy problem, we develop techniques _
that also give a constant-factor performance guarantee fort (51:£1)s - -+ , (sp, ¢) } Of pairs of demands, and a parame-

the multicommodity connected facility location problem., ~ t€f > 1. We will abuse notation and writg € D for a
generic demang of the formsy, or ;. We assume for sim-

New Techni for Primal-Dual A imation Al plicity that the source;, wishes to send one unit of flow to
ew Techniques for Primal-Dual Approximation Al- the sinkiy, but our algorithm and analysis extend without

gorithms. Our_ algorithm s baS(_ed on the_ primal—dl_JaI difficulty to non-uniform flow requirements (details omilte
method. The high-level idea of this method is to consider from this abstract). Byi(u,v) we mean the length of the

an integer programming formulation of our network design shortest pathin G between verticea anduv, with respect
problem and the dual of its linear programming relaxation, to edge lengths
and to iteratively construct both an integral primal salati A solution to. an MROB instance is specified by an as-

(i.e., a feasible network) and a feasible dual solution prov signment of each demand péif,, ¢1.) € D to ansj,-t, path

ing that the network ha_s near—gptmal cost, _ of G. If a. paths use edge then the cost of this solution
The first systematic application of the primal-dual 5 gefined by>".. ; ce min{a., M}. The termea, cor-
. i ee e €y . elle
method was to a large class of network design prOblemS’responds to renting capacity on edgeand the terme, M

see [11, 26] for a survey of this and earlier work. More re- corresponds to buying capacity enWe seek a solution of
cently, Jain and Vazirani [16] gave primal-dual approxima- minimum cost.

tion algorithms for several facility location problems tha _ . _
could not be solved using earlier techniques. Our algorithm 2.1 Reformulation as Connected Facility Location

is at times reminiscent to the facility location algorithms \ye begin with a reduction from MROB to multicom-
of [16] (reflecting our need to cluster demands together 10 modity connected facility location (MCFL). We will see
leverage economies of scale) and to the network design alsortly that the latter problem admits a relatively simpie |
gorithms described in [11] (as clustered demands must ther}eger programming formulation, thereby allowing us to use
be connected cheaply, as in canonical network design probyhe primal-dual method.

lems). However, these two implementations of the primal- 1 precise problem that we reduce to is the following.
dual method are not easily combined, and we require fur-,¢ input is an undirected graggh = (V, E) with edgee
ther ideas to obtain a good approximation algorithm for the possessing cost,, a setD = {(s1,t) 7 (sp,tp)} Of
rent-or-buy problem. In particular, we contribute two New yerex nairs, and a parametaf > 1. A solution con-
techniques to existing primal-dual technology that we be- gists of 4 sef” C V of facilities to open, an assignment of

lieve may find other applications. sources and sinks to open facilities, and a subg(apl)

First, we introducegeometric scalingn a primal-dual of G with the following property: if for somek, s is
context. We use scaling to break up the execution of our gssigned to facilityi; and ¢, to i», then there is a path
algorithm into successive stages in a way that ensures thajn (v, /) betweeni; andi,. The cost of a solution is
the “mistakes” made in any given stage have little signif- Y iep A5, 1(5)) + M Y. pr ce, Wherei(j) is the facility
icance for future stages. While other primal-dual algo- to which the demang is assigned and is again shortest-
rithms have been used as a black-box within a scaling pro-path distance i (with respect ta’). (The seemingly more
cedure [1, 8, 9, 27], we use scalimsideour primal-dual general statement of MCFL in Section 1 can also be reduced
algorithm to control the rate of increase of dual variables. to the one above.) We then have the following reduction.

Second, unlike most previous primal-dual approximation
algorithms, we do not explicitly maintain feasibility of ou | emma 2.1 A 3-approximation algorithm for MCFL gives
dual solution. Rather, we maintain feasibility with respec 3 23-approximation algorithm for MROB.
to a strict subset of the dual constraints, and prove that we
are alwaysapproximatelyfeasible for the full LP. This idea

is similar in spirit to recent “dual fitting” approaches te fa :
cility location problems [15, 22]. Freed from the need to Of. MCFL with the same parameter§{c, D, andM). We
will map every solution of the latter problem to one of the

maintain dual feasibility, we can make use of an unusually) . .

aggressive dual increase step; this in turn allows us to moreformer with equal cost, and an OP“ma' solutlop to the for-
easily argue that the cost of our solution is close to the ob-mer problem to one of the latter with at most twice the cost.
jective function value of our (approximately feasible) Hua ~ 17nroughout this paper, we assume some arbitrary but fixed tie
solution. breaking mechanism that ensures uniqueness of shortest pat

An instance of multicommodity rent-or-buy network de-

Proof: An instance of MROB naturally defines an instance

Given a solution to the induced MCFL instance, define
an MROB solution as follows. The,-t; path is defined to
be the shortest path from, to i(s) and fromi(¢x) to ¢y,
connected by a path fronfsy) toi(tx) in H, the subgraph
of edges chosen in the facility location solution (which ex-
ists by feasibility for MCFL). This solution to the MROB
instance has cost bounded above by the MCFL solution.
Consider an optimal solutiof;, ... , P; to an MROB
instance. LetH* denote the edges used By or more
paths. We cannot simply reverse the mapping of the pre-

work design solution use edge It suffices to show that,
for each demand paisy, t;;), our assignment costs foy,
andt; are upper bounded by twice the cost of the edges in
Py \ H*. This is clear for a demand paisy, tx) whose
path P is edge-disjoint fronf *, since its assignment cost
is d(sk, tr) < c¢(Py) = ¢(P\ H*). Suppose now that at
some point in the procedure, the demand pajr,) got
assigned because its paflj intersected the current graph
(V, H) in exactly one component, say;. Sinces; and

ti are assigned to their nearest neighborgfin it is then

vious paragraph, since there is no guarantee that the subeasy to see thal(sy, i(s)) + d(tx, i(tr)) < c(Py\ H;) <

paths ofP;} from s, to H* and fromt,, to H* terminate in a
common component aff *. Instead, initializeH (the con-
necting edges in our facility location solution) to BH& and
F (the open facilities) to be the vertices spannedfy we

c(Pf \ H*). Finally, suppose demand pdisy, tx) is as-
signed in case 1 of some iteration of the procedure, With
the current component. Singgandt; are assigned to near-
est neighbors irff;, we haved(sg,i(sx)) + d(tx,i(tx)) <

will supplement these sets with further edges and verticesc(P; \ H;) = ¢(P}) + ¢(P?) < 2¢(P}) < 2¢(Pf\ H*).

shortly. Define{ H;} to be the components ¢V, H) with
isolated vertices discarded; this set is initially just tiom-
trivial components of V, H*), but will change as we add
further edges td7.

Call a demand paifsy, t;) goodif path P} is edge-
disjoint from all but at most oné{;, andbad otherwise.

If P} is edge-disjoint from all;’s, then add vertex;, to

F and assign bothk;, andt;, to it. If P} intersects onlyd;,
then assign each af;, andt; to their nearest neighbors in
H;. As long as there is a bad pair, we execute the following
procedure.

Let H; be the component of minimum index that inter-
sects some bad demand demand pair,(sgyt;). Call H;
thecurrent componentet P! denote the edges &% \ H,
andP? the edges of’; N H that lie outside of; (in com-
ponents with larger index). Our analysis breaks into two
cases. Let(P) denote) . c. for a subgraphP.

Case 1: Suppose:(P}) > c¢(P?). In this case we assign
each ofs;, andt;, their nearest neighbors itf;, and redefine
the demand paifss, tx) to be good.

Case 2: Suppose:(P}) < ¢(P?). In this case we add all
edges ofP?! to H, and add all endpoints of these edges'to
Since(sy, t) is bad, this addition causes two or more com-
ponents {7; and components of higher index) to merge into
a single component; the new component retains the index
Any demand paifs,, t,) whose path is now edge-disjoint
from all non-trivial components dfV, H) exceptH; (such
as(sy,tx)) is redefined to be good, ang andt, are as-
signed to their nearest neighborsff.

Each iteration of the above procedure strictly increases
the number of good demand pairs and maintains the invari-
ant that all good demand pairs have been assigned to ope
facilities in a common component 0¥, H). The procedure
therefore terminates with a feasible solution to the MCFL
instance; it remains to show that this solution has smatl cos

We first claim that assignment costs of our solution are
at most2 Zeﬂﬁ acce, Wherea, < M paths of the net-

To conclude we prove thay ., cc < 2>y Ce-
Edges are only added 6 during case 2 of the above proce-
dure. Suppose this occurs with current compotént and
with path P intersecting componentd;, , ... , H; with
i1 < -+ < iq. By eligibility for case 2, the edges added to
H atthis pointhave costatmost{_, 3., c.. Thekey
observations are these: only components with index larger
than that of the current component appear in this expres-
sion (s > i1 for s > 1); once a component appears in this
expression, its edges are absorbed into the current compo-
nent (which retains its index); edges of any such compo-
nent lie in H*; and the index of the current component can
only increase. Because of these four facts, every edge of
H* participates in the expression?_, >~ ., c. atmost
once. Summing over all additions of edgesHo we get

Decr Ce = Deep Cet ZeeH\H* Ce 23 ccpys Ce- M

2.2 An LP formulation

We now give an integer programming formulation for
MCFL. The decision variables are of the fonyy (1 if de-
mandj is assigned to facility and 0 otherwise) and. (1
if e is selected as a connecting edge and 0 otherwise). The
integer program is as follows:

min Z Z zi;d(i,5) + M Z Ceze S.t. (3]
jEDIEV c€E
inj =1 VjeD
i€V
Z Ze 2 insk _intk VS CV,seD
e€s(S) i€s i€s
n Z Zezzxitk_zxisk VS CV,i,eD
e€s(S) i€s i€s

Tij, Ze S {0, 1},

whered(S) is the set of edges having precisely one endpoint
in S. We replace the integrality constraint by, z. > 0

for all ¢,1, j to obtain a linear program. The dual to this
relaxation is

max Zaj s.t. (DP)
j€D

Qoo = D Yss T > s, < dli,sk) 1)
S:es S:eSs

Qg — Z Ys. + Z Ys,s < d(i, tr))
S:es S:eSs

Z Z ys; < Mc. Yee E (3)
JED S:ecd(S)

YS,si Ys,t, = 0 (4)

where constraints (1) and (2) range over@ll,tx) € D
and: € V. By weak duality, any feasible solution to this
dual LP is a lower bound on the cost of an optimal solution
to the connected facility location problem.

