
A Constant-Factor Approximation Algorithm for the Multico mmodity
Rent-or-Buy Problem

Amit Kumar ∗ Anupam Gupta† Tim Roughgarden‡

Abstract

We present the first constant-factor approximation algo-
rithm for network design with multiple commodities and
economies of scale. We consider therent-or-buyproblem,
a type of multicommodity buy-at-bulk network design in
which there are two ways to install capacity on any given
edge. Capacity can berented, with cost incurred on a per-
unit of capacity basis, orbought, which allows unlimited
use after payment of a large fixed cost. Given a graph and
a set of source-sink pairs, we seek a minimum-cost way of
installing sufficient capacity on edges so that a prescribed
amount of flow can be sent simultaneously from each source
to the corresponding sink.

Recent work on buy-at-bulk network design has concen-
trated on the special case where all sinks are identical;
existing constant-factor approximation algorithms for this
special case make crucial use of the assumption that all
commodities ship flow to the same sink vertex and do not
obviously extend to the multicommodity rent-or-buy prob-
lem. Prior to our work, the best heuristics for the multi-
commodity rent-or-buy problem achieved only logarithmic
performance guarantees and relied on the machinery of re-
laxed metrical task systems or of metric embeddings. By
contrast, we solve the network design problem directly via
a novel primal-dual algorithm.

1 Introduction

We consider the problem of network design with multi-
ple commodities and economies of scale. More precisely,
given an undirected graphG = (V, E) and a setD =

∗Lucent Bell Labs, 600 Mountain Avenue, Murray Hill NJ 07974.
This work was done while the author was at Cornell University,
Ithaca NY 14853, and supported by NSF ITR/IM Grant IIS-0081334
and the ONR Young Investigator Award of Jon Kleinberg. Email:
amitk@research.bell-labs.com.

†Lucent Bell Labs, 600 Mountain Avenue, Murray Hill NJ 07974.
Email: anupamg@research.bell-labs.com.

‡Department of Computer Science, Cornell University, Ithaca NY
14853. Supported by an NSF Graduate Fellowship, a Cornell
University Fellowship, and ONR grant N00014-98-1-0589. Email:
timr@cs.cornell.edu.

{(s1, t1), . . . , (sp, tp)} of vertex pairs calleddemands, we
seek a minimum-cost way of installing sufficient capacity
on the edgesE so that a prescribed amount of flow can be
sent simultaneously from each sourcesk to the correspond-
ing sink tk. We are interested in the scenario where the
cost of installing capacity exhibits economies of scale, in
the sense that buying a large amount of capacity on a sin-
gle edge results in a high capacity-to-cost ratio (i.e., good
“bang for your buck”). Put differently, the cost of capacity
is a concave function of the capacity bought.

The general problem described above goes by the name
buy-at-bulk network design, and was introduced by Salman
et al. [23]. The problem is NP-hard [23], and researchers
have therefore sought out good approximation algorithms
for the problem. The best algorithm currently known for
the general problem is due to Awerbuch and Azar [3], who
give anO(log n log log n)-approximation based on Bartal’s
method for probabilistically embedding general metrics into
tree metrics [5], wheren is the number of nodes in the net-
work. Improvements on the algorithm of [3] have been elu-
sive, leading researchers to consider special cases of the
problem. Thesingle-sinkversion of buy-at-bulk network
design, where all sinkstk are identical, has recently re-
ceived much attention. Andrews and Zhang [2] designed an
O(K2)-approximation algorithm for the single-sink prob-
lem when the cost of installing capacity is a restricted type
of concave piecewise linear function withK breakpoints.
This problem is calledaccess network designin [2]. A
constant-factor approximation algorithm for the access net-
work design problem was later given by Guha et al. [12].
Subsequently and independently, Garg et al. [7] gave an
O(K)-approximation algorithm and Guha et al. [13] de-
signed a constant-factor approximation algorithm for the
general single-sink buy-at-bulk network design problem
(with an arbitrary concave, piecewise linear function de-
scribing the cost of installing a given amount of capacity).
The constant of [13] has recently been improved upon by
Talwar [25].

Despite these recent successes for the single-sink prob-
lem, there have been few improvements over the algorithm
of Awerbuch and Azar [3] for any nontrivial version ofmul-

1

ticommoditybuy-at-bulk network design. In this paper, we
present the first constant-factor approximation algorithmfor
such a problem. As all of the techniques employed in recent
papers [2, 7, 12, 13, 17, 25] make crucial use of the assump-
tion that all commodities ship flow to the same sink vertex
and do not obviously extend to the multicommodity setting,
our algorithm and analysis require several new ideas. We
also avoid reliance on metric embedding techniques (un-
like [3]), instead attacking the network design problem di-
rectly via a novel primal-dual algorithm.

The Rent-or-Buy Problem. In this paper, we consider
therent-or-buyproblem, a type of multicommodity buy-at-
bulk network design with a simple function describing the
cost of installing capacity. In the rent-or-buy problem, there
are two ways to install capacity on any given edge. Capacity
can berented, with cost incurred on a per-unit of capacity
basis, orbought, which allows unlimited use after payment
of a large fixed cost. We model this scenario with posi-
tive parametersµ andM , with the cost of renting capacity
equal toµ times the capacity required (per unit length), and
the cost of buying capacity equal toM (per unit length).
There is no loss of generality in assuming thatµ = 1. The
multicommodity rent-or-buy problem was previously stud-
ied in an online setting by Awerbuch et al. [4] (where it was
called thenetwork connectivity leasing problem) and Bar-
tal et al. [6], who used the framework of relaxed metrical
task systems to giveO(log2 n)- andO(log n)-competitive
algorithms for the problem, respectively.

Buy-at-bulk network design was originally defined in
terms of installingcableson edges, with different cable
types offering different amounts of capacity and carrying
different costs [3, 23]. Andrews and Zhang [2] showed that
this problem can be rephrased (with a loss of a small con-
stant factor in the approximation ratio) with each cable type
carrying afixed cost(which must be paid irrespective of the
capacity needed) and anincremental cost(which is paid for
each unit of capacity required). The rent-or-buy problem
therefore corresponds to the special case of one cable type
with an incremental cost but no fixed cost, and one cable
type with a fixed cost but no incremental cost.

We believe the rent-or-buy problem captures much of the
essence of buy-at-bulk network design. Most of the diffi-
culty of network design problems in which capacities obey
economies of scale stems from the following tension: on the
one hand, we would like to route flow between a source and
sink on an (approximately) shortest path; on the other, we
would like to gather flow from many different commodities
together in order to purchase large quantities of capacity and
take advantage of economies of scale. This issue of “route
vs. gather” is clearly present in the rent-or-buy problem,
and we believe that overcoming the difficulties caused by
multiple commodities in this simple setting will lead to fur-
ther progress on the general multicommodity buy-at-bulk

network design problem.

Application to Maybecast. In addition to being a non-
trivial special case of buy-at-bulk network design, the rent-
or-buy problem arises in important applications. For exam-
ple, Karger and Minkoff [17] introduced the so-calledmay-
becastproblem, defined as follows. There is an underlying
undirected networkG, with a source vertexs from which a
multicast transmission will emanate, and a setD of demand
vertices that wish to receive the transmission. The problem
of building the min-cost network that connects the source
to all of the demands is the classical min-cost Steiner tree
problem. Karger and Minkoff [17] proposed a probabilis-
tic version of this problem: each demand vertexi contacts
the sources independently with probabilitypi. Relative to
a fixed Steiner tree on{s} ∪ D, when a demand contacts
the sources, all edges on the path joining it tos are said to
becomeactive. The goal is then to build the Steiner tree that
minimizes the expected cost of the active edges.

Our solution to the rent-or-buy problem provides a con-
stant factor approximation for the followingmulticommod-
ity version of the maybecast problem. Instead of a single
sources, we are given a set of sourcesS. Each demand
wants to receive data from one source inS, and it contacts
that source with some probability. As in the previous prob-
lem, we seek paths between the demands and the sources
they wish to contact so that the expected number of active
edges is minimized. This problem reduces, modulo a small
constant factor in the approximation ratio, to rent-or-buy
network design (see [17]).

Application to Connected Facility Location. Our results
also give a constant-factor approximation algorithm for a
multicommodity version ofconnected facility location, a
problem that has recently received attention in both the op-
erations research literature [19, 20, 21] and the computer
science community [14, 17, 18]. In the previously studied
version of the connected facility location problem, the in-
put is a setF of facilities, a setD of demands, a graph
G = (V, E) with V = F ∪ D and costsce on edgese,
and a parameterM > 1. A solution consists of an assign-
ment of demands to facilities and a subgraph ofG span-
ning the open facilities (a Steiner tree). If demandj is as-
signed to facilityi(j) and the length of the shortest path
between them inG (w.r.t. c) is d(j, i(j)), then the cost of a
solution is

∑
j∈D d(j, i(j)) + M

∑
e∈T ce (whereT is the

Steiner tree spanning the open facilities). The first constant-
factor approximation algorithm for this problem was given
by Karger and Minkoff [17], and Gupta et al. [14] sub-
sequently gave an algorithm with improved performance
guarantee. Very recently, Swamy and Kumar [24] obtained
a 5-approximation algorithm for this problem.

In the multicommodity version of connected facility lo-
cation, we are in addition given severalcommodities. Each

2

demand belongs to one of these commodities. We again
open facilities and assign demands to them, but now require
only a subgraphT such that, for any commodityk, the set of
facilities serving demands of commodityk are connected.
In solving the rent-or-buy problem, we develop techniques
that also give a constant-factor performance guarantee for
the multicommodity connected facility location problem.

New Techniques for Primal-Dual Approximation Al-
gorithms. Our algorithm is based on the primal-dual
method. The high-level idea of this method is to consider
an integer programming formulation of our network design
problem and the dual of its linear programming relaxation,
and to iteratively construct both an integral primal solution
(i.e., a feasible network) and a feasible dual solution prov-
ing that the network has near-optimal cost.

The first systematic application of the primal-dual
method was to a large class of network design problems;
see [11, 26] for a survey of this and earlier work. More re-
cently, Jain and Vazirani [16] gave primal-dual approxima-
tion algorithms for several facility location problems that
could not be solved using earlier techniques. Our algorithm
is at times reminiscent to the facility location algorithms
of [16] (reflecting our need to cluster demands together to
leverage economies of scale) and to the network design al-
gorithms described in [11] (as clustered demands must then
be connected cheaply, as in canonical network design prob-
lems). However, these two implementations of the primal-
dual method are not easily combined, and we require fur-
ther ideas to obtain a good approximation algorithm for the
rent-or-buy problem. In particular, we contribute two new
techniques to existing primal-dual technology that we be-
lieve may find other applications.

First, we introducegeometric scalingin a primal-dual
context. We use scaling to break up the execution of our
algorithm into successive stages in a way that ensures that
the “mistakes” made in any given stage have little signif-
icance for future stages. While other primal-dual algo-
rithms have been used as a black-box within a scaling pro-
cedure [1, 8, 9, 27], we use scalinginsideour primal-dual
algorithm to control the rate of increase of dual variables.

Second, unlike most previous primal-dual approximation
algorithms, we do not explicitly maintain feasibility of our
dual solution. Rather, we maintain feasibility with respect
to a strict subset of the dual constraints, and prove that we
are alwaysapproximatelyfeasible for the full LP. This idea
is similar in spirit to recent “dual fitting” approaches to fa-
cility location problems [15, 22]. Freed from the need to
maintain dual feasibility, we can make use of an unusually
aggressive dual increase step; this in turn allows us to more
easily argue that the cost of our solution is close to the ob-
jective function value of our (approximately feasible) dual
solution.

2 Preliminaries

An instance of multicommodity rent-or-buy network de-
sign (MROB) is specified by an undirected graphG =
(V, E), a nonnegative costce for each edgee, a setD =
{(s1, t1), . . . , (sp, tp)} of pairs of demands, and a parame-
ter M > 1. We will abuse notation and writej ∈ D for a
generic demandj of the formsk or tk. We assume for sim-
plicity that the sourcesk wishes to send one unit of flow to
the sinktk, but our algorithm and analysis extend without
difficulty to non-uniform flow requirements (details omitted
from this abstract). Byd(u, v) we mean the length of the
shortest path1 in G between verticesu andv, with respect
to edge lengthsc.

A solution to an MROB instance is specified by an as-
signment of each demand pair(sk, tk) ∈ D to ansk-tk path
of G. If ae paths use edgee, then the cost of this solution
is defined by

∑
e∈E ce min{ae, M}. The termceae cor-

responds to renting capacity on edgee, and the termceM
corresponds to buying capacity one. We seek a solution of
minimum cost.

2.1 Reformulation as Connected Facility Location

We begin with a reduction from MROB to multicom-
modity connected facility location (MCFL). We will see
shortly that the latter problem admits a relatively simple in-
teger programming formulation, thereby allowing us to use
the primal-dual method.

The precise problem that we reduce to is the following.
The input is an undirected graphG = (V, E) with edgee
possessing costce, a setD = {(s1, t1), . . . , (sp, tp)} of
vertex pairs, and a parameterM > 1. A solution con-
sists of a setF ⊆ V of facilities to open, an assignment of
sources and sinks to open facilities, and a subgraph(V, H)
of G with the following property: if for somek, sk is
assigned to facilityi1 and tk to i2, then there is a path
in (V, H) betweeni1 and i2. The cost of a solution is∑

j∈D d(j, i(j)) + M
∑

e∈H ce, wherei(j) is the facility
to which the demandj is assigned andd is again shortest-
path distance inG (with respect toc). (The seemingly more
general statement of MCFL in Section 1 can also be reduced
to the one above.) We then have the following reduction.

Lemma 2.1 A β-approximation algorithm for MCFL gives
a 2β-approximation algorithm for MROB.

Proof: An instance of MROB naturally defines an instance
of MCFL with the same parameters (G, c, D, andM). We
will map every solution of the latter problem to one of the
former with equal cost, and an optimal solution to the for-
mer problem to one of the latter with at most twice the cost.

1Throughout this paper, we assume some arbitrary but fixed tie-
breaking mechanism that ensures uniqueness of shortest paths.

3

Given a solution to the induced MCFL instance, define
an MROB solution as follows. Thesk-tk path is defined to
be the shortest path fromsk to i(sk) and fromi(tk) to tk,
connected by a path fromi(sk) to i(tk) in H , the subgraph
of edges chosen in the facility location solution (which ex-
ists by feasibility for MCFL). This solution to the MROB
instance has cost bounded above by the MCFL solution.

Consider an optimal solutionP ∗
1 , . . . , P ∗

p to an MROB
instance. LetH∗ denote the edges used byM or more
paths. We cannot simply reverse the mapping of the pre-
vious paragraph, since there is no guarantee that the sub-
paths ofP ∗

k from sk to H∗ and fromtk to H∗ terminate in a
common component ofH∗. Instead, initializeH (the con-
necting edges in our facility location solution) to beH∗ and
F (the open facilities) to be the vertices spanned byH∗; we
will supplement these sets with further edges and vertices
shortly. Define{Hi} to be the components of(V, H) with
isolated vertices discarded; this set is initially just thenon-
trivial components of(V, H∗), but will change as we add
further edges toH .

Call a demand pair(sk, tk) good if path P ∗
k is edge-

disjoint from all but at most oneHi, andbad otherwise.
If P ∗

k is edge-disjoint from allHi’s, then add vertexsk to
F and assign bothsk andtk to it. If P ∗

k intersects onlyHi,
then assign each ofsk andtk to their nearest neighbors in
Hi. As long as there is a bad pair, we execute the following
procedure.

Let Hi be the component of minimum index that inter-
sects some bad demand demand pair, say(sk, tk). Call Hi

thecurrent component. LetP 1
k denote the edges ofP ∗

k \H ,
andP 2

k the edges ofP ∗
k ∩H that lie outside ofHi (in com-

ponents with larger index). Our analysis breaks into two
cases. Letc(P) denote

∑
e∈P ce for a subgraphP .

Case 1: Supposec(P 1
k) ≥ c(P 2

k). In this case we assign
each ofsk andtk their nearest neighbors inHi, and redefine
the demand pair(sk, tk) to be good.
Case 2: Supposec(P 1

k) < c(P 2
k). In this case we add all

edges ofP 1
k to H , and add all endpoints of these edges toF .

Since(sk, tk) is bad, this addition causes two or more com-
ponents (Hi and components of higher index) to merge into
a single component; the new component retains the indexi.
Any demand pair(sq, tq) whose path is now edge-disjoint
from all non-trivial components of(V, H) exceptHi (such
as(sk, tk)) is redefined to be good, andsq andtq are as-
signed to their nearest neighbors inHi.

Each iteration of the above procedure strictly increases
the number of good demand pairs and maintains the invari-
ant that all good demand pairs have been assigned to open
facilities in a common component of(V, H). The procedure
therefore terminates with a feasible solution to the MCFL
instance; it remains to show that this solution has small cost.

We first claim that assignment costs of our solution are
at most2

∑
e/∈H∗ aece, whereae < M paths of the net-

work design solution use edgee. It suffices to show that,
for each demand pair(sk, tk), our assignment costs forsk

andtk are upper bounded by twice the cost of the edges in
P ∗

k \ H∗. This is clear for a demand pair(sk, tk) whose
pathP ∗

k is edge-disjoint fromH∗, since its assignment cost
is d(sk, tk) ≤ c(P ∗

k) = c(P ∗
k \ H∗). Suppose now that at

some point in the procedure, the demand pair(sk, tk) got
assigned because its pathP ∗

k intersected the current graph
(V, H) in exactly one component, sayHi. Sincesk and
tk are assigned to their nearest neighbors inHi, it is then
easy to see thatd(sk, i(sk)) + d(tk, i(tk)) ≤ c(P ∗

k \Hi) ≤
c(P ∗

k \ H∗). Finally, suppose demand pair(sk, tk) is as-
signed in case 1 of some iteration of the procedure, withHi

the current component. Sincesk andtk are assigned to near-
est neighbors inHi, we haved(sk, i(sk)) + d(tk, i(tk)) ≤
c(P ∗

k \ Hi) = c(P 1
k) + c(P 2

k) ≤ 2c(P 1
k) ≤ 2c(P ∗

k \ H∗).
To conclude we prove that

∑
e∈H ce ≤ 2

∑
e∈H∗ ce.

Edges are only added toH during case 2 of the above proce-
dure. Suppose this occurs with current componentHi1 , and
with pathP ∗

k intersecting componentsHi1 , . . . , Hiq
with

i1 < · · · < iq. By eligibility for case 2, the edges added to
H at this point have cost at most

∑q
s=2

∑
e∈His

ce. The key
observations are these: only components with index larger
than that of the current component appear in this expres-
sion (is > i1 for s > 1); once a component appears in this
expression, its edges are absorbed into the current compo-
nent (which retains its index); edges of any such compo-
nent lie inH∗; and the index of the current component can
only increase. Because of these four facts, every edge of
H∗ participates in the expression

∑q
s=2

∑
e∈His

ce at most
once. Summing over all additions of edges toH , we get∑

e∈H ce =
∑

e∈H∗ ce +
∑

e∈H\H∗ ce ≤ 2
∑

e∈H∗ ce.

2.2 An LP formulation
We now give an integer programming formulation for

MCFL. The decision variables are of the formxij (1 if de-
mandj is assigned to facilityi and 0 otherwise) andze (1
if e is selected as a connecting edge and 0 otherwise). The
integer program is as follows:

min
∑

j∈D

∑

i∈V

xijd(i, j) + M
∑

e∈E

ceze s.t. (IP)

∑

i∈V

xij = 1 ∀j ∈ D

∑

e∈δ(S)

ze ≥
∑

i∈S

xisk
−

∑

i∈S

xitk
∀S ⊆ V, sk ∈ D

∑

e∈δ(S)

ze ≥
∑

i∈S

xitk
−

∑

i∈S

xisk
∀S ⊆ V, tk ∈ D

xij , ze ∈ {0, 1},

whereδ(S) is the set of edges having precisely one endpoint
in S. We replace the integrality constraint byxij , ze ≥ 0

4

for all e, i, j to obtain a linear program. The dual to this
relaxation is

max
∑

j∈D

αj s.t. (DP)

αsk
−

∑

S:i∈S

yS,sk
+

∑

S:i∈S

yS,tk
≤ d(i, sk) (1)

αtk
−

∑

S:i∈S

yS,tk
+

∑

S:i∈S

yS,sk
≤ d(i, tk) (2)

∑

j∈D

∑

S:e∈δ(S)

yS,j ≤ Mce ∀e ∈ E (3)

yS,sk
, yS,tk

≥ 0 (4)

where constraints (1) and (2) range over all(sk, tk) ∈ D
andi ∈ V . By weak duality, any feasible solution to this
dual LP is a lower bound on the cost of an optimal solution
to the connected facility location problem.

The dual LP should be interpreted as follows. The value
αj is the amount that demandj ∈ D is “willing to pay” to-
wards a solution. If demandj is assigned to facilityi, a por-
tion of αj pays for the distanced(i, j); the rest contributes
to the connecting edges. At the highest level, the goal of
our algorithm (and of any primal-dual algorithm) is to raise
the dual variablesαj as much as possible (“generating rev-
enue”) while maintaining dual feasibility, thereby ensuring
that

∑
j∈D αj is a valid lower bound on the optimum.