WhenM unassigned demands become tight with a com-
mon facility, we open the facility and call this group of de-
mands aluster Assume we succeed in clustering all of the
demands into groups of siZd. Intuitively, these are groups
large enough to justify building edges to connect the open
facilities (since the cost of building an edgelis times the
cost of assigning demands across an edge). These clusters
induce an instance of the well-solved generalized Steiner
problem [1, 10] with clusters as terminals and connectiv-
ity requirements induced in a natural way. This suggests
running a primal-dual algorithm for the generalized Steine
problem (as in [1, 10]§. Unfortunately, a problem arises.
The algorithms of [1, 10] build edges one-by-one, until all
connectivity requirements are satisfied. When an edge is
built, two components of edges merge into one; in our ap-
plication, this may connect many of the demand pairs in the
original connected facility location instance, droppihg t
number of unsatisfied demands in the new component to a

The dual LP should be interpreted as follows. The value honzero number much less thah We may thus encounter

«a; is the amount that demande D is “willing to pay” to-
wards a solution. If demangis assigned to facility, a por-
tion of a; pays for the distancéy(:, j); the rest contributes

to the connecting edges. At the highest level, the goal of

our algorithm (and of any primal-dual algorithm) is to raise
the dual variablesa; as much as possible (“generating rev-
enue”) while maintaining dual feasibility, thereby ensigri
that ., «; is a valid lower bound on the optimum.

3 The Algorithm
3.1 Difficulties

Before presenting our algorithm, we try to indicate some
of the main difficulties that arise in solving MCFL. We first
propose a simple primal-dual algorithm for the problem.
Call a demang;j tight with facility ¢ if the constraint (1)
for j is satisfied with equality (with respect to the current
dual solution), and edgetight if the constraint (3) foe is
satisfied with equality. Call a facility reachable frony if
there is a facilityk with the following property:j is tight
with £ and there is a path of tight edges betwéeand:.
The algorithm is as follows, and is similar to that of Jain
and Vazirani [16] for classical facility location. We begin
with all dual variables set to zero, and begin raisingdh's
at a uniform rate. We also raise the dual variajpde ; in
conjunction withj, whereS; is set of facilities reachable
from j. This procedure ensures dual feasibility with the
constraints (1) and (2) replaced by

Qs = D gicg YS,s, < d(i,sy) VspeDyicV
Q) — ZS:ieS YS ty, < d(i,tk) Vi, € D,ieV.

(5)
(6)

We ignore further issues of dual feasibility for the moment
(though our algorithm must handle this difficulty).

a partial solution that fails to satisfy all connectivityére-
ments and also fails to cluster unsatisfied demands inte larg
enough groups to justify building further edges.

To handle this problem, we are forced to interleave clus-
tering and building phases. This in turn causes several tech
nical problems that must be dealt with. For example, in any
given phase, the dual variables of previous phases will con-
tribute to the constraints of type (3), thereby creating ynan
tight edges and forcing the reachable sgtdo grow large
quickly. We deal with this problem in two ways.

First, we break our algorithm into stages, with the dual
increase of each variable in one stage being a constant facto
larger than the increase in the previous stage; this ensures
that dual increases in one stage cannot affect future stages
too much. Second, we introduce a method for bounding the
proliferation of tight edges via distance-preserving prop-
erty. Roughly speaking, this property asserts that we can
pay for “most” of the tight edges with the current dual solu-
tion, in the following sense: it is the set of tight edges and
B C T are the edges that we can pay for with the current
dual solution, then the distances between any pair of ver-
tices in the graph&' g andGr obtained by contracting the
edges ofB andT', respectively, differ only by a small factor.
We then show that all demand pairs with source and sink
“not too far apart” can be assigned to facilities in the graph
G with a cost that can be accounted for with our current
dual solution; the smallest distance qualifying as “farrtipa
will increase exponentially with the number of stages. By
the distance-preserving property, it follows that assignta
in Gp of such demands can be (approximately) paid for.
The cost of assignments iz approximately reflect the
cost of assignments if¥ (since the contracted edges(ii

2Indeed, this approach leads to a constant-factor apprdiximéor the
special case when all sinks are identical.

are the edges d8, which are already paid for and can there-
fore be used freely), so such demands can be assigned to
open facilities without incurring too much cost. At the end

of the algorithm, all demands are “not too far apart”, and
we obtain a feasible solution with small cost.

3.2 Some Preliminaries

Auxiliary Graphs. Our algorithm maintains two graphs,
G’ andGg. Both of these graphs will change throughout
the execution of our algorithm. Lefs, anddq, denote
shortest-path distance in these two graphs. Bedenote
the set of edges already built by our algorithm. As in the
previous section, the graghz is obtained fronG by con-
tracting all edges irB. The distanc@ , (sx, tx) should be
interpreted as the cost of assigningandt;, to open facili-
ties that are already connected to each other (this is ntet qui the description of our algorithm: (1) we assume that every
true, but motivates wheg s is a useful network to consider). €dge with non-zero cost has cost preciselwheree is a
Since the edges i are in some sense “already paid for”, sufficiently small constant; (2) we assume that the distance
G5 can be thought of as a “residual network”. Also, each between any two demands that are not co-located is at least
connected subgrapH of G corresponds to a connected 20C?, whereC' is a sufficiently large constant.
subgraph of7 in a natural way; we denote this subgraph by ~ Assumption (2) can be enforced by scaling up all dis-
G[H]. tances of the input graph. Assumption (1) is enforced by
The graphG’ intuitively corresponds to the graghy of rounding edge costs to a multiple efand then subdivid-
the previous section, but has a more complicated definition.ing edges until all edges have length preciselyrhis per-
We will call G’ the auxiliary graph At every point in our ~ Mits the dual increases in our algorithm to occur in discrete
algorithm, the grapl&”’ is obtained fronGz by a sequence Steps, and affects the approximation ratio by a negligible
of the fo”owing two Operations: (1) contract an edge of factor. These subdivisions allow for facilities to be |caxht
G3; (2) decrease the length(e), of an edge: from ¢, to at these new subdividing points, but simple postprocessing
zero. (While setting an edge length to zero is intuitively relocates facilities at the original vertices at the expesfs
the same as contracting it, it will be technically convenien Small constant factor increase in the solution cost. Treere |
to distinguish between these two operations.) The distance?lso a concern that these subdivisions may result in a pseu-
de in G will be with respect to the length(¢) of edgesin ~ dopolynomial time algorithm, but in fact the algorithm we

Figure 1. Mappings between vertices of vari-
ous graphs. Bold edges have been built.

G’, which for each edge will be eitherc, or zero. give below for subdivided networks is easily converted into
A vertexv' € G’ corresponds to a connected subgraph @ strongly polynomial time algorithm. Details are given in
in both Gz and in G—we denote these subgrapfis;[v] the full version.

andG[v'], respectively (see Figure 1). We defiGg;[H’|

andG[H'] for a connected subgraghi’ of G’ in a similar

manner. We intuitively think o€’ as a “coarser version” of

G g, with each vertex’ in G’ representing a small “region”

in Gp. We associate with’ a vertex ofG z[v'] that we call

a core (denotedcore(v’)). As a vertex inG g, core(v’) is

a connected component of built edges that we think of as

being “nearby” all vertices of z[v]; thus if demands in’

need to be assigned to an open facilityse(v’) represents

some that are close by. Similarly, building edges betwgen

andv’ in G’ should translate in a distance-preserving man-

ner to building edges betweenre(u) andcore(v) in Gp.
Each vertex of G or G is contained in some vertex of

G’; we will denote this vertex by(G’). When we speak of

demandj in G (or G’), we mean the vertex @'z (or G')

that containg.

Defining Tight. We now give our revised definition of
what it means for a demandto betight with a facility i.
The definition will be similar but not identical to the notion
of “reachable” in Subsection 3.1, and will make use of the
auxiliary graphG’.

Initially, a demand; is tight with all facilities that are co-
located with it (includingj itself). A demandj can become
tight with additional facilities when its dual variabte; is
increased or when the auxiliary graghis modified. First,
if «; is raised bye units (by assumption (1) above, all dual
increases are of this form), then by definitigroecomes
tight with any facility ¢ satisfying the following: there is a
facility k of G and vertices’ andk’ of G’ containingi and
k such thatj is tight with £ anddg. (K, ') = e.