3 The Algorithm

3.1 Difficulties

Before presenting our algorithm, we try to indicate some
of the main difficulties that arise in solving MCFL. We first
propose a simple primal-dual algorithm for the problem.
Call a demandj tight with facility i if the constraint (1)
for j is satisfied with equality (with respect to the current
dual solution), and edgee tight if the constraint (3) fore is
satisfied with equality. Call a facilityi reachable fromj if
there is a facilityk with the following property:j is tight
with k and there is a path of tight edges betweenk andi.
The algorithm is as follows, and is similar to that of Jain
and Vazirani [16] for classical facility location. We begin
with all dual variables set to zero, and begin raising theαj ’s
at a uniform rate. We also raise the dual variableySj ,j in
conjunction withj, whereSj is set of facilities reachable
from j. This procedure ensures dual feasibility with the
constraints (1) and (2) replaced by

αsk
−

∑
S:i∈S yS,sk

≤ d(i, sk) ∀ sk ∈ D, i ∈ V (5)

αtk
−

∑
S:i∈S yS,tk

≤ d(i, tk) ∀ tk ∈ D, i ∈ V . (6)

We ignore further issues of dual feasibility for the moment
(though our algorithm must handle this difficulty).

WhenM unassigned demands become tight with a com-
mon facility, we open the facility and call this group of de-
mands acluster. Assume we succeed in clustering all of the
demands into groups of sizeM . Intuitively, these are groups
large enough to justify building edges to connect the open
facilities (since the cost of building an edge isM times the
cost of assigning demands across an edge). These clusters
induce an instance of the well-solved generalized Steiner
problem [1, 10] with clusters as terminals and connectiv-
ity requirements induced in a natural way. This suggests
running a primal-dual algorithm for the generalized Steiner
problem (as in [1, 10]).2 Unfortunately, a problem arises.
The algorithms of [1, 10] build edges one-by-one, until all
connectivity requirements are satisfied. When an edge is
built, two components of edges merge into one; in our ap-
plication, this may connect many of the demand pairs in the
original connected facility location instance, dropping the
number of unsatisfied demands in the new component to a
nonzero number much less thanM . We may thus encounter
a partial solution that fails to satisfy all connectivity require-
ments and also fails to cluster unsatisfied demands into large
enough groups to justify building further edges.

To handle this problem, we are forced to interleave clus-
tering and building phases. This in turn causes several tech-
nical problems that must be dealt with. For example, in any
given phase, the dual variables of previous phases will con-
tribute to the constraints of type (3), thereby creating many
tight edges and forcing the reachable setsSj to grow large
quickly. We deal with this problem in two ways.

First, we break our algorithm into stages, with the dual
increase of each variable in one stage being a constant factor
larger than the increase in the previous stage; this ensures
that dual increases in one stage cannot affect future stages
too much. Second, we introduce a method for bounding the
proliferation of tight edges via adistance-preserving prop-
erty. Roughly speaking, this property asserts that we can
pay for “most” of the tight edges with the current dual solu-
tion, in the following sense: ifT is the set of tight edges and
B ⊆ T are the edges that we can pay for with the current
dual solution, then the distances between any pair of ver-
tices in the graphsGB andGT obtained by contracting the
edges ofB andT , respectively, differ only by a small factor.
We then show that all demand pairs with source and sink
“not too far apart” can be assigned to facilities in the graph
GT with a cost that can be accounted for with our current
dual solution; the smallest distance qualifying as “far apart”
will increase exponentially with the number of stages. By
the distance-preserving property, it follows that assignments
in GB of such demands can be (approximately) paid for.
The cost of assignments inGB approximately reflect the
cost of assignments inG (since the contracted edges inGB

2Indeed, this approach leads to a constant-factor approximation for the
special case when all sinks are identical.

5

are the edges ofB, which are already paid for and can there-
fore be used freely), so such demands can be assigned to
open facilities without incurring too much cost. At the end
of the algorithm, all demands are “not too far apart”, and
we obtain a feasible solution with small cost.

3.2 Some Preliminaries

Auxiliary Graphs. Our algorithm maintains two graphs,
G′ andGB. Both of these graphs will change throughout
the execution of our algorithm. LetdG′ anddGB

denote
shortest-path distance in these two graphs. LetB denote
the set of edges already built by our algorithm. As in the
previous section, the graphGB is obtained fromG by con-
tracting all edges inB. The distancedGB

(sk, tk) should be
interpreted as the cost of assigningsk andtk to open facili-
ties that are already connected to each other (this is not quite
true, but motivates whyGB is a useful network to consider).
Since the edges inB are in some sense “already paid for”,
GB can be thought of as a “residual network”. Also, each
connected subgraphH of GB corresponds to a connected
subgraph ofG in a natural way; we denote this subgraph by
G[H].

The graphG′ intuitively corresponds to the graphGT of
the previous section, but has a more complicated definition.
We will call G′ theauxiliary graph. At every point in our
algorithm, the graphG′ is obtained fromGB by a sequence
of the following two operations: (1) contract an edge of
GB; (2) decrease the length,`(e), of an edgee from ce to
zero. (While setting an edge length to zero is intuitively
the same as contracting it, it will be technically convenient
to distinguish between these two operations.) The distance
dG′ in G′ will be with respect to the length̀(e) of edges in
G′, which for each edgee will be eitherce or zero.

A vertexv′ ∈ G′ corresponds to a connected subgraph
in bothGB and inG—we denote these subgraphsGB [v′]
andG[v′], respectively (see Figure 1). We defineGB[H ′]
andG[H ′] for a connected subgraphH ′ of G′ in a similar
manner. We intuitively think ofG′ as a “coarser version” of
GB, with each vertexv′ in G′ representing a small “region”
in GB. We associate withv′ a vertex ofGB[v′] that we call
a core (denotedcore(v′)). As a vertex inGB, core(v′) is
a connected component of built edges that we think of as
being “nearby” all vertices ofGB[v′]; thus if demands inv′

need to be assigned to an open facility,core(v′) represents
some that are close by. Similarly, building edges betweenu′

andv′ in G′ should translate in a distance-preserving man-
ner to building edges betweencore(u) andcore(v) in GB.

Each vertexv of G or GB is contained in some vertex of
G′; we will denote this vertex byv(G′). When we speak of
demandj in GB (or G′), we mean the vertex ofGB (or G′)
that containsj.

Some Assumptions. We next make two easily-imposed
assumptions about the problem input, which will simplify

v’

core(v’)

core(v’)G [v’]
B

G[v’]

In G:In G :
B

In G’:

Figure 1. Mappings between vertices of vari-
ous graphs. Bold edges have been built.

the description of our algorithm: (1) we assume that every
edge with non-zero cost has cost preciselyε, whereε is a
sufficiently small constant; (2) we assume that the distance
between any two demands that are not co-located is at least
20C2, whereC is a sufficiently large constant.

Assumption (2) can be enforced by scaling up all dis-
tances of the input graph. Assumption (1) is enforced by
rounding edge costs to a multiple ofε and then subdivid-
ing edges until all edges have length preciselyε. This per-
mits the dual increases in our algorithm to occur in discrete
steps, and affects the approximation ratio by a negligible
factor. These subdivisions allow for facilities to be located
at these new subdividing points, but simple postprocessing
relocates facilities at the original vertices at the expense of a
small constant factor increase in the solution cost. There is
also a concern that these subdivisions may result in a pseu-
dopolynomial time algorithm, but in fact the algorithm we
give below for subdivided networks is easily converted into
a strongly polynomial time algorithm. Details are given in
the full version.

Defining Tight. We now give our revised definition of
what it means for a demandj to be tight with a facility i.
The definition will be similar but not identical to the notion
of “reachable” in Subsection 3.1, and will make use of the
auxiliary graphG′.

Initially, a demandj is tight with all facilities that are co-
located with it (includingj itself). A demandj can become
tight with additional facilities when its dual variableαj is
increased or when the auxiliary graphG′ is modified. First,
if αj is raised byε units (by assumption (1) above, all dual
increases are of this form), then by definitionj becomes
tight with any facility i satisfying the following: there is a
facility k of G and verticesi′ andk′ of G′ containingi and
k such thatj is tight withk anddG′(k′, i′) = ε.

Finally, the facilities with whichj is tight will satisfy the
following closure property, by definition: Ifj is tight with
a facility contained in vertexv′ of G′ anddG′(v′, w′) = 0,
thenj is tight with all facilities ofG contained inw′. This

6

invariant implies that modifications ofG′ (contracting an
edge or decreasing the length of an edge to zero) can implic-
itly increase the number of facilities with which a demand
is tight. Note also that by takingv′ = w′ in this invariant, it
makes sense to say that a demandj is tight with a facilityi′

in G′; this simply means thatj is tight with all facilities of
G in G[i′].

3.3 Algorithm Description

Disclaimer: Our algorithm will not output a feasible so-
lution to MCFL, but will instead output a partial solution
that is easily transformed into a feasible solution with at
most twice the cost. Our output consists of a setB of edges
and for each demand pair(sk, tk), ansk-tk pathPk. Our al-
gorithm will guarantee thatM

∑
e∈B ce +

∑p
k=1 c(Pk \B)

is at most a constant factor larger than the cost of the opti-
mal solution to the original connected facility location prob-
lem. We will say that edges inB areboughtor built and
that edges inPk \ B are rented. If we began with an in-
stance of MROB, then it is straightforward to check that
P1, . . . , Pp can be reinterpreted as a solution for this in-
stance with the same (or smaller) cost; it follows from the
proof of Lemma 2.1 that this solution has cost within a con-
stant factor of optimal for the rent-or-buy problem. If we de-
sire a solution to the MCFL instance, then the reduction of
Lemma 2.1 can be used to extract one fromP1, . . . , Pp, B
that is within a constant factor of optimal.

First, we describe some initial conditions for our algo-
rithm. We start with the empty primal solution (no edges
built, no assignments made) and the all-zero dual solution.
The auxiliary graphG′ is initially G. Each vertexv′ of G′

will maintain abudget(intuitively, the amount of “revenue”
it has raised to pay for building edges and making assign-
ments); initially, all budgets are zero. Every demand will
be in one of three states: (1)alive and unfrozen, which in-
dicates an unassigned demand that is allowed to raise its
dual variable; (2)alive and frozen, which indicates an unas-
signed demand that is not allowed to raise its dual variable;
(3) dead, which indicates an assigned demand. Initially,
every demand is alive and unfrozen; frozen demands may
subsequently be unfrozen, but dead demands will never be
resurrected. Every facility will be eitherfrozen(if it par-
ticipates in a cluster ofM demands) orunfrozen(other-
wise). Initially, every facility is unfrozen; frozen facilities
may later become unfrozen.

Whenever we increase a dual variableαj , we simultane-
ously increase the dual variableySj,j , whereSj is the set of
facilities with whichj is tight (with the definition of tight
given in the previous subsection); we will see that this en-
sures that the relaxed dual constraints (5) and (6) are always
satisfied. We will henceforth only describe how to raise the
αj ’s, which we refer to as “the dual variables”, with the un-
derstanding that theySj ,j ’s are raised in this way.

We now describe stager of our algorithm (r ≥ 0). Let
Gr be the auxiliary graph at the beginning of stager; G′

will always denote the auxiliary graph at the current point
of time (soG′ = Gr at the beginning of stager). The end
of the previous stage defines a setFr of frozen facilities of
Gr (in stage 0,F0 = ∅); all other facilities, as well as all
alive demands, are unfrozen. The previous stage will en-
sure that facilities ofFr are far from each other inGr, that
each facilityi′ ∈ Fr possesses a setP (i′) of M primary
demandsthat are tight withi′, and that no demand is a pri-
mary demand for two different frozen facilities. A stage of
the algorithm consists of three phases.

Phase 1: The purpose of this phase is to form clusters. We
implement this as follows. Dual variables corresponding to
alive, unfrozen demands are raised uniformly, until one of
the following events happen.

1. There is a frozen facilityi′ and an alive unfrozen de-
mandj such that eitherdG′(i′, j) ≤ 8 ·Cr+1 or j gets
tight with i′. (Recall from the previous subsection that
C is a sufficiently large constant.) Freeze the demandj
and stop raisingαj .

2. There areM alive demand nodes tight with a facility
i′, and not all of them are frozen. Freeze the facilityi′,
add it toFr, and set theM demand nodes to beP (i′),
the primary demands ofi′.

3. There is a demandj such thatαj is at leastCr+1.
Freeze the demandj and stop raisingαj .

Note that freezing of demands or facilities may occur be-
fore any dual variables have been raised. Phase 1 terminates
when all alive demands are frozen. If more than one of these
three events happen simultaneously, we give precedence to
event (1).

Phase 2: This phase increases dual variables further (while
still ignoring the issue of dual feasibility) to pay for assign-
ing demands and building edges later in this stage. Pre-
cisely, we increaseαj of every demandj in ∪i′∈Fr

P (i′)
by Cr+1. The budget of each node inFr is updated to be
Cr+1.

Phase 3: The final phase of our algorithm is the most com-
plicated and breaks down into several procedures. We main-
tain a set of nodesX which is initially set toFr. Let Zr

be the set of edges inGr (= G′) such that the constraint
(3) corresponding to these edges in the dual LP is violated,
and set̀ (e) to 0 for all these edges. (Of course,`(e) may
already be 0 inGr for some edges). LetG′ be this new
auxiliary graph. Note thatGr andG′ have the same set of
vertices, but the distance functions in the two graphs are
different.

Setting lengths of some edges to be 0 can contract dis-
tances inG′ by a lot, compared to distances inGB . In

7

the procedureCreateNodes, we identify places where dis-
tances have contracted substantially. Since our aim is to
maintain the fact that two points are nearly at the same dis-
tance inGB as in G′, we build edges inGB at some of
these places so that the corresponding distances go down
in GB as well. To this end, we add more vertices to the
setX . To each vertexv′ ∈ X , we associate a subgraph
B(v′) of G′, which is the set of all nodes within distance at
most11 · Cr+1 of v′ in Gr. Note the subtlety here that the
distance is measured inGr and not in the current auxiliary
graphG′.
Procedure CreateNodes:Suppose there are two vertices
u′, v′ ∈ G′ andP ′ is a shortest path between them inG′

(according tò , the length function onG′). Let γ � C be
a sufficiently large constant. Further suppose thatu′, v′, P ′

satisfy the following properties: (1) none of the points inP ′

belong to any of the ballsB(w′) for anyw′ ∈ X ; and (2)
dGB

(core(u′), core(v′)) is betweenγCr+1 and 2γCr+1,
whereasdG′(u′, v′) ≤ γCr+1/4.

We choose a set ofγ points u′
0, u

′
1, . . . , u′

γ from
the path P ′ as follows: u′

0 = u′, u′
1 is the right-

most point on P ′ such that (1 − 1/4) · Cr+1 ≤
dGB

(core(u′), core(u′
1)) ≤ Cr+1, u′

2 is the right-most
point in P ′ such thatdGB

(core(u′), core(u′
2)) is between

(2 − 1/4) · Cr+1 and2 · Cr+1 and so on. We stop when
we findγ such points. Existence of these points and the fact
that they lie onP ′ in this order are proved in the full ver-
sion. LetD(u′, v′) denote the set of these points, and add
these|D(u′, v′)| = γ points toX . We shall say that this
procedure creates the pair(u′, v′).

As before, we also construct the ballsB(u′
l) around all

u′
l ∈ D(u′, v′). Note that the union of these balls may not

cover all ofP ′. Indeed, since shortest paths inG′ do not
map to shortest paths inGB, there may be a point between
u′ and u′

1 whose distance fromcore(u′) in GB is much
more thanCr+1.

We keep doing this operation above as long as it is pos-
sible. At the end, for eachv′ ∈ X , we want to contract the
setsB(v′) into single nodes. The first problem with this is
more of a technical issue. Forw′ ∈ B(v′), look at the short-
est path inGB joining core(w′) andcore(v′); all the edges
in this path may not lie in the setB(v′). To handle this, we
completethe setB(v′) to B

′(v′) thus: initiallyB
′(v′) con-

tains justB(v′). Now if there is a vertexw′ ∈ B(v′) such
that the shortest path betweencore(v′) andcore(w′) in GB

uses a vertexx, wherex(G′) is not inB(v′), then we add
x(G′) to B

′(v′).
We now want to contractB′(v′) into a single node. An-

other problem presents itself: IfB′(v′) and B
′(u′) for

u′ 6= v′ ∈ X share some vertices, then both sets will get
contracted to the same node. To decide what the core of
this new node will be, we run the following procedure :
Procedure ContractTree(X): Let us construct a graph

GX on the vertex setX thus: u′, v′ ∈ X are joined by an
edge ifB′(u′)∩B

′(v′) 6= ∅. Now letTX be a spanning for-
est inGX ; i.e., TX restricted to any connected component
of GX is a spanning tree. For each edgee = (u′, v′) ∈ TX ,
let w′ ∈ B

′(u′) ∩ B
′(v′). Find the shortest path be-

tweencore(u′) and core(w′) in GB that lies entirely in-
sideGB [B′(u′)]. Similarly, find a path fromcore(w′) to
core(v′) in GB . Build edges on these paths (hence adding
these edges to the setB as well, and contracting all these
edges inGB).

Contract all the vertices inB′(v′) to a single node for
eachv′ ∈ X in the auxiliary graph. Ifx′ is such a node,
thenx′ may have been obtained by contraction of several of
the setsB′(v′1), . . . ,B′(v′s), wherev′1, . . . , v′s form a con-
nected component ofGX in the procedure above. However,
note that these contractions are accompanied by the build-
ing of edges, and hencecore(v′1), . . . , core(v′s) contract to
a single node inGB as well. This is defined ascore(x′) in
GB, and we set the budget ofx′ to beCr+1.
Procedure Contract: As the last round of building edges
in a stage, we perform the following operation as long as
possible. Letu′, v′ be two nodes with budgetCr+1 such
that the shortest pathP ′ between them inG′ has no inter-
nal vertex of budgetCr+1. Furthermore, suppose that these
nodes are “somewhat close”; i.e.,dG′(u′, v′) ≤ 9 · Cr+2.
Let u = core(u′), v = core(v′), find a shortest pathP in
GB betweenu andv, and build edges on this path. Further-
more, ifP contains a vertexw such thatw(G′) is a vertex of
budgetCr+1 in G′, then find a shortest path inGB [w′] be-
tweenw andcore(w′), and build edges on this path as well.
Contract the edges we just built inGB . Note thatcore(u′)
andcore(v′) will contract to a single vertex inGB , call this
x. P corresponds to a pathP ′′ joining u′ andv′ in G′, and
contracting all the edges inP ′′ creates the new vertexx′ in
G′. We definecore(x′) = x, and allotx′ a budget ofCr+1.

Procedure Prune Demands: Our next step in this phase
is to satisfy demands that are sufficiently close to each other
in G′. Formally, letsk, tk be a pair of alive demands with
dG′(sk, tk) ≤ 5 · Cr+2; define pathPk connecting them
to be the shortestsk-tk path inGB , lifted to ansk-tk path
of G in the obvious way. Edges ofPk \ B are rented, and
demandssk andtk are marked dead (we will never consider
them again in the algorithm).

Procedure Regrow:The final procedure of Phase 3 raises
the dualsαj of some demand nodes. For a vertexv′ with
a budget ofCr+1, defineD(v′) to be the set of those de-
mandsj that are only tight withG[v′]. In particular, such a
demandj must lie inG[v′], because every demand is tight
with itself.

If there is a vertexv′ of budgetCr+1 such that|D(v′)| <
M , then we start raising theαj value of all demands in
D(v′) simultaneously, stopping anαj from rising further

8

if it reachesCr+1. DefineFr+1 to be the set of all nodesv′

that have a budget ofCr+1, and that also satisfy|D(v′)| ≥
M . This is the set of frozen facilities for the next stage. Fur-
thermore, forv′ ∈ Fr+1, define the primary demandsP (v′)
of v′ to be anyM of the demands inD(v′).

4 Overview of Analysis

We now give a high-level overview of the analysis; the
precise arguments are given in the full version.

Approximate Dual Feasibility. Unlike a traditional
primal-dual algorithm, our algorithm does not explicitly
maintain feasibility of the dual solution. We explicitly obey
the relaxed constraints (5) and (6) and do not obey the dual
constraint (3) for edges at all. On the other hand, we prove
that our algorithm always maintains a dual solution that is
approximatelyoptimal.

Theorem 4.1 If (α, y) is the dual solution produced by the
algorithm, then(1

5α, 1
5y) is feasible for the LP (DP).

Theorem 4.1 is proved in two steps. First, we use the
fact thatαsk

andαtk
are only raised whensk andtk are far

apart (because of thePrune Demandsprocedure) in con-
junction with feasibility for constraints (5) and (6) to show
that constraints (1) and (2) are satisfied. Second, we show
that no dual constraint of the form (3) is violated by more
than a factor 5. Since we give edges with violated dual con-
straint length 0 at the beginning of Phase 3 (after which the
left-hand side of the constraint will never increase again,by
definition of tight), it suffices to prove that the contribution
to the left-hand side of the dual constraint corresponding to
edgee in a single stage is at most4Mce. It is easy to show
that a single demand can contribute onlyce to the left-hand
side, so the problem reduces to showing that onlyO(M)
demands contribute to the left-hand side. Our algorithm en-
sures this property by only allowingM different demands
to become tight with a vertex (this limits the contribution in
Phase 1), and by forcing any two frozen facilities to be far
apart; primary demands are relatively close to their frozen
facilities, and therefore primary demands belonging to dif-
ferent facilities cannot contribute to a single dual constraint
(this limits the contribution in Phase 2).