Finally, the facilities with whicty is tight will satisfy the
following closure property, by definition: If is tight with
Some Assumptions. We next make two easily-imposed a facility contained in vertex’ of G’ anddg (v, w’) = 0,
assumptions about the problem input, which will simplify thenj is tight with all facilities of G contained inw’. This

invariant implies that modifications @’ (contracting an We now describe stageof our algorithm ¢ > 0). Let
edge or decreasing the length of an edge to zero) can implic<G™ be the auxiliary graph at the beginning of stage?’

itly increase the number of facilities with which a demand will always denote the auxiliary graph at the current point
is tight. Note also that by taking = w’ in this invariant, it of time (soG’ = G" at the beginning of stagd. The end

makes sense to say that a demaigltight with a facility:’ of the previous stage defines a $&tof frozen facilities of
in G’; this simply means that is tight with all facilities of G" (in stage 0,F, = (); all other facilities, as well as all
Gin G[i']. alive demands, are unfrozen. The previous stage will en-

. o sure that facilities of,. are far from each other i&'", that
3.3 Algorithm Description each facility:’ € F, possesses a sét(i’) of M primary
Disclaimer: Our algorithm will not output a feasible so- demandshat are tight with’, and that no demand is a pri-
lution to MCFL, but will instead output a partial solution Mary demand for two different frozen facilities. A stage of
that is easily transformed into a feasible solution with at the algorithm consists of three phases.

most twice the cost. Our output consists of aBaif edges phase 1: The purpose of this phase is to form clusters. We
and for each demand pai, tx), ansi-t;, path ;. Our al- implement this as follows. Dual variables corresponding to

gorithm will guarantee that/ >~ 5 cc+ >4 ¢(Px\ B) alive, unfrozen demands are raised uniformly, until one of
is at most a constant factor larger than the cost of the opti-he following events happen.

mal solution to the original connected facility locatioropr

lem. We will say that edges i3 are boughtor built and 1. There is a frozen facility’ and an alive unfrozen de-
that edges inP;, \ B arerented If we began with an in- mandj such that eithedg. (i', j) < 8- C"*' or j gets
stance of MROB, then it is straightforward to check that tight with 7’. (Recall from the previous subsection that
Pi,..., P, can be reinterpreted as a solution for this in- Clis asufficiently large constant.) Freeze the demand
stance with the same (or smaller) cost; it follows from the and stop raisingy; .

proof of Lemma 2.1 that this solution has cost within a con- 2
stant factor of optimal for the rent-or-buy problem. If we de

sire a solution to the MCFL instance, then the reduction of
Lemma 2.1 can be used to extract one fréyy. .. , P,, B

that is within a constant factor of optimal.

. There areM/ alive demand nodes tight with a facility
+/, and not all of them are frozen. Freeze the facility
add it toF;., and set thél/ demand nodes to he(i'),
the primary demands af.

3. There is a demang such thata; is at leastC” .

First, we describe some initial conditions for our algo- _)
Freeze the demanyidand stop raisingy;.

rithm. We start with the empty primal solution (no edges

built, no assignments made) and the all-zero dual solution. Note that freezing of demands or facilities may occur be-
The auxiliary graphG" is initially G. Each vertex’ of G fore any dual variables have been raised. Phase 1 terminates
will maintain abudget(intuitively, the amount of “revenue” when all alive demands are frozen. If more than one of these

it has raised to pay for building edges and making assign-three events happen simultaneously, we give precedence to
ments); initially, all budgets are zero. Every demand will event (1).

be in one of three states: (d)ive and unfrozepwhich in-
dicates an unassigned demand that is allowed to raise it
dual variable; (2alive and frozenwhich indicates an unas-
signed demand that is not allowed to raise its dual variable;") - §
(3) dead which indicates an assigned demand. Initially, C|sely,+\1/ve increasey; of every demanq_ in Uyep, P(i')
every demand is alive and unfrozen; frozen demands ma))oy C"™". The budget of each node . is updated to be

r4+1
subsequently be unfrozen, but dead demands will never be” e

ghase 2: This phase increases dual variables further (while
still ignoring the issue of dual feasibility) to pay for agst
ing demands and building edges later in this stage. Pre-

resurrected. Every facility will be eithdrozen(if it par- Phase 3: The final phase of our algorithm is the most com-
ticipates in a cluster of/ demands) ounfrozen(other- plicated and breaks down into several procedures. We main-
wise). Initially, every facility is unfrozen; frozen faties tain a set of nodeX which is initially set toF,.. Let Z,.

may later become unfrozen. be the set of edges i&" (= G’) such that the constraint

Whenever we increase a dual variablg we simultane- (3) corresponding to these edges in the dual LP is violated,
ously increase the dual variabjg; ;, whereS; is the setof ~ and set/(e) to O for all these edges. (Of courdgige) may
facilities with whichj is tight (with the definition of tight already be 0 inG” for some edges). Lef’ be this new
given in the previous subsection); we will see that this en- auxiliary graph. Note that?” andG’ have the same set of
sures that the relaxed dual constraints (5) and (6) are alway vertices, but the distance functions in the two graphs are
satisfied. We will henceforth only describe how to raise the different.

a;'s, which we refer to as “the dual variables”, with the un- Setting lengths of some edges to be 0 can contract dis-
derstanding that thgs, ;'s are raised in this way. tances inG’ by a lot, compared to distances (ng. In

the procedur€reateNodes we identify places where dis- G x on the vertex seX thus:u/,v" € X are joined by an
tances have contracted substantially. Since our aim is toedge ifB’(v') NB’(v") # 0. Now letTx be a spanning for-
maintain the fact that two points are nearly at the same dis-est inGx; i.e., Tx restricted to any connected component
tance inGp as inG’, we build edges ilGg at some of of Gx is a spanning tree. For each edge (u’,v’) € Tx,
these places so that the corresponding distances go dowret w’ € B’(u’) N B/(v'). Find the shortest path be-
in G as well. To this end, we add more vertices to the tweencore(u’) and core(w’) in Gp that lies entirely in-
setX. To each vertex’ € X, we associate a subgraph sideGg[B’(uv')]. Similarly, find a path froncore(w’) to
B(v') of G’, which is the set of all nodes within distance at core(v’) in Gp. Build edges on these paths (hence adding
most11 - C™*! of v/ in G”. Note the subtlety here that the these edges to the sBtas well, and contracting all these
distance is measured @&" and not in the current auxiliary edges inGp).

graphG’. Contract all the vertices iB’(v") to a single node for
Procedure CreateNodes:Suppose there are two vertices eachv’ € X in the auxiliary graph. Ift’ is such a node,
u',v" € G' and P’ is a shortest path between themdt thenz’ may have been obtained by contraction of several of
(according toZ, the length function oii’). Lety < C be the setB’(v}),...,B'(v.), wherevy, ... , v, form a con-

a sufficiently large constant. Further suppose tHat’, P’ nected component @f x in the procedure above. However,
satisfy the following properties: (1) none of the pointgih note that these contractions are accompanied by the build-
belong to any of the ballB(w’) for anyw’ € X; and (2) ing of edges, and heneere(v}), ... ,core(v}) contract to
da, (core(u’), core(v')) is betweenyC"+! and 2yC" 1, a single node irG 5 as well. This is defined asre(z’) in
whereasig (u/,v") < yO™ 1 /4. G'p, and we set the budget of to beC"+1.

We choose a set ofy points ug,u},... ,u/, from Procedure Contract: As the last round of building edges
the path P’ as follows:), = w/, u} is the right- in a stage, we perform the following operation as long as

most point on P’ such that(1 — 1/4) - C™"! < possible. Let/,v’ be two nodes with budget”*! such
da (core(u’), core(u))) < O™, u) is the right-most that the shortest patR’ between them ii’ has no inter-
point in P’ such thatdg , (core(u’), core(ub)) is between nal vertex of budgef”**. Furthermore, suppose that these
(2 —1/4) - C™*' and2 - C"*' and so on. We stop when nodes are “somewhat close”; i.@g (u/,v') < 9 - C"2.
we find~y such points. Existence of these points and the factLet u = core(u’),v = core(v’), find a shortest patt® in
that they lie onP’ in this order are proved in the full ver- G between: andv, and build edges on this path. Further-
sion. LetD(u’,v") denote the set of these points, and add more, if P contains a vertexw such thais(G") is a vertex of
these|D(u’,v')| = ~ points toX. We shall say that this budgetC"*! in G, then find a shortest path Hp[w’] be-
procedure creates the pé&ir', v'). tweenw andcore(w’), and build edges on this path as well.

As before, we also construct the baliu]) around all ~ Contract the edges we just built &5. Note thatcore(u')

u, € D(u',v'). Note that the union of these balls may not andcore(v’) will contract to a single vertex iti 5, call this
cover all of P’. Indeed, since shortest paths@ do not . P corresponds to a path” joining «’ andv’ in G’, and
map to shortest paths iz, there may be a point between contracting all the edges iR” creates the new vertex in
' and/ whose distance fromore(u’) in Gp is much G- We definecore(z') = x, and allotz’ a budget of0" .
more thanC" 1.