The Distance-Preserving Property. We next argue that
distances inGB andG′ are close to each other during the
entire run of the algorithm. Letβ andλ be constants such
thatβ � γ � λ � C.

Theorem 4.2 Letv′ be a node with budgetCs, and letv be
its core inGB. ThendGB

(u, v) ≤ βCs for anyu ∈ GB[v′],
with such a path lying inside the subgraphGB[v′].

Furthermore, letu′, v′ ∈ Gs, with coresu, v ∈ GB re-
spectively. ThendGB

(u, v) ≤ 5 · dGs(u′, v′) + λCs.

We prove Theorem 4.2 by induction ons. Assume the
theorem holds for all stages beforer. In stager, we con-
struct the ballsB(v′) for eachv′ ∈ X of radius aboutCr+1

in Gr, which by induction correspond to radiusO(Cr+1)
balls in GB, as well. Since we construct nodes of budget
Cr+1 by collapsing such balls, the first part of the inductive
step essentially follows from the fact that these balls have
radii O(Cr+1) in GB .

Now we show how to prove the second part of the theo-
rem above. Suppose we have finished the procedureCon-
tractTree in Stager. Let u′, v′ ∈ G′ have a shortest
pathP ′ between them inG′ that does not contain any ver-
tex of weightCr+1, anddGB

(core(u′), core(v′)) lies be-
tweenγCr+1 and2γCr+1. We claim thatdG′(u′, v′) ≥
γCr+1/4; indeed, otherwise we would have consid-
ered this path in the procedureCreateNode and col-
lapsed it. If u′, v′, P ′ satisfy the above properties but
dGB

(core(u′), core(v′)) is much bigger thanγCr+1, then
we can break the pathP ′ into smaller segments of length
aboutγCr+1 and argue independently on each segment.
Thus the distance betweenu′ andv′ is nearly the same in
GB andG′; though this is only up to an additive factor of
aboutγCr+1.

But what if P ′ contains nodes of budgetCr+1? These
nodes can be a problem: since they correspond to subgraphs
of radii aboutCr+1 in GB, we may be contracting distances
substantially inG′ by collapsing such subgraphs. Consider
two consecutive nodes of budgetCr+1 in P ′ — the proce-
dureContract ensures that the distance between them is so
large that the contraction of these nodes will not have much
effect on the distance betweenu′ andv′. This allows us to
prove the theorem.

The Performance Guarantee. The cost of the primal so-
lution is the sum of the cost of renting some edges and the
cost of building others. Let us first account for the rental
costs: if we rent edges betweensk andtk in thePrune De-
mandsprocedure of stager, the distance betweensk andtk
is aboutCr+1 in G′, and about the same inGB as well (us-
ing the distance preserving property). So ifαsk

or αtk
is at

leastCr+1 then these demands can pay for the cost of rent-
ing by their dual variables. If bothαsk

andαtk
are small, we

can show that both these demands are close enough to some
frozen facility such that we can pay for renting of edges to
this facility.

Accounting for the edges we build is more involved.
Here we use the budgets of nodes, which is roughly the
amount it can pay for building edges (scaled down byM).
This explains why we assign a budget ofCr+1 in Phase 2,
since we can account for this by the raising ofM of the
αj values. InContract, since we build edges between two
nodes of budgetCr+1, one of these high-budget nodes can
pay for cost of building, which isO(MCr+1). In procedure
ContractTree also, each edge of the treeTX basically cor-

9

responds to building edges onO(Cr+1) length paths, and
so each node ofTX has to account for aboutCr+1 length
edges. If a node ofTX comes from Phase 2, we know it has
a budget ofCr+1, and so it can pay for building the edges.
If not, then this node inTX comes from the procedureCre-
ateNode, and exists because of a pair(u′, v′) created by
this procedure. But then the distance betweenu′ andv′ in
G′ was much less than that inGB , and so many of the duals
must have been raised for this shrinking of distances. We
then show how to borrowCr+1 units of budget from these
dual variables, which completes the proof of the following
theorem.

Theorem 4.3 The cost of the primal solution constructed
by our algorithm is within a constant of

∑
j αj .

Acknowledgments. We thank Jon Kleinberg and́Eva Tardos
for helpful discussions.

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An
approximation algorithm for the generalized Steiner prob-
lem on networks.SIAM Journal on Computing, 24(3):440–
456, 1995.

[2] M. Andrews and L. Zhang. Approximation algorithms for
access network design.Algorithmica, 34(2):197–215, 2002.

[3] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In
Proceedings of 38th FOCS, pages 542–547, 1997.

[4] B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized
Steiner problem. InProceedings of 7th SODA, pages 68–74,
1996.

[5] Y. Bartal. On approximating arbitrary metrics by tree met-
rics. InProceedings of 30th STOC, pages 161–168, 1998.

[6] Y. Bartal, M. Charikar, and P. Indyk. On page migration and
other relaxed task systems. InProceedings of 8th SODA,
pages 43–52, 1997.

[7] N. Garg, R. Khandekar, G. Konjevod, R. Ravi, F. S. Salman,
and A. Sinha. On the integrality gap of a natural formulation
of the single-sink buy-at-bulk network design formulation.
In Proceedings of 8th IPCO, pages 170–184, 2001.

[8] M. X. Goemans and D. Bertsimas. Survivable networks,
linear programming relaxations, and the parsimonious prop-
erty. Mathematical Programming, 60:145–166, 1993.

[9] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys,
É. Tardos, and D. P. Williamson. Improved approximation
algorithms for network design problems. InProceedings of
5th SODA, pages 223–232, 1994.

[10] M. X. Goemans and D. P. Williamson. A general approx-
imation technique for constrained forest problems.SIAM
Journal on Computing, 24:296–317, 1995.

[11] M. X. Goemans and D. P. Williamson. The primal-dual
method for approximation algorithms and its application to
network design problems. In D. S. Hochbaum, editor,Ap-
proximation Algorithms for NP-Hard Problems, chapter 4,
pages 144–191. PWS Publishing Company, 1997.

[12] S. Guha, A. Meyerson, and K. Munagala. Hierarchical
placement and network design problems. InProceedings
of 41st FOCS, pages 603–612, 2000.

[13] S. Guha, A. Meyerson, and K. Munagala. A constant factor
approximation for the single sink edge installation problems.
In Proceedings of 33rd STOC, pages 383–388, 2001.

[14] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener.
Provisioning a virtual private network: A network design
problem for multicommodity flow. InProceedings of 33rd
STOC, pages 389–398, 2001.

[15] K. Jain, M. Madian, and A. Saberi. A new greedy approach
for facility location problems. InProceedings of 34th STOC,
pages 731–740, 2002.

[16] K. Jain and V. V. Vazirani. Primal-dual approximation algo-
rithms for metric facility location andk-median problems.
Journal of the ACM, 48:274–296, 2001.

[17] D. R. Karger and M. Minkoff. Building Steiner trees with
incomplete global knowledge. InProceedings of 41st FOCS,
pages 613–623, 2000.

[18] S. Khuller and A. Zhu. The general Steiner tree-star prob-
lem. Information Processing Letters, 2002. To appear.

[19] T. U. Kim, T. J. Lowe, A. Tamir, and J. E. Ward. On the
location of a tree-shaped facility.Networks, 28(3):167–175,
1996.

[20] M. Labbé, G. Laporte, I. Rodrı́gues Martin, and J. J. Salazar
González. The median cycle problem. Technical Report
2001/12, Department of Operations Research and Multicri-
teria Decision Aid at Université Libre de Bruxelles, 2001.

[21] Y. Lee, S. Y. Chiu, and J. Ryan. A branch and cut algo-
rithm for a Steiner tree-star problem.INFORMS Journal on
Computing, 8(3):194–201, 1996.

[22] M. Madian, E. Markakis, A. Saberi, and V. V. Vazirani. A
greedy facility location algorithm analyzed using dual fit-
ting. In Proceedings of 4th APPROX, pages 127–137, 2001.

[23] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian.
Approximating the single-sink link-installation problemin
network design.SIAM Journal on Optimization, 11(3):595–
610, 2000.

[24] C. Swamy and A. Kumar. Primal-dual algorithms for the
connected facility location problem. To appear inAPPROX
2002.

[25] K. Talwar. Single-sink buy-at-bulk LP has constant integral-
ity gap. InProceedings of 9th IPCO, pages 475–486, 2002.

[26] D. P. Williamson. The primal-dual method for approxi-
mation algorithms.Mathematical Programming, Series B,
91(3):447–478, 2002.

[27] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V.
Vazirani. A primal-dual approximation algorithm for gener-
alized Steiner network problems.Combinatorica, 15:435–
454, 1995.

A Proofs

A.1 Feasibility

In this section, we argue that the dual variablesαj , yS,j

constructed by the algorithm of Subsection 3.3 are nearly
feasible. We will first show that the constraints (5) and (6)

10

are always satisfied. For this, we need some simple lemmas
about the dual variables.

Lemma A.1 At the beginning of stager, αj ≤ 2Cr for all
demand nodesj.

Proof: By induction of the number of stages. In Phase
1, noαj is raised aboveCr+1. In Phase 2,αj is increased
by at most an additiveCr+1 factor. Finally, inRegrow, we
never raiseαj aboveCr+1.

Lemma A.2 If j is tight with i′ in the auxiliary graphG′,
thendG′(j, i′) ≤ αj at that point in time.

Proof: The lemma clearly holds at the beginning of the
algorithm, so suppose the lemma is true at timet. Since
distances inG′ can only get smaller, we need only be con-
cerned with the first moment in time at which a demandj
becomes tight with some facilityi′ of G′.

We now look at the operations that algorithm performs.
If it contracts a set of nodesS to a single nodes, j will
be tight with s only if j was tight with a nodei in S,
and hence by the induction hypothesis,dG′(j, s) will be
bounded above byαj . A similar argument applies when
we set an edge length to 0.

Consider the point when time becomest+ε, and we raise
αj by ε. Supposej becomes tight withi′ at timet+ ε, but it
was not tight with it at timet. By the definition of tight and
the fact that all edges have lengthε, this can only happen if
j was tight with some nodei′′ at timet anddG′(i′, i′′) = ε.
By induction,αj ≥ dG′(i′′, j) at timet, and thus at time
t + ε, αj ≥ dG′(i′, j), completing the proof.

Lemma A.3 If j is not tight with facilityi in G, thenαj <
d(i, j).

Proof: This is clearly true at the beginning of the algo-
rithm. If the algorithm contracts some vertices into a single
node or sets the length of an edge to 0, nodej can only
become tight with even more facilities. So suppose the al-
gorithm raises the value ofαj by ε. Let i′ = i(G′), and let
N(i) be the set of nodesl in G such thatdG′(i′, l(G′)) ≤ ε.
We consider two cases. First suppose that beforeαj is
raised,j is tight with a node inN(i). In this case, after
αj is raised, it will become tight withi, maintaining the in-
variant. In the other case,αj is not tight with any node in
N(i) before it is raised. In this case, the invariant implies
thatαj < d(i′′, j) for all i′′ ∈ N(i). Now there must be at
least onei′′ ∈ N(i) such thatd(i′′, j) = d(i, j) − ε, and so
αj < d(i, j) − ε. Sinceαj increases byε, it follows that its
new value is less thand(i, j), maintaining the invariant.

This proves that at the instantj becomes tight with a
facility i, αj ≤ d(i, j). From this point on, the left hand
side of (5) fori and j will remain unchanged, and hence
satisfied. (A symmetric argument holds for (6).) We next
show that the original constraints (1), (2) are also satisfied.

For the next lemma, by theactive phaseof the algo-
rithm we mean the operations that modify the dual variables
(Phases 1 and 2 and procedureRegrow).

Lemma A.4 Consider a point of time in the active phase.
If G′ is the current auxiliary graph, andsj , tj are a pair of
alive demands, thendG′(sj , tj) ≥ αsj

+ αtj
.

Proof: The inequality is easily seen to hold in Phases 1 and
2 of stage 0, since we assume thatdG(sj , tj) ≥ 20C2 for
all j. So fix a stager ≥ 1 and supposesj , tj survived the
Prune Demandprocedure of stage(r − 1). It follows that
dG′(sj , tj) > 5 · Cr+1 at this moment in time. Lemma A.1
implies that throughout stagesr − 1 andr, αsj

+ αtj
≤

4Cr+1. Since distances inG′ are not modified during the
Regrowprocedure of stater−1 and Phases 1 and 2 of stage
r, the desired inequality holds throughout.

Theorem A.5 The constraints (1) and (2) are always satis-
fied.

Proof: We will provide the argument for constraints (1), as
the argument for constraints (2) is symmetric. For contra-
diction, lett be the first time at which constraint (1) is not
satisfied for demandsj and facility i. Since the algorithm
enforces the corresponding constraint (5), we can conclude
thatyS,tj

> 0 for someS containingi. This, in turn, implies
thattj is tight withi. Look at the first time whentj becomes
tight with i. Lemma A.2 implies thatαtj

≥ dG′(tj , i(G
′))

whereG′ is the auxiliary graph at this point of time. Since
the distances in the auxiliary graph can only get smaller and
from this point onwards, andαtj

and
∑

S:i∈S yS,tj
will be

raised at the same rate, it follows that at timet,

αtj
−

∑

S:i∈S

yS,tj
+

∑

S:i∈S

yS,sj
≥ dG′′(i, tj)

whereG′′ is the auxiliary graph at timet. We already know
that

αsj
−

∑

S:i∈S

yS,sj
+

∑

S:i∈S

yS,tj
> d(i, sj) ≥ dG′′(i, sj),

since (1) is violated. But adding the two inequalities above
contradicts Lemma A.4.

Before we prove that (3) is approximately satisfied, let
us prove a supporting lemma.

11

Lemma A.6 Supposei′1, i
′
2 are two frozen facilities in

Phase 2 of stager. Let j1 ∈ P (i′1) andj2 ∈ P (i′2). Then,
dGr(j1, j2) ≥ 5Cr+1.

Proof: Lemma A.2 implies thatdGr (j1, i
′
1) ≤ αj1 and

dGr(j2, i
′
2) ≤ αj2 , whereαj1 , αj2 are the dual variables at

the end of Phase 2. Supposei′1 and i′2 were frozen at the
end of Phase 3 of stager − 1 and they survived procedure
Contract in stager−1, we know thatdGr(i′1, i

′
2) ≥ 9Cr+1.

Sinceαj1 , αj2 ≤ 2Cr+1, we get thatdGr (j1, j2) ≥ 5Cr+1.
Now consider the case that at least one ofi′1 andi′2 were

not frozen at the beginning of stager. In Phase 1, several
events may happen at the same time. But even then we can
talk about an event occurringbeforeanother event simply
because we shall deal with these events in some order. Let
E1 be the event wheni′1 freezes andE2 be the event when
i′2 freezes. SupposeE1 occurs beforeE2. By definition
of freezing of a facility, at least one demandj2 ∈ P (i′2)
was not frozen whenE2 occurs. It must be the case that
dGr(j′2, i

′
1) ≥ 8Cr+1. Otherwise,E1 has already occurred,

i.e., i′1 is frozen and so we should have frozenj′2 (note that
this gets preference overE2 – this is how we defined the
ordering of events in Phase 1). This is a contradiction.

Hence,dGr(j′2, i
′
1) ≥ 8Cr+1. Since anyαj ≤ Cr+1

in Phase 1, it must be the case thatdGr (i′1, i
′
2) ≥ 7Cr+1.

Finally, sincedGr (j1, i
′
1), dGr (j2, i

′
2) ≤ Cr+1, this implies

thatdGr(j1, j2) ≥ 5Cr+1.

Corollary A.7 Supposei′1, i
′
2 are two frozen facilities in

Phase 2. ThenP (i′1) andP (i′2) are disjoint.

Theorem A.8 At any instant in time,∑
j∈D

∑
S:e∈δ(S) yS,j ≤ 5Mce.

Proof: Fix an edgee and consider the above constraint (3)
for this edge. Since we never raiseyS,j wheree ∈ δ(S)
when`(e) = 0 in the auxiliary graph, we need to estimate
the contribution to the left hand side till`(e) is set to 0.

Note that it is enough to show that for any stager, the
contribution to the left hand side from Phase 3 of stager−1
and Phases 1 and 2 of stager is at most4Mce. Indeed,
if `(e) 6= 0 at the end of Phase 2 of stager − 1, the left
hand side was< Mce, and the increases in the following
three stages can only bring the total to5Mce, proving the
theorem.

First we show that the contribution to the left hand side
in Phase 1 is at most2Mce. Let e = (u′, v′) be an edge in
the auxiliary graphG′ = Gr. We increaseyS,j occurring
on the left hand side only ifj is tight with exactly one of
u′ andv′, sayu′. Consider the time whenj becomes tight
with u′. If αj is raised byce more units,j also becomes
tight with v′; hence any demand contributes to the left hand
side by at mostce units.

We claim that there can be at mostM demands which
can contribute to the left hand side ofe by being tight with
u′ but not withv′. Suppose there are at leastM demands
which contributed in this manner. Consider the demandj
which contributed last (if there are several such demands,
pick one arbitrarily). Suppose it began raising itsαj at time
t. At time t, M demands are tight withu′. Further,j is
not frozen (otherwise we will not increase its dual variable).
But thenu′ should be frozen, and so we should not have
raisedαj — a contradiction.

Similarly, at mostM such contributions can be due to
being tight withv′ but notu′, bringing the total to at most
2Mce.

Note another simple fact proved by very similar ar-
guments as above: for any demandj and edgee,∑

S:e∈δ(S) yS,j ≤ ce. We can now show that the total con-
tribution to an edge in Phase 2 is at mostMce. Let j1, j2 be
as in Lemma A.6, and letj1 be tight with i′′1 , andj2 with
i′′2 in Phase 2. SincedGr (i′′1 , j1), dGr (i′′2 , j2) ≤ 2Cr+1,
Lemma A.6 implies thatdGr (i′′1 , i′′2) ≥ Cr+1. But since
ce ≤ ε for any edgee, this means thatj1 andj2 cannot both
contribute to the left hand side of constraint (3) fore in this
phase. Hence, the left hand side of the constraint fore can
only get contributions fromP (i′) for some fixed frozeni′,
which is at mostMce.

Finally, the argument for Phase 3 of stager−1 is exactly
the same as for Phase 2 of stager, giving a contribution of
Mce, bringing the grand total to4Mce, and hence proving
the theorem.

A.2 Distance Preserving Property

We shall prove the following facts by induction ons:

• Let v′ be a node with budgetCs, and letv ∈ GB[v′] be
the core ofv′ in GB. If u ∈ GB[v′] be any other vertex
in GB [v′], thendGB

(u, v) ≤ βCs. Furthermore, a
path of length at mostβCs can be found inside the
subgraphGB[v′].

• Let u′, v′ be two nodes inGs, and letu, v ∈ GB with
u = core(u′), v = core(v′). ThendGB

(u, v) ≤ 5 ·
dGs(u′, v′) + λCs.

Hereβ andλ are large enough constants, satisfyingβ �
γ � λ � C. Assuming the invariants hold for alls ≤ r,
we will show that they hold fors = r+1. Since nodes with
budgetCr+1 are created only in stager, we need to look at
the algorithm in stager.

Theorem A.9 Let v′ be a node with budgetCr+1 at the
end of stager, and let w be a node inGB [v′]. Then
dGB

(w, core(v′)) ≤ βCr+1.

12

Proof: It suffices to show that ifu′ ∈ X in Phase 3
(before the procedureTreeGrow) and v ∈ GB [B′(u′)],
thendGB

(core(u′), v) ≤ βCr+1. Indeed, suppose this is
true. In procedureContractTree, consider the case that
x′ is formed by contractingB′(u′

1), . . . ,B′(u′
s). Then

core(x′) containscore(u′
1), . . . , core(u′

s), andGB[x′] =
GB[B′(u′

1)] ∪ · · · ∪ GB[B′(u′
s)]. If we prove the result for

elements inX , it will hold at the end of procedureCon-
tractTree as well.

Now, suppose the theorem holds before we apply the
procedureContract on verticesu′ andv′ in G′ to find a
path P ′ betweenu′ and v′ and contract it to a nodex′.
Let w ∈ GB[x′]. It must be the case thatw′ = w(G′)
is in P ′. If budget of w′ is Cr+1, then core(x) also
containscore(w′), and the theorem holds. If budget of
w′ is less thanCr+1, then some vertexw1 ∈ GB[w′]
must be in the pathP constructed to joincore(u′) and
core(v′). SinceP is in core(x′), dGB

(w, core(x′)) ≤
dGB

(w, w1) ≤ dGB
(w, core(w′)) + dGB

(w1, core(w′)) ≤
2βCr ≤ βCr+1.