We keep doing this operation above as long as it is pos-
sible. At the end, for eacth € X, we want to contract the
setsB(v’) into single nodes. The first problem with this is
more of a technical issue. For € B(v’), look at the short-
est path inG5 joining core(w’) andcore(v’); all the edges
in this path may not lie in the s&(v’). To handle this, we
completethe setB(v’) to B/(v') thus: initially B’ (v') con-
tains justB(v’). Now if there is a vertexy’ € B(v’) such

Procedure Prune Demands: Our next step in this phase
is to satisfy demands that are sufficiently close to eachrothe
in G’. Formally, letsy, ¢, be a pair of alive demands with
de/(sk,tx) < 5-C"t2; define pathP, connecting them

to be the shortest,-t;. path inGp, lifted to ans,-t; path

of G in the obvious way. Edges df;. \ B are rented, and
demands;, andt, are marked dead (we will never consider
them again in the algorithm).

that the shortest path betweese(v’) andcore(w’) in G Procedure Regrow: The final procedure of Phase 3 raises
uses a vertex, wherez(G') is not inB(v'), then we add the dualso; of some demand nodes. For a vertéwith
z(G") o B'(v"). a budget ofC"+!, defineD(v') to be the set of those de-
We now want to contradB’(v') into a single node. An- mands;j that are only tight withG[v']. In particular, such a
other problem presents itself: B’(v') and B’(u') for demand; must lie inG[v'], because every demand is tight

u’ # v’ € X share some vertices, then both sets will get with itself.

contracted to the same node. To decide what the core of |fthere is a vertex’ of budgetC"+! such thatD(v')| <
this new node will be, we run the following procedure : M, then we start raising the; value of all demands in
Procedure ContractTree(X): Let us construct a graph D(v’) simultaneously, stopping am; from rising further

if it reachesC"**. DefineF, . to be the set of all nodeg
that have a budget @¢f"*+!, and that also satisfyD(v')| >

M. Thisis the set of frozen facilities for the next stage. Fur-
thermore, fon' € F.1 4, define the primary demand¥v’)

of v’ to be anyM of the demands i (v").

4 Overview of Analysis

We now give a high-level overview of the analysis; the
precise arguments are given in the full version.

Approximate Dual Feasibility. Unlike a traditional
primal-dual algorithm, our algorithm does not explicitly
maintain feasibility of the dual solution. We explicitly ey

We prove Theorem 4.2 by induction en Assume the
theorem holds for all stages befare In stager, we con-
struct the ballB(v’) for eachv’ € X of radius abou€” !
in G™, which by induction correspond to radiayC"+!)
balls in G, as well. Since we construct nodes of budget
C™+1 py collapsing such balls, the first part of the inductive
step essentially follows from the fact that these balls have
radii O(C™1) in Gp.

Now we show how to prove the second part of the theo-
rem above. Suppose we have finished the procedare
tractTree in Stager. Letu',v' € G’ have a shortest
path P’ between them iz’ that does not contain any ver-
tex of weightC™1, anddg , (core(u’), core(v’)) lies be-

the relaxed constraints (5) and (6) and do not obey the dualtween~C"+! and2yC"*!. We claim thatdg: (u’,v') >
constraint (3) for edges at all. On the other hand, we proveyC"+1/4; indeed, otherwise we would have consid-
that our algorithm always maintains a dual solution that is ered this path in the procedut@reateNode and col-

approximatelyoptimal.

Theorem 4.1 If («, y) is the dual solution produced by the
algorithm, then(1a, 1y) is feasible for the LP (DP).

lapsed it. Ifu/, o', P’ satisfy the above properties but
dc (core(u’), core(v’)) is much bigger thanC"™ 1, then

we can break the patR’ into smaller segments of length
aboutyCT™*! and argue independently on each segment.
Thus the distance between andv’ is nearly the same in

Theorem 4.1 is proved in two steps. First, we use the i;; andG’; though this is only up to an additive factor of

fact thata,, anda;, are only raised whesy, andt are far
apart (because of therune Demandsprocedure) in con-
junction with feasibility for constraints (5) and (6) to sho

aboutyCT 1,
But what if P’ contains nodes of budgét"*1? These
nodes can be a problem: since they correspond to subgraphs

that constraints (1) and (2) are satisfied. Second, we showf radii aboutC”*! in Gz, we may be contracting distances
that no dual constraint of the form (3) is violated by more sypstantially i’ by collapsing such subgraphs. Consider
than a factor 5. Since we give edges with violated dual con-two consecutive nodes of budgét*! in P’ — the proce-

straint length 0 at the beginning of Phase 3 (after which the gyreContract ensures that the distance between them is so

left-hand side of the constraint will never increase agan,
definition of tight), it suffices to prove that the contrikari

to the left-hand side of the dual constraint corresponding t
edgee in a single stage is at mo$f/c.. Itis easy to show
that a single demand can contribute oalyto the left-hand
side, so the problem reduces to showing that an{y/)

demands contribute to the left-hand side. Our algorithm en-

sures this property by only allowindy/ different demands
to become tight with a vertex (this limits the contribution i

large that the contraction of these nodes will not have much
effect on the distance betweehandv’. This allows us to
prove the theorem.

The Performance Guarantee. The cost of the primal so-
lution is the sum of the cost of renting some edges and the
cost of building others. Let us first account for the rental
costs: if we rent edges betwegpandi,, in thePrune De-
mandsprocedure of stage the distance between andiy,

Phase 1), and by forcing any two frozen facilities to be far is aboutC™*! in G’, and about the same @iz as well (us-
apart; primary demands are relatively close to their frozen ing the distance preserving property). Saif, or o, is at

facilities, and therefore primary demands belonging te dif
ferent facilities cannot contribute to a single dual coaistr
(this limits the contribution in Phase 2).

The Distance-Preserving Property. We next argue that
distances inGg andG’ are close to each other during the
entire run of the algorithm. Lef and\ be constants such
thatf < vy < A < C.

Theorem 4.2 Letv’ be a node with budgéet®, and letv be
its core inGp. Thendg, (u, v) < BC* foranyu € Gp[v'],
with such a path lying inside the subgra@hs|[v'].
Furthermore, letu’,v" € G*, with coresu,v € Gp re-
spectively. Thedg, (u,v) <5 -dg=(u/,v") + AC?.

leastC”*! then these demands can pay for the cost of rent-
ing by their dual variables. If boih,, anda,, are small, we

can show that both these demands are close enough to some
frozen facility such that we can pay for renting of edges to
this facility.

Accounting for the edges we build is more involved.
Here we use the budgets of nodes, which is roughly the
amount it can pay for building edges (scaled downilby.
This explains why we assign a budget@f*! in Phase 2,
since we can account for this by the raising df of the
a; values. InContract, since we build edges between two
nodes of budgef” ™, one of these high-budget nodes can
pay for cost of building, which i©® (M C*1). In procedure
ContractTree also, each edge of the trég basically cor-

responds to building edges éWC"*!) length paths, and
so each node dfy has to account for abodi™+! length
edges. If a node df’y comes from Phase 2, we know it has
a budget ofC" 1, and so it can pay for building the edges.
If not, then this node ifl’y comes from the procedutere-
ateNode and exists because of a pdir’,v') created by
this procedure. But then the distance betweeandv’ in

G’ was much less than that @, and so many of the duals
must have been raised for this shrinking of distances. We
then show how to borrow"+! units of budget from these
dual variables, which completes the proof of the following
theorem.

[12]
[13]

[14]

[15]

[16]

Theorem 4.3 The cost of the primal solution constructed
by our algorithm is within a constant 9f ; ;. [17]
Acknowledgments. We thank Jon Kleinberg aniiva Tardos
for helpful discussions. (18]

References [19]

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An
approximation algorithm for the generalized Steiner prob-
lem on networks SIAM Journal on Computing4(3):440—
456, 1995.
M. Andrews and L. Zhang. Approximation algorithms for
access network desigAlgorithmica 34(2):197-215, 2002.
B. Awerbuch and Y. Azar. Buy-at-bulk network design. In
Proceedings of 38th FOCPBages 542-547, 1997.
B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized
Steiner problem. IiProceedings of 7th SODAages 68-74,
1996.
[5] Y. Bartal. On approximating arbitrary metrics by treetme
rics. InProceedings of 30th STQ@ages 161-168, 1998.
[6] Y. Bartal, M. Charikar, and P. Indyk. On page migratioman
other relaxed task systems. Rroceedings of 8th SODA
pages 43-52, 1997.
N. Garg, R. Khandekar, G. Konjevod, R. Ravi, F. S. Salman,
and A. Sinha. On the integrality gap of a natural formulation
of the single-sink buy-at-bulk network design formulation
In Proceedings of 8th IPC(pages 170-184, 2001.
M. X. Goemans and D. Bertsimas. Survivable networks,
linear programming relaxations, and the parsimonious{prop
erty. Mathematical Programming50:145-166, 1993.
M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys,
E. Tardos, and D. P. Williamson. Improved approximation
algorithms for network design problems. Bmoceedings of
5th SODA pages 223-232, 1994.
M. X. Goemans and D. P. Williamson. A general approx- A
imation technique for constrained forest problenSIAM
Journal on Computing24:296-317, 1995.
M. X. Goemans and D. P. Williamson. The primal-dual
method for approximation algorithms and its application to
network design problems. In D. S. Hochbaum, edifqgs;
proximation Algorithms for NP-Hard Problemshapter 4,
pages 144-191. PWS Publishing Company, 1997.

[20]

(2]
(3]
(4]

[21]

[22]

(23]

[24]

(7]
[25]

[26]
(8]

[27]
9]

(10]

1) Al

10

S. Guha, A. Meyerson, and K. Munagala. Hierarchical
placement and network design problems. Piroceedings

of 41st FOCSpages 603-612, 2000.

S. Guha, A. Meyerson, and K. Munagala. A constant factor
approximation for the single sink edge installation profde

In Proceedings of 33rd STQ@ages 383-388, 2001.