Hence it is enough to show the theorem only for sets
B

′(u′). First, let us show this only for the setB(u′) con-
structed for a nodeu′ ∈ X , and we show it for the rest of the
vertices inB′(u′) − B(u′) later. Recall that ifw′ ∈ B(u′),
thendGr(u′, w′) ≤ 11 · Cr+1. Sincew′ is a node inGr, it
has a budget of at mostCr in Gr. Hence forx ∈ GB [w′],
the induction hypothesis implies that:

dGB
(core(u′), x) ≤ dGB

(core(u′), core(w′))+dGB
(core(w′), x)

≤ 5 · 11 · Cr+1 + λCr + βCr ≤ β/2Cr+1. (7)

Now we consider the other case, i.e., whenx ∈
GB[B′(u′)] − GB[B(u′)]. It must be the case that
x′ = x(G′) ∈ B

′(u′) − B(u′). So x′ was added
to B

′(u′) because there is a nodey ∈ GB [B(u′)]
and a nodez ∈ GB[x′] such thatdGB

(core(u′), z) ≤
dGB

(core(u′), y) ≤ β/2Cr+1. So dGB
(core(u′), x) ≤

β/2Cr+1 + dGB
(x, z) ≤ β/2Cr+1 + 2βCr ≤ βCr+1.

This proves the theorem, and the first part of the induction
hypothesis.

We now go on to the second part of the induction. LetG′

be an auxiliary graph during the run of ProcedureContract
in Phase 3. Note thatG′ may change during this procedure,
so let us fix any suchG′.

Before we begin the proof, let us give a mapping of paths
between vertices inG′ to paths inGB that connect their
cores. Formally, given verticesu′, v′ ∈ G′ and a pathP ′

connecting them,P(u′, v′, P ′) specifies a pathP in GB

which joinscore(u) andcore(v). This pathP contains all
the edges inP ′; furthermore, ife′ = (u′

1, v
′
1) ∈ P ′ corre-

sponds to an edgee = (u1, v1) in GB , thenP also contains
edges that joinu1 to core(u′

1), andv1 to core(v′1) by short-
est paths inGB[u′

1] andGB[v′1] respectively.

Lemma A.10 Let G′ be the auxiliary graph at some time
during the execution of procedureContract. Let u′, v′ be
nodes inG′ with u = core(u′) andv = core(v′). If there is
a shortest pathP ′ betweenu′ andv′ in G′ with no internal
node ofP ′ having a budget ofCr+1, thendGB

(u, v) ≤
4dG′(u′, v′) + λ/2Cr+1.

Proof: Suppose no (internal or external) node ofP ′ has
budgetCr+1. Let P = P(u′, v′, P ′); note thatP need not
be a shortest path betweenu andv in GB. Given vertices
x, y onP , let Pxy be the segment ofP between them.

Let u′
1 = u′, u1 = u. Starting from the nodeu, let w2

be the first node onP such thatdGB
(u1, w2) ≥ 3/2γCr+1.

Since all edges are of lengthε, dGB
(u1, w2) will be nearly

3/2γCr+1. This nodew2 will be part of some nodeu′
2 ∈

G′, i.e., w2 ∈ GB[u′
2]; let u2 ∈ GB be the core ofu′

2.
By the construction ofP(u′, v′, P ′), u2 lies onP as well.
Furthermore, the distance fromw2 to u2 in GB will be at
mostβCr ≤ Cr+1/2 by Theorem A.9, and sinceγ ≥ 1,
dGB

(u1, u2) is betweenγCr+1 and2γCr+1. Continuing
this way, we can find nodesu′

1 = u′, u′
2, . . . , u′

k = v′ on
P ′ (with uj = core(u′

j) for all j) such thatdGB
(ui, ui+1)

lies betweenγCr+1 and2γCr+1 for all i, except possibly
the last segment (which may violate the lower bound, but
still satisfiesdGB

(uk−1, uk) ≤ 2γCr+1).
We now claim that ifs < k − 1, thendG(us, us+1) ≤

4dG′(u′
s, u

′
s+1). Indeed, suppose not: then the pathP ′

u′

su′

s+1

satisfies all the conditions of the procedureCreateNodes
and sou′

s would have been contracted into a vertex with
budgetCr+1. Since this is not the case, our claim must
be true. Adding all these inequalities, we getdGB

(u, v) ≤
4dG′(u′, v′) + 2γCr+1.

Now u′ or v′ may be a vertex with budgetCr+1. Since
each edge is of lengthε, the nodew′ adjacent tou′ onP ′ is
at distance at mostε from it. So we can carry out the argu-
ment above by replacingu′ by w′ andv′ by a similar node.
Theorem A.9 now implies thatdGB

(u, v) ≤ 4dG′(u′, v′) +
2γCr+1 + 2βCr+1 ≤ 4dG′(u′, v′) + λ/2Cr+1.

Theorem A.11 Let G′ be the auxiliary graph at the end
of stager (i.e., G′ = Gr+1). If u′, v′ ∈ G′ with u =
core(u′), v = core(v′), thendGB

(u, v) ≤ 5 · dG′(u′, v′) +
λCr+1.

Proof: Let P ′ be a shortest path betweenu′ and
v′ in G′. Supposeu′

1 and u′
2 are two vertices with

budgetCr+1 such thatP ′
u′

1
u′

2

does not contain any in-

ternal node with budgetCr+1. Lemma A.10 implies
that dGB

(core(u1), core(u2)) ≤ 4 · dG′(u′
1, u

′
2) + λ/2 ·

Cr+1. But we know thatdG′(u′
1, u

′
2) ≥ 9 · Cr+2

(else the procedureContract would have mergedu′
1 and

13

u′
2), so using this and the the fact thatλ < C implies

dGB
(core(u1), core(u2)) ≤ 5dG′(u′

1, u
′
2).

Now starting from the left end-point ofP ′, supposeu′
1

is the first node with budgetCr+1 andu′
l is the last node

with budgetCr+1. Lemma A.10 also implies that the
contribution of the paths from left end-point ofP ′ to u′

1

andu′
l to right end-point ofP ′ is at most4dG′(u′, u′

1) +
4dG′(u′

l, v
′)+λCr+1. By adding the above inequalities for

the various portions of the paths, we get the result.

A.3 Approximation Ratio

We now need to show that the cost of our solution is
within a constant of

∑
j αj . We have made no attempt to

optimize the constants here, for clarity of exposition.

Lemma A.12 If j is alive before thePrune Demandspro-
cedure in stager, then eitherαj ≥ Cr+1 or j ∈ D(u′) for
someu′ with budgetCr+1. If j is alive at the end of stage
r, then eitherαj ≥ Cr+1 or j ∈ D(u′) for some nodeu′

with budgetCr+1 with |D(u′)| ≥ M .

Proof: Consider such a demandj in phase 1 of stager:
if αj is not raised toCr+1 in this phase, this must be be-
cause of a frozen facilityi′ such thatdGr(i′, j) ≤ 8 ·Cr+1.
Now if j is tight with i′′ at the end of Phase 2, then Lemma
A.2 implies thatdGr(j, i′′) ≤ αj ≤ 2Cr+1. The triangle
inequality now implies thatdGr (i′, i′′) ≤ 10 · Cr+1, and
hencei′′ ∈ B(i′). In other words, every point thatj is
tight with lies inside this ballB(i′), and whenB(i′) is col-
lapsed into a vertexv′ after theContractTree procedure,
thenj ∈ D(v′). To prove the second part of the lemma,
note that if|D(v′)| were less thanM , we would raiseαj to
Cr+1 in Regrow.

Lemma A.13 Let j be alive during thePrune Demands
procedure in stager. If G′ is the auxiliary graph at this
time, andj is tight with i′ ∈ G′, thendGB

(j, core(i′)) is
within a constant ofαj .

Proof: We prove this by induction on stages. Consider
stage 0 : since all the demands are either co-located or at
least20C2 apart, each demand raisesαj to C, or else it is
co-located with at leastM −1 other demands, and hence its
αj = 0. In both these cases, it is clear that the conditions of
the lemma are satisfied.

Now suppose the lemma is true at the end of stager− 1.
Lemma A.12 implies that at the end of stager − 1, ei-
ther αj ≥ Cr or αj ∈ D(u′) for someu′ ∈ Fr. Let
us suppose the former is true, andαj ≥ Cr. If j is tight
with i′, thendG′(i′, j) ≤ αj by Lemma A.2. Now apply-
ing Theorem A.11 gives us thatdGB

(core(i), j) is at most

O(αj + Cr+1). But sinceαj ≥ Cr, this in turn isO(αj).
(Note that the constant in the big-Oh depends onC.)

On the other hand, supposeαj ∈ D(u′) for u′ ∈ Fr at
the end of stager − 1. By induction,dGB

(core(u′), j) is
within a constant ofαj . u′ will be in Fr at the beginning
of stager. In factu′ will get contracted into a nodex′ with
budgetCr+1 in the procedureContractTree. Note that
core(u) will be a part ofcore(x). So dGB

(core(x), j) is
also within a constant ofαj . Now, j ∈ D(x′) because all
the nodes thatj was tight with were included in the ball
B(u′). If |D(x′)| ≥ M , thenx′ is the only node thatj is
tight with. Otherwise, we raiseαj to Cr+1 and the reason-
ing in the previous case applies.

Theorem A.14 Supposesj , tj gets removed in the proce-
durePrune Demandsof stager. Thenαsj

+ αtj
can pay

for renting edges between them inGB .

Proof: We are given thatdG′(sj , tj) ≤ 5 · Cr+2, and let
s′ = sj(G

′), t′ = tj(G
′). Theorem A.11 now implies that

dGB
(core(s), core(t)) ≤ 5 ·5 ·Cr+2+λCr+1 ≤ 26 ·Cr+2.

By Theorem A.9,dGB
(sj , tj) ≤ 26 · Cr+2 + 2βCr+1 ≤

27 · Cr+2.
If either ofαsj

or αtj
is at leastCr+1, then we are done

(because the total amount paid would be aO(αsj
+ αtj

)).
So suppose that bothαsj

, αtj
< Cr+1. Then Lemma A.12

implies thatsj ∈ D(x′), tj ∈ D(y′), wherex′, y′ are nodes
with budgetCr+1. Furthermore, sincesj ∈ D(x′) implies
thatsj ∈ G[x′], by the definition ofD(x′), and similarly for
tj , dG′(sj , tj) = dG′(x′, y′). But by the procedureCon-
tract , we know thatdG′(x′, y′) ≥ 9 ·Cr+2. This is possible
only if x′ = y′. Now Lemma A.13 tells us thatsj can pay
for a path fromsj to core(x′) andtj for a path fromtj to
core(x′) in GB , proving the theorem.