A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yene
Provisioning a virtual private network: A network design
problem for multicommodity flow. IProceedings of 33rd
STOG pages 389-398, 2001.

K. Jain, M. Madian, and A. Saberi. A new greedy approach
for facility location problems. IfProceedings of 34th STQC
pages 731-740, 2002.

K. Jain and V. V. Vazirani. Primal-dual approximatiolga:
rithms for metric facility location and:-median problems.
Journal of the ACM48:274-296, 2001.

D. R. Karger and M. Minkoff. Building Steiner trees with
incomplete global knowledge. Proceedings of 41st FOCS
pages 613-623, 2000.

S. Khuller and A. Zhu. The general Steiner tree-stabpro
lem. Information Processing Letterg002. To appear.

T. U. Kim, T. J. Lowe, A. Tamir, and J. E. Ward. On the
location of a tree-shaped facilitiletworks 28(3):167-175,
1996.

M. Labbé, G. Laporte, |. Rodrigues Martin, and J. JaZar
Gonzalez. The median cycle problem. Technical Report
2001/12, Department of Operations Research and Multicri-
teria Decision Aid at Université Libre de Bruxelles, 2001.

Y. Lee, S. Y. Chiu, and J. Ryan. A branch and cut algo-
rithm for a Steiner tree-star probledNFORMS Journal on
Computing 8(3):194-201, 1996.

M. Madian, E. Markakis, A. Saberi, and V. V. Vazirani. A
greedy facility location algorithm analyzed using dual fit-
ting. In Proceedings of 4th APPRQRages 127-137, 2001.
F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian.
Approximating the single-sink link-installation probleim
network designSIAM Journal on Optimizatiqri1(3):595—
610, 2000.

C. Swamy and A. Kumar. Primal-dual algorithms for the
connected facility location problem. To appeatRPROX
2002

K. Talwar. Single-sink buy-at-bulk LP has constaneal-

ity gap. InProceedings of 9th IPC(pages 475-486, 2002.
D. P. Williamson. The primal-dual method for approxi-
mation algorithms.Mathematical Programming, Series B
91(3):447-478, 2002.

D. P. Williamson, M. X. Goemans, M. Mihail, and V. V.
Vazirani. A primal-dual approximation algorithm for gener
alized Steiner network problem&ombinatorica 15:435-
454, 1995.

Proofs

Feasibility

In this section, we argue that the dual variablesys ;
constructed by the algorithm of Subsection 3.3 are nearly
feasible. We will first show that the constraints (5) and (6)

are always satisfied. For this, we need some simple lemmas This proves that at the instaftbecomes tight with a

about the dual variables. facility 4, o; < d(¢, 7). From this point on, the left hand
side of (5) fori andj will remain unchanged, and hence

Lemma A.1 At the beginning of stage a; < 2C" for all satisfied. (A symmetric argument holds for (6).) We next

demand nodes. show that the original constraints (1), (2) are also satsfie

For the next lemma, by thactive phaseof the algo-
rithm we mean the operations that modify the dual variables

Proof: By induction of the number of stages. In Phase (Phases 1 and 2 and procedRegrow).

1, noq; is raised abov€™ 1. In Phase 2q; is increased

by at most an additive'" ™! factor. Finally, inRegrow, we)) o)
never raisey; aboveC" 1. - Lemma A.4 Consider a point of time in the active phase.

If G’ is the current auxiliary graph, and;, ¢; are a pair of
alive demands, thedi; (s;, 1) > o, + ;.
Lemma A.2 If j is tight with4’ in the auxiliary graphG’,

g _ o
thendg: (5,1') < o atthat pointin time. Proof: The inequality is easily seen to hold in Phases 1 and

2 of stage 0, since we assume that(s;,¢;) > 20C? for
Proof: The lemma clearly holds at the beginning of the all j. So fix a stage: > 1 and suppose;, ¢; survived the
algorithm, so suppose the lemma is true at timeSince Prune Demandprocedure of stage” — 1). It follows that
distances irG’ can only get smaller, we need only be con- dg(s;,t;) > 5- C"+! at this moment in time. Lemma A.1
cerned with the first moment in time at which a demgnd implies that throughout stages— 1 andr, o, + ay; <

becomes tight with some facility of G'. 4CT1. Since distances i’ are not modified during the
We now look at the operations that algorithm performs. Regrowprocedure of state— 1 and Phases 1 and 2 of stage
If it contracts a set of nodeS to a single nodes, j will r, the desired inequality holds throughout. [|

be tight with s only if j was tight with a node in S,
and hence by the induction hypothesis; (4, s) will be
bounded above by,;. A similar argument applies when Theorem A.5 The constraints (1) and (2) are always satis-
we set an edge length to 0. fied.
Consider the pointwhen time becontes:, and we raise

a; by e. Supposg becomes tight withi’ at timet + ¢, butit — proof: We will provide the argument for constraints (1), as
was not tight with it at time. By the definition of tightand the argument for constraints (2) is symmetric. For contra-
the fact that all edges have lengttthis can only happenif giction, lett be the first time at which constraint (1) is not

g was tight with some nodé’ attimet andde (i',1") = ¢ satisfied for demand, and facilityi. Since the algorithm
By |nduct|on,aj'/2' de(i”, j) at imet, and thus at time enforces the corresponding constraint (5), we can conclude
t+e a; > dg (i, j), completing the proof. B thatys,, > 0forsomeS containing. This, in turn, implies

thatt; is tight with4. Look at the first time whety becomes
tight with 7. Lemma A.2 implies thatv;, > dg(t;,i(G"))
whereG’ is the auxiliary graph at this point of time. Since
the distances in the auxiliary graph can only get smaller and
from this point onwards, and, andzs:ies ys,t, Will be

Proof: This is clearly true at the beginning of the algo- rajsed at the same rate, it follows that at titne
rithm. If the algorithm contracts some vertices into a sng|

node or sets the length of an edge to 0, ngdman only Qg — Z ys,t; + Z ys,s; = dar (i, tj)
become tight with even more facilities. So suppose the al- S:ies S:ieS

gorithm raises the value of; by e. Leti’ = i(G’), and let

N (i) be the set of noddsn G such thati: (i/, 1(G')) < . whereG" is the auxiliary graph at time We already know

Lemma A.3 If j is not tight with facility: in G, thena; <
d(i, j).

We consider two cases. First suppose that betoras that

raised, j is tight with a node inN(i). In this case, after _ ,

a; is raised, it will become tight with, maintaining the in- Qs, = D Ysis T Y Ysi, > dlisy) = dan(i, s5),
variant. In the other casey; is not tight with any node in sues Sues

N (z) before it is raised. In this case, the invariant implies

since (1) is violated. But adding the two inequalities above
thato; < d(i”,7) for all i € N(i). Now there must be at 1) g d

contradicts Lemma A.4. [|
least one” € N (i) such thati(i”, j) = d(i,j) — €, and so
a; < d(i,j) — €. Sincea; increases by, it follows that its Before we prove that (3) is approximately satisfied, let
new value is less thad(i, j), maintaining the invariant.m us prove a supporting lemma.

11

Lemma A.6 Supposei), i, are two frozen facilities in
Phase 2 of stage. Letj; € P(i}) andj, € P(i5). Then,
dgr(j1,42) = 5C™ L.

Proof: Lemma A.2 implies thatig-(j1,7;) < «j, and
dgr(j2,14) < aj,, Wherea;,, o, are the dual variables at
the end of Phase 2. Suppo4eandi/, were frozen at the
end of Phase 3 of stage— 1 and they survived procedure
Contract in stager—1, we know thatlg- (i}, i5) > 9C"+1.
Sinceay, , aj, < 2071, we getthatlg- (41, j2) > 5C" L.
Now consider the case that at least on¢,aindi}, were
not frozen at the beginning of stage In Phase 1, several

We claim that there can be at makt demands which
can contribute to the left hand side @by being tight with
u' but not withv’. Suppose there are at leddt demands
which contributed in this manner. Consider the demand
which contributed last (if there are several such demands,
pick one arbitrarily). Suppose it began raisingdtsat time
t. Attime t, M demands are tight with'. Further,; is
not frozen (otherwise we will notincrease its dual variable
But thenw’ should be frozen, and so we should not have
raiseda; — a contradiction.

Similarly, at most)M such contributions can be due to
being tight withv’ but notw’, bringing the total to at most

events may happen at the same time. But even then we cadM ce.

talk about an event occurringeforeanother event simply

because we shall deal with these events in some order. Leguments as above:

E, be the event wheij freezes and?; be the event when
i, freezes. Supposg; occurs beforeF,. By definition
of freezing of a facility, at least one demanig € P(i})
was not frozen whe; occurs. It must be the case that
dgr(jh,41) > 8C™1. Otherwise,F; has already occurred,
i.e.,i} is frozen and so we should have frozgn(note that
this gets preference ovéf, — this is how we defined the
ordering of events in Phase 1). This is a contradiction.
Hence,dg-(j%,1;) > 8C™!. Since anya; < C"*!
in Phase 1, it must be the case tHat (i,i5) > 7C" .
Finally, sincedg-(j1,4,), dgr (ja, i) < CT*1, this implies
thatdg- (51, j2) > 5CT 11,]

Corollary A.7 Suppose, i, are two frozen facilities in
Phase 2. Thet®(i}) and P(i}) are disjoint.
in time,

Theorem A.8 At any instant

22 jen 2osiecs(s) Ys.i < SMce.

Proof: Fix an edge: and consider the above constraint (3)
for this edge. Since we never raigg ; wheree € §(5)
when{(e) = 0 in the auxiliary graph, we need to estimate
the contribution to the left hand side til{e) is set to O.

Note that it is enough to show that for any stagehe
contribution to the left hand side from Phase 3 of stagd
and Phases 1 and 2 of stagés at most4Mc.. Indeed,
if £(e) # 0 at the end of Phase 2 of stage- 1, the left
hand side was< Mc., and the increases in the following
three stages can only bring the totalst®/c., proving the
theorem.

First we show that the contribution to the left hand side
in Phase 1 is at mo&tMc,. Lete = (v/,v’) be an edge in
the auxiliary grapiG’ = G”. We increaseys,; occurring
on the left hand side only if is tight with exactly one of
u' andv’, sayu’. Consider the time whepbecomes tight
with «’. If «; is raised byc. more units,j also becomes

tight with v’; hence any demand contributes to the left hand end of stager, and letw be a node inGg[v'].

side by at most, units.

12

Note another simple fact proved by very similar ar-
for any demandand edgee,

> s.ecs(s) Ys. < ce. We can now show that the total con-
tribution to an edge in Phase 2 is at mdst... Let ji, j» be
as in Lemma A.6, and let; be tight with://, andj, with

i% in Phase 2. Sincdg- (i, j1),dgr(i%,52) < 2C"+L,
Lemma A.6 implies thatlg-(i7,i4) > C"*'. But since
c. < e for any edges, this means that; and;j, cannot both
contribute to the left hand side of constraint (3) éan this
phase. Hence, the left hand side of the constraint foan
only get contributions fronP(i') for some fixed frozer,
which is at mostV/ c,.

Finally, the argument for Phase 3 of stagel is exactly
the same as for Phase 2 of stageiving a contribution of
M., bringing the grand total tdM c., and hence proving
the theorem. [|

A.2 Distance Preserving Property

We shall prove the following facts by induction en

e Letv’ be a node with budgéts, and letv € G[v'] be
the core of’ in Gg. If u € Gg[v'] be any other vertex
in Gg[v'], thendg, (u,v) < BC*. Furthermore, a
path of length at mosBC* can be found inside the
subgraplG g[v'].

e Letu/, v’ be two nodes iG%, and letu, v € G'g with
u = core(u’),v = core(v’). Thendg,(u,v) <5 -
dg=(u',v") + \C*.

Heres and)\ are large enough constants, satisfyiheg
v & A < C. Assuming the invariants hold for afl < r,
we will show that they hold fos = r + 1. Since nodes with
budgetC*! are created only in stage we need to look at
the algorithm in stage.

Theorem A.9 Let v’ be a node with budgef”+! at the
Then
da, (w, core(v')) < BCTTL.

Proof: It suffices to show that i’ € X in Phase 3
(before the procedur@reeGrow) andv € Gg[B'(v)],
thendg, (core(u’),v) < BCT™ 1. Indeed, suppose this is
true. In procedureContractTree, consider the case that
z’ is formed by contractind’(u}),... ,B’(v}). Then
core(z’) containscore(u}), ... , core(u) andGglz'] =
Gp[B'(u})|U---UGg[B'(u})]. If we prove the result for
elements inX, it will hold at the end of procedur€on-
tractTree as well.

Now, suppose the theorem holds before we apply the

procedureContract on verticesu’ andv’ in G’ to find a
path P’ betweenu’ andv’ and contract it to a node’.
Letw € Gg[z’]. It must be the case that' = w(G')

is in P’. If budget of w’ is C"*!, then core(z) also
containscore(w’), and the theorem holds. If budget of
w' is less thanC™1, then some vertexw; € Gplw]
must be in the pathP constructed to joincore(u’) a
core(v’). Since P is in core(z’), dg,(w,core(z’)) §
da, (w,w1) < dg,(w,core(w’)) + da, (wy, core(w’)) <
26CT < BCTTL,

Hence it is enough to show the theorem only for sets

B’(u'). First, let us show this only for the s&(u’) con-
structed foranode’ € X, and we show it for the rest of the
vertices inB’(v') — B(u') later. Recall that i’ € B(u'),
thendg- (v, w’) < 11 - C™*L. Sincew’ is a node inG", it
has a budget of at moét” in G". Hence forz € Gg[w'],
the induction hypothesis implies that:

"V+dg,, (core(w
(7)

Now we consider the other case, i.e., when ¢
GpB'(v")] — Gp[B(u')]. It must be the case that
= z(G') € B'(v) — B(x). Soaz’ was added
to B/(v’) because there is a nodge € Gp[B(u')]
and a nodez € Gpgl[z'] such thatdg, (core(u’),z) <
dg,(core(u’),y) < B/2C"T. Sodg,(core(u’),z) <
B/20" . + dg, (v,2) < B/207H + 280" < BCTHL.

dg, (core(u’),) < dg, (core(u'), core(w
<5-11-C™ + \CO" + BCT < /20T

This proves the theorem, and the first part of the induction 2YC" ™ + 28C™+! < ddg (u/, ") + A/2C7

hypothesis. []

We now go on to the second part of the induction. Gét
be an auxiliary graph during the run of ProcedGantract
in Phase 3. Note th&t’ may change during this procedure,
so let us fix any suchy’.

Before we begin the proof, let us give a mapping of paths

between vertices i’ to paths inGp that connect their
cores. Formally, given verticas,v’ € G’ and a pathP’
connecting themP(v’, v, P') specifies a pattP in Gp
which joinscore(u) andcore(v). This pathP contains all
the edges inP’; furthermore, ife’ = (u},v}) € P’ corre-
sponds to an edge= (u1,v1) in G, thenP also contains
edges that joim; to core(w}), andv; to core(v]) by short-
est paths irG p[u}] andG g[v}] respectively.

13

Lemma A.10 Let G’ be the auxiliary graph at some time
during the execution of procedufontract. Letu’, v’ be
nodes inG’ with u = core(v’) andv = core(v’). If there is

a shortest patlP’ between:’ andv’ in G’ with no internal
node of P’ having a budget of2"*1, thendg, (u,v) <
ddgr (v, v") + N/2C7 T

Proof: Suppose no (internal or external) nodeRfhas
budgetC” . Let P = P(u/,v’, P'); note thatP need not
be a shortest path betweerandv in Gg. Given vertices
x,y on P, let P, be the segment af between them.
Letu) = u/,u; = w. Starting from the node, let w,
be the first node o such thatig , (u1,wz) > 3/2yC™ 1,
Since all edges are of lengthd , (u1, w2) will be nearly
3/2yC"+1. This nodews will be part of some node), €
G, i.e.,wy € Gplub]; let uQ € Gp be the core oful,.
By the construction ofP(u’,v’, P’), us lies on P as weII
Furthermore, the distance from, to us in G will be at
most3C™ < C"*1/2 by Theorem A.9, and since > 1,
dc (u1,uz) is betweenyC™ 1 and 270”1. Continuing
this way, we can find nodes, = «/,u,... ,u;, = v’ on
P’ (with u; = core(u) for all j) such thal‘dGB(ul, Uit1)
lies betweenyCm+1 and 2vC+1 for all i, except possibly

the last segment (which may violate the lower bound, but

still satisfiesda,, (ur—1,ux) < 27C™H1).

We now claim that ifs < k£ — 1, thendg(us, usy1) <
4dgr (v}, ul). Indeed, suppose not: then the pﬁ’t’h .
sﬂapsﬂes all the conditions of the procedlﬂeeateNodes
and sou/, would have been contracted into a vertex with
budgetCT’“l. Since this is not the case, our claim must
be true. Adding all these inequalities, we det, (u,v) <
ddgr (v, v") + 2yCT L

Now «/ or v" may be a vertex with budgét™+!. Since
each edge is of length the nodew’ adjacent ta:’ on P’ is
at distance at mostfrom it. So we can carry out the argu-
ment above by replacing by v’ andv’ by a similar node.
Theorem A.9 now implies thaks , (u, v) < 4dg: (v, v") +
[|

Theorem A.11 Let G’ be the auxiliary graph at the end
of stager (i.e., G’ = G™). If ' ,v' € G' withu =

core(u’), v = core(v'), thendg , (u,v) < 5-dg (u',v") +
r+1

Proof: Let P’ be a shortest path betweerd and
v in G'. Supposeu) and u) are two vertices with
budgetC™+! such thatP’,u/ does not contain any in-
ternal node with budgeCT+1 Lemma A.10 implies
that dg, (core(uq), core(uz)) < 4 - dgr(uy,uh) + A/2 -
Crtl. But we know thatdg: (uj,ub) > 9 - C"+2
(else the procedur€ontract would have merged; and

uh), so using this and the the fact that < C implies
dg,, (core(uy), core(us)) < bdgs (uf, uh).

Now starting from the left end-point a?’, suppose:
is the first node with budgef” ! andu; is the last node
with budgetC”*!. Lemma A.10 also implies that the
contribution of the paths from left end-point &' to
andu; to right end-point ofP’ is at mostdd¢ (v, u}) +
4dgr (u},v') + ACT*1. By adding the above inequalities for
the various portions of the paths, we get the result. =

A.3 Approximation Ratio

We now need to show that the cost of our solution is
within a constant of_ . a;. We have made no attempt to
optimize the constants here, for clarity of exposition.

Lemma A.12 If j is alive before thé>rune Demandspro-
cedure in stage, then either; > C™*1 or j € D(u') for
someu’ with budgetC”+!. If j is alive at the end of stage
r, then eithera; > C™*! or j € D(u’) for some node:/
with budgetC™+! with |D(u')| > M.

Proof: Consider such a demandin phase 1 of stage:

if «; is not raised taC”*! in this phase, this must be be-
cause of a frozen facility such thatlg-(i',j) < 8- CT1.
Now if j is tight withi” at the end of Phase 2, then Lemma
A.2 implies thatdg-(j,i") < a; < 2C"*1. The triangle
inequality now implies thatlg-(i’,4i"”) < 10 - C"**, and
hencei” € B(i'). In other words, every point thatis
tight with lies inside this balB(:"), and wherB (i) is col-
lapsed into a vertex’ after theContractTree procedure,
thenj € D(v’). To prove the second part of the lemma,
note that if D(v")| were less thad/, we would raisex; to
CT*1in Regrow. [

Lemma A.13 Let j be alive during thePrune Demands
procedure in stage. If G’ is the auxiliary graph at this
time, andj is tight withi’ € G’, thendg,, (j, core(i’)) is

within a constant ofy;.

Proof: We prove this by induction on stages. Consider

stage 0 : since all the demands are either co-located or at

least20C? apart, each demand raisesto C, or else it is
co-located with at leas¥/ — 1 other demands, and hence its
a; = 0. In both these cases, it is clear that the conditions of
the lemma are satisfied.

Now suppose the lemma is true at the end of stagd .
Lemma A.12 implies that at the end of stage- 1, ei-
thera; > C" or a; € D(u') for someu’ € F,. Let
us suppose the former is true, ang > C". If j is tight
with ¢/, thendg (7', 7) < «; by Lemma A.2. Now apply-
ing Theorem A.11 gives us thdt , (core(?), j) is at most

14

O(aj + C™1). But sincea; > C7, this in turn isO(«;).
(Note that the constant in the big-Oh depend€on

On the other hand, suppose € D(v') for v’ € F, at
the end of stage — 1. By induction,d¢ (core(u'), j) is
within a constant ofy;. «’ will be in F, at the beginning
of stager. In factu’ will get contracted into a node’ with
budgetC™t! in the procedur€ontractTree. Note that
core(u) will be a part ofcore(z). Sodg,, (core(x),j) is
also within a constant o;. Now, j € D(z’) because all
the nodes thaj was tight with were included in the ball
B(w'). If |[D(z")] > M, thena’ is the only node thaf is
tight with. Otherwise, we raise; to C"*! and the reason-
ing in the previous case applies. []

Theorem A.14 Supposss;, t; gets removed in the proce-
dure Prune Demandsof stager. Thenas, + a;; can pay
for renting edges between themdGi.

Proof: We are given thatl/(s;,¢;) < 5-C"*2, and let
s = s;(G"),t" = t;(G'). Theorem A.11 now implies that
da, (core(s),core(t)) < 5-5-C™F2 4 O™+ < 26-C"+2.
By Theorem A.9dg,(sj,t;) < 26-CTT2 4 2pC™ 1 <
27 - C™+2,

If either of a; or o is at leasC"+!, then we are done
(because the total amount paid would b@@v,; + ay;)).
So suppose that both, , o, < C™t!. Then Lemma A.12
implies thats; € D(z2'),t; € D(y'), wherez', y’ are nodes
with budgetC"*!. Furthermore, since; € D(z’) implies
thats; € G[2'], by the definition ofD(z"), and similarly for
tj, dar(sj,t;) = der(2/,y"). But by the procedur€on-
tract, we know thatlg. (', ') > 9-C"*2. This is possible
only if 2/ = y’. Now Lemma A.13 tells us that; can pay
for a path froms; to core(x’) andt; for a path from¢; to
core(z') in G, proving the theorem. [|

This shows how the dual variables can pay for the cost
of renting paths. Now we need to show how to pay for cost
of buying edges. Herbudgetsof the vertices are going to
be used, where the budget of a node is roughly the amount
it can pay for buying edges. A node can do two things with
its budget:

e It can use the budget to buy edges. This can happen
only once, after which the node loses its budget. Note
that the length of the edges it buys can be within a
constant of its budget, since this is a one-time expense.

e It can transfer its budget to some other node. In this
case, the amount given must be exactly the same as
the amount received, for fear of a cascading of such
transfers might end up “creating” unbounded amounts
of new wealth incorrectly.

However, wealttcan be legitimately created — we can
create a new node with budget (s&})*!, and account for

its budget in two ways: either (1) we charge it to somé&s

or (2) other nodes transfer their budget to this new nodethat the points:, uj, . ..
(losing their own budgets in the process, as described in the For eachu/

second bullet above).

Let us now see how this accounting works in detail. In
Phase 2, each frozen facility € F,. gets a budget af’™ 1.
There arel/ nodes inP(v’) and each of them raise their
value byC™t!. Now a facility v’ can charge its budget to
thisincreasen thea; values of its primary demands. Since
different frozen facilities in a fixed stage have disjoinit pr

mary demands (by corollary A.7), there is no double count-

ing within a stage. Since we are charging to therease

toy in P’, theny’ is a candidate fox),. Thus, we can show
, U appear orP’ in this orderm

. we define another point in P’:

is the first point to the right ofu, on P’ such that
da, (core(ul), core(u)) is at leastl/2C™!. Note that
dg (core(u}), core(ul, 1)) > 3/4 - C™*! by the triangle
inequality, sou;’ occurs before:;, , on P’. Letpart(P’)
denote the union of the segmerts ,, for all i. Note that
all these segments are disjoint from one another.

Let zero(P’) = part(P’) N Z, be the zero length edges

in part(P’). For an edge’ € zero(P’), let us define
a set of demand®em(e’): ¢’ corresponds to an edge

in these dual variables, there is no double counting betweer]n the original graphG. Dem(¢’) is the set of all those

two different stages.

Consider the procedur@ontract: Theorem A.10 im-
plies that the length of in G5 is at mostO(C"+2). The
nodeu’ pays for the cost of buying edges ¢h The bud-

get ofv’ gets transfered to the budget of the newly created

nodez’. Note that’ gets contracted inte’, so it loses its

demands which contribute to the left hand side of con-
straint (3) fore in the dual LP, i.e., those demangisuch
thatys ; > 0 for someS such thate € §(S). Define
Dem(Pl) = Ue’Ezero(P/)Dem(el)'

Lemma A.16 Supposg € Dem(e’), wheree’ corresponds

identity (as well as its budget) from now on. The procedure to an edge: = (u,v) in Gp. Supposg contributes to the

might also find some nodes’ with a budget ofC"*1, in
which case the cost of the path joiningand core(w’) is
paid byw”’s budget. Note thaty’ will also get merged in
2', but there is no transfer of budget .

left hand side of constraint (3) ferin a previous stage <

r, anda;- be the value of its dual variable at that time. Then
o; is betweerC**! and 2C**!. Furthermore,da , (j,u)
anddg, (j,v) are at mosO(¢;).

We next analyze the accounting scheme in procedure

ContractTree, which is the perhaps the trickiest part in this

Proof: Let e’ correspond to an edgd = (u”,v”) after

proof. Let us give some notation first. Suppose procedurephase 2 of stage We first claim thaug > 511, Indeed,

CreateNodescreates the paifu’,v’) in stager. It finds a

if not, then; would be frozen due to som& € F, and

shortest pathP’ between these nodes. Recall that we found so all nodes that were tight witjy would get included in

a setD(u',v") = uy, ... ,ul, of vertices of P'. We need

B(i’). But since the length of” is at most andj is tight

to argue the existence of these points (as promised in thewith at least one of its endpoints, both these nodes will get

procedureContractTree).

Lemma A.15 In the procedureCreateNodes the set of
verticesD(u’, v") of sizey can be found as claimed.

Proof: Letus use the mappirg(u’,v’, P’) (described be-
fore Lemma A.10) to ma’ to a pathP joining core(u’)
and core(v'). Sincedg,, (core(v'), core(u’)) > O™+,
there must be a vertexe P such thatlg, (core(u’), x)
7/8C"+! (because all edges are of lengthnd assume C
is a multiple of 8). Letr’ = z(G’). Sincex’ is a point
in P/, and in turn a vertex of7", its budget is at most
C". Now by Theorem A.9d¢,, (z, core(a’) is at most
BC™ < 1/8CT™ 1. Thisz’ is a candidate for}. One can
show similarly thatss, . . . , u’, exist.

We also need to argue that;,u5,...,u, appear
on P’ in this order. Let us showu) appears after
uy. Indeed,dg, (core(u’), core(v’)) > ~C™1, while
de (core(u’), core(u))) < C™t1. So there must be a point
y onthe segment @P joining core(u}) to core(v’) such that
da, (core(u’), z1 is (2 — 1/8) - C"*1. So ify’ corresponds

15

included intoB(i’). If s < r, bothu” andv” would have
been contracted into a single node, ana:’soould not be
present in the auxiliary graph. On the other hand, i r,
we have found a point i®’ which is included in a ball
B(i"), which would contradict the construction 8f. This
proves thaty; > C**!; the fact that;, < 2C**! follows
from Lemma A.1.

Now j must have been tight witl’’ orv” in either Phase
1 or 2 of stages, otherwise it would not have contributed to
e’. Hence, by Lemma A.2¢: (j,u") < o/;. Now applying
Theorem A.11 and using the fact thef > Cst1 gives us
thatdc , (j, v) is within a constant of;. [|

Lemma A.17 Suppose the pairgu’,v') and (2/,y’) are
created by the procedui@reateNodesin stager. Let P’
be the path betweew andv’ and @’ the path between’
andy’. Thenpart(P’) andpart(Q’) do not share a vertex,
and furthermoreDem(P’) andDem(Q’) are disjoint.

Proof: Supposéu’, v’) is created beforé’, y’). Consider
the setB’ = Uu;ep(u/w/)B(u;) —_this setB’ must coqtain
part(P’) and soQ)’ can not contain any of these vertices.

Now let j € Dem(e’) for some edge’ € zero(P’). cases differs by a factor of at le&st and thus the contribu-

Thenj must be tight with a vertex i/, ,, for somei, tion of a demand t®em(P’) for all the different pathg’
which in turn implies that all the nodes. thﬁts tight with it lies in is a geometric sum which can be boundechly
must be in the balB(«}). Thus;j cannot be iMem(Q’). m Thus we will we done if we prove Lemma A.18.

We now have almost all the pieces we need for the proof. Proof of Lemma A.18: Call a nodeu; € D(u’,v") good
Lul) <1/3CT+L. Note that there are at leagt4

The following key theorem accounts for the edges bought if d (uj, uj

by theContractTree procedure. nice nodes iMD(u’,v’). Otherwisedg: (v, v_) .WI|| be >

(3v/4) x (1/30”“1) = /4 C"*1, a contradiction.
Suppose there is a goed such that the total budget of

the nodes inP/, . is less thar8C"*!/~. If there are no

such nodes, then the total budgets of all nodgsin(P’)

Lemma A.18 If a pair (u/,v’) is created in stage of Cre-
ateNodeprocedure, then either

1. ZjeDcm(P/) a; is QMCT), or will be at leas2C" ! and we will be done.
Consider the paﬂP’/ z and IetDem(P’, ,/) be the
2. the sum of the budgets of nodepint(P’) is atleast ~ sum of Dem(e’) over alle’ € P, ... We use the map-
207+ ping P (u}, uf, Pl t0 mapP’,T,, to a pathQ in Gp

Let us assume the lemma is true, and show how this ac-JOInIng core(u;) andcore(/)- We cIaSS|fy the edges @

counts for the edges bought @ontractTree, and for the into three categories: (1) the edggsin P/’ uy! which have
budgets of the newly created nodes. Any edge (v, v') t(e) = 0, (2) the edge®); in P}, ,, which havet(e) = c.,
in Tx corresponds to buying edges of total length about and (3) the edge9s; which appeaflfGB['] for some some
C"+1 (again, using the distance preserving lemmas}/f nodex’ in P/, ..
a component ofl’x, hasn’ nodes, then we buy edges of By the choice of u/, we have
total lengthO(n’ — 1)C"*!, and we need to account for dg,, (core(u}), core(u/)) > 1/2C"*t!. The quantity
this. Furthermore, the nodesir, then get contracted into > ecq, Ce is simply dG,(uz’uz) < 1/3CT*i. Finally,
a node with budgef”+!, and we also need to account for Theorem A.9 implies thatz , Ce IS at most28x
this budget. (total budget of nodes inP! / ,,) which is at most
Suppose all the nodes ifiy were fromF,. created in = 93 (8CT+1/y) < CTH1/8. But this implies that
Phase 1. Since each such node is allotted a budg#tof,
n’ —1 of these node budgets can be used to pay for the edgeda s (core(u), core(u))) = 3 co.u0, Ce = CTHH(E — 5 — §) = Q(C™H!
of T, and the remaining one can transfer its budget to the (8)
new node created by the contraction.
In not, thenT’% contains a node fror®(v’, v’). In this
case, note thafy, must contairall the nodes irD(v’, v'),

Finally, we constructa grap = (Vi, Err), whereVy
is the set of all vertices i@ andDem(P’, ,,) while B

because the balls created by these nodes overlap sequel"?oma“ns all the edges @2 U Q5. Furthermore, for a vertex
tially. SinceD(u',v') hasgamma nodes, we need to ac- J € Dem(F,,,,) and an edge = (u,v) € Q1, we join
count for at most}/ edges |rﬂ“X Depend|ng on which part j to v andv |f j contributed to the left hand side of con-
of Lemma A.18 holds, we have to look at two cases. If the Straint (3) for the edge. Note that Lemma A.16 implies
first case of Lemma A.18 holds, théR . o,y @; can thatde, (j:u). da, (j,v) is O(a;). Since a node can con-
be used to pay for these edgesTaf, and also for the bud- tribute at most. to the left hand side of this constraint, it
getC"+! of the newly created node. Note that the amount Must be the case that for any edge- (u,v) € Q1, there
paid plus the budget may be a constant factor greater tharfif€ at leasi/ common neighbors of andv.
the sum of they,’s, but since this transfer from dual vari- It is now possible to show that there ard paths
ables to budgets is a one-time operation, we can get away/tt; - - - » far from core(u;) to core(uj’) such that no de-
with it. On the other hand, if we are in second case of the mandj € Dem(F},) appears in two of these paths. In-
Lemma, then the total budget €7+ is divided into two deed, assume to the contrary. Now it must be possible to
parts: one to pay for thé"+! given as budget for the newly ~ delete)/ — 1 of the demands ifem(F;,) and obtain a
created node, the remaining to account fortetges. graph in whichcore(u}) can reach one ‘end point of some
We must be careful that we are not double count- (zero-cost) edge in @1, but not its other endpoint. How-
ing. Lemma A.17 shows that no double counting occurs ever, this would mean that all they demands adjacent to
in a single phase. It is possible, of course, thate both endpoints o must have been deleted, which is a con-
Dem(P’), Dem(Q’) whereP’, Q' were created in different tradiction.
phases. But here the geometric scaling comes to the rescue: But each suchR; is a path of length at most
Lemma A.16 shows that the contribution®f inthesetwo 37,z O(a;) + >-.c,u0, Ce IN Gp. Now substituting

16

this in (8) gives us thad_, . O(a;) is Q(C"*!). Dis-
jointness of theM paths now completes the proof of the
lemma.]

B Removing Earlier Assumptions

We made some assumptions during the statements of the
problems and the description of the algorithm, and here we
show how to discharge these assumptions.

1. Assumption from Section 2: all commodities wish to
send a single unit of flow. A natural idea to remove
this assumption is the following. Given an arbitrary
rational amountl;, of flow to send froms;, to ¢;, we
maked; A copies of the demand pasy, ¢), where
A is a sufficiently large integer so thdt A is integral
for eachk (M is then replaced by A). As stated,
this approach leads to a pseudo-polynomial time algo-
rithm. However, the intuition is correct, and we have
to just be careful with the implementation. We ensure
that all copies of a single demand behave identically—
they have equak; values and are tight with the same
set of facilities. Hence it suffices to keep track of only
one copy of the demand. Let us see how we main-
tain this property: In Phase 1, we raise theof these
demands identically. If one of these demand becomes
tight with a facility, all the other demands also become
tight with this facility. When a facility counts the num-
ber of demands tight with it, it can regasd or ;. as
contributingd, A units. TheRegrow step is imple-
mented in a similar manner. Phase 2 can be trivially
modified as well: if we need to raise the value of
only d;, < diA of these (imaginary) demands, we
raise the dual variables of all thg demands at rate
d./(dxA). This will ensure that thesé, A demands
always behave the same.

2. Assumption from Subsection 2.1: Facilities can be lo-
cated at any vertex in the graph. Suppose this is not so,
and F' is the set of vertices at which the facilities can
be located. We construct a new grafih= (Viy, F),
whereVy = F. There is an edge between each pair
of vertices inVy, and the length of this edge is the
length of the shortest path between its end-points.in
Each demand is moved to the nearest facilityFin|t
is easy to show that a solution in this new graph can
be mapped to a feasible solution in the original graph
with only a factor 2 loss in cost.

3. Assumption from Subsection 3.2: Facilities can be lo-
cated at any intermediate point of an edge. Suppose
e = (u,v) is an edge in the original graph, and we
open a facility atv, a point that lies betweemnanduv in
G. w must lie in a connected component; let us call it

17

C(w). Let us partition the demands assigneaitmto

two parts: A,, being those of the demands assigned to
w reaching it viau, and A, being those reaching it via
v, with |A,| < |A,]. If C(w) is singleton, we can
move the facility ato to v; reassigning all demands in
A, U A, to v only reduces the cost. f'(w) contains
bothu andwv, then we would not have opened so

let us say that ¢ C(w). Note that ifC'(w) contains
any point in the portioriw, v), reassigning demands to
that point would reduce the connection cost.(Sav)
contains a portior’ = (v, w) C (u,w) of e, where

w’ # w. Note that4, = (), because such demands
would prefer’ tow. If |A,| > M, we can build edges
on the part of which joinsw andwv, and reassign all
of A, tow. If |[A,| < M, we can avoid building’, and
instead directly connect all of, tow’. Since all these
operations can only reduce the cost of our solution, we
can convert our solution to one where facilities lie only
on the vertices of the original graph.

4. Assumption from Subsection 3.2: The numbers in-

volved in the problem are small. Note that the algo-
rithm, as defined, is only a pseudo-polynomial time al-
gorithm. This is because subdividing edges may create
a large number of vertices. This is easily handled: let
e be an edge iy subdivided several times, and ket

be the new vertices on For any demang, it is easy

to see that the set of verticeslf thatj is tight with is

a contiguous segment ef Maintaining this segment
for each demand handles this problem.