This shows how the dual variables can pay for the cost
of renting paths. Now we need to show how to pay for cost
of buying edges. Herebudgetsof the vertices are going to
be used, where the budget of a node is roughly the amount
it can pay for buying edges. A node can do two things with
its budget:

• It can use the budget to buy edges. This can happen
only once, after which the node loses its budget. Note
that the length of the edges it buys can be within a
constant of its budget, since this is a one-time expense.

• It can transfer its budget to some other node. In this
case, the amount given must be exactly the same as
the amount received, for fear of a cascading of such
transfers might end up “creating” unbounded amounts
of new wealth incorrectly.

However, wealthcanbe legitimately created — we can
create a new node with budget (say)Cr+1, and account for

14

its budget in two ways: either (1) we charge it to someαj ’s
or (2) other nodes transfer their budget to this new node
(losing their own budgets in the process, as described in the
second bullet above).

Let us now see how this accounting works in detail. In
Phase 2, each frozen facilityu′ ∈ Fr gets a budget ofCr+1.
There areM nodes inP (u′) and each of them raise theirαj

value byCr+1. Now a facility u′ can charge its budget to
this increasein theαj values of its primary demands. Since
different frozen facilities in a fixed stage have disjoint pri-
mary demands (by corollary A.7), there is no double count-
ing within a stage. Since we are charging to theincrease
in these dual variables, there is no double counting between
two different stages.

Consider the procedureContract: Theorem A.10 im-
plies that the length ofP in GB is at mostO(Cr+2). The
nodeu′ pays for the cost of buying edges onP . The bud-
get ofv′ gets transfered to the budget of the newly created
nodex′. Note thatv′ gets contracted intox′, so it loses its
identity (as well as its budget) from now on. The procedure
might also find some nodesw′ with a budget ofCr+1, in
which case the cost of the path joiningw andcore(w′) is
paid byw′’s budget. Note thatw′ will also get merged in
x′, but there is no transfer of budget .

We next analyze the accounting scheme in procedure
ContractTree, which is the perhaps the trickiest part in this
proof. Let us give some notation first. Suppose procedure
CreateNodescreates the pair(u′, v′) in stager. It finds a
shortest pathP ′ between these nodes. Recall that we found
a setD(u′, v′) = u′

1, . . . , u′
γ of vertices ofP ′. We need

to argue the existence of these points (as promised in the
procedureContractTree).

Lemma A.15 In the procedureCreateNodes, the set of
verticesD(u′, v′) of sizeγ can be found as claimed.

Proof: Let us use the mappingP(u′, v′, P ′) (described be-
fore Lemma A.10) to mapP ′ to a pathP joining core(u′)
and core(v′). SincedGB

(core(v′), core(u′)) ≥ γCr+1,
there must be a vertexx ∈ P such thatdGB

(core(u′), x) =
7/8Cr+1 (because all edges are of lengthε and assume C
is a multiple of 8). Letx′ = x(G′). Sincex′ is a point
in P ′, and in turn a vertex ofGr, its budget is at most
Cr. Now by Theorem A.9,dGB

(x, core(x′) is at most
βCr � 1/8Cr+1. This x′ is a candidate foru′

1. One can
show similarly thatu′

2, . . . , u′
γ exist.

We also need to argue thatu′
1, u

′
2, . . . , uγ′ appear

on P ′ in this order. Let us showu′
2 appears after

u′
1. Indeed,dGB

(core(u′), core(v′)) ≥ γCr+1, while
dGB

(core(u′), core(u′
1)) ≤ Cr+1. So there must be a point

y on the segment ofP joiningcore(u′
1) to core(v′) such that

dGB
(core(u′), x1 is (2 − 1/8) ·Cr+1. So if y′ corresponds

to y in P ′, theny′ is a candidate foru′
2. Thus, we can show

that the pointsu′
1, u

′
2, . . . , uγ′ appear onP ′ in this order.

For eachu′
i we define another pointu′′

i in P ′: u′′
i

is the first point to the right ofu′
i on P ′ such that

dGB
(core(u′

i), core(u′′
i)) is at least1/2Cr+1. Note that

dGB
(core(u′

i), core(u′
i+1)) ≥ 3/4 · Cr+1 by the triangle

inequality, sou′′
i occurs beforeu′

i+1 on P ′. Let part(P ′)
denote the union of the segmentsP ′

u′

i
u′′

i
for all i. Note that

all these segments are disjoint from one another.
Let zero(P ′) = part(P ′) ∩ Zr be the zero length edges

in part(P ′). For an edgee′ ∈ zero(P ′), let us define
a set of demandsDem(e′): e′ corresponds to an edgee
in the original graphG. Dem(e′) is the set of all those
demands which contribute to the left hand side of con-
straint (3) fore in the dual LP, i.e., those demandsj such
that yS,j > 0 for someS such thate ∈ δ(S). Define
Dem(P ′) = ∪e′∈zero(P ′)Dem(e′).

Lemma A.16 Supposej ∈ Dem(e′), wheree′ corresponds
to an edgee = (u, v) in GB. Supposej contributes to the
left hand side of constraint (3) fore in a previous stages ≤
r, andα′

j be the value of its dual variable at that time. Then
α′

j is betweenCs+1 and 2Cs+1. Furthermore,dGB
(j, u)

anddGB
(j, v) are at mostO(αj).

Proof: Let e′ correspond to an edgee′′ = (u′′, v′′) after
phase 2 of stages. We first claim thatα′

j ≥ Cs+1. Indeed,
if not, then j would be frozen due to somei′ ∈ Fr and
so all nodes that were tight withj, would get included in
B(i′). But since the length ofe′′ is at mostε andj is tight
with at least one of its endpoints, both these nodes will get
included intoB(i′). If s < r, bothu′′ andv′′ would have
been contracted into a single node, and soe′ could not be
present in the auxiliary graph. On the other hand, ifs = r,
we have found a point inP ′ which is included in a ball
B(i′), which would contradict the construction ofP ′. This
proves thatα′

j ≥ Cs+1; the fact thatα′
j ≤ 2Cs+1 follows

from Lemma A.1.
Now j must have been tight withu′′ orv′′ in either Phase

1 or 2 of stages, otherwise it would not have contributed to
e′. Hence, by Lemma A.2,dGs(j, u′′) ≤ α′

j . Now applying
Theorem A.11 and using the fact thatα′

j ≥ Cs+1 gives us
thatdGB

(j, u) is within a constant ofα′
j .

Lemma A.17 Suppose the pairs(u′, v′) and (x′, y′) are
created by the procedureCreateNodesin stager. Let P ′

be the path betweenu′ andv′ andQ′ the path betweenx′

andy′. Thenpart(P ′) andpart(Q′) do not share a vertex,
and furthermore,Dem(P ′) andDem(Q′) are disjoint.

Proof: Suppose(u′, v′) is created before(x′, y′). Consider
the setB′ = ∪u′

i
∈D(u′,v′)B(u′

i) — this setB′ must contain
part(P ′) and soQ′ can not contain any of these vertices.

15

Now let j ∈ Dem(e′) for some edgee′ ∈ zero(P ′).
Then j must be tight with a vertex inP ′

u′

i
u′′

i
for somei,

which in turn implies that all the nodes thatj is tight with
must be in the ballB(u′

i). Thusj cannot be inDem(Q′).

We now have almost all the pieces we need for the proof.
The following key theorem accounts for the edges bought
by theContractTree procedure.

Lemma A.18 If a pair (u′, v′) is created in stager of Cre-
ateNodeprocedure, then either

1.
∑

j∈Dem(P ′) αj is Ω(MCr+1), or

2. the sum of the budgets of nodes inpart(P ′) is at least
2Cr+1.

Let us assume the lemma is true, and show how this ac-
counts for the edges bought inContractTree, and for the
budgets of the newly created nodes. Any edgee = (u′, v′)
in TX corresponds to buying edges of total length about
Cr+1 (again, using the distance preserving lemmas). IfT ′

X ,
a component ofTX , hasn′ nodes, then we buy edges of
total lengthO(n′ − 1)Cr+1, and we need to account for
this. Furthermore, the nodes inT ′

X then get contracted into
a node with budgetCr+1, and we also need to account for
this budget.

Suppose all the nodes inT ′
X were fromFr created in

Phase 1. Since each such node is allotted a budget ofCr+1,
n′−1 of these node budgets can be used to pay for the edges
of T ′

X , and the remaining one can transfer its budget to the
new node created by the contraction.

In not, thenT ′
X contains a node fromD(u′, v′). In this

case, note thatT ′
X must containall the nodes inD(u′, v′),

because the balls created by these nodes overlap sequen-
tially. SinceD(u′, v′) hasgamma nodes, we need to ac-
count for at mostγ edges inT ′

X . Depending on which part
of Lemma A.18 holds, we have to look at two cases. If the
first case of Lemma A.18 holds, then

∑
j∈Dem(P ′) αj can

be used to pay for these edges ofTX , and also for the bud-
getCr+1 of the newly created node. Note that the amount
paid plus the budget may be a constant factor greater than
the sum of theαj ’s, but since this transfer from dual vari-
ables to budgets is a one-time operation, we can get away
with it. On the other hand, if we are in second case of the
Lemma, then the total budget of2Cr+1 is divided into two
parts: one to pay for theCr+1 given as budget for the newly
created node, the remaining to account for theγ edges.

We must be careful that we are not double count-
ing. Lemma A.17 shows that no double counting occurs
in a single phase. It is possible, of course, thatj ∈
Dem(P ′), Dem(Q′) whereP ′, Q′ were created in different
phases. But here the geometric scaling comes to the rescue:
Lemma A.16 shows that the contribution ofαj in these two

cases differs by a factor of at leastC, and thus the contribu-
tion of a demand toDem(P ′) for all the different pathsP ′

it lies in is a geometric sum which can be bounded byαj .
Thus we will we done if we prove Lemma A.18.

Proof of Lemma A.18: Call a nodeu′
i ∈ D(u′, v′) good

if dG′(u′
i, u

′′
i) ≤ 1/3Cr+1. Note that there are at leastγ/4

nice nodes inD(u′, v′). Otherwise,dG′(u′, v′) will be >
(3γ/4)× (1/3Cr+1) = γ/4 Cr+1, a contradiction.

Suppose there is a goodu′
i such that the total budget of

the nodes inP ′
u′

i
u′′

i
is less than8Cr+1/γ. If there are no

such nodes, then the total budgets of all nodes inpart(P ′)
will be at least2Cr+1 and we will be done.

Consider the pathP ′
u′

i
u′′

i
, and letDem(P ′

u′

i
u′′

i
) be the

sum of Dem(e′) over all e′ ∈ P ′
u′

i
u′′

i
. We use the map-

ping P(u′
i, u

′′
i , P ′

u′

i
u′′

i
) to mapP ′

u′

i
u′′

i
to a pathQ in GB

joining core(u′
i) andcore(u′′

i). We classify the edges inQ
into three categories: (1) the edgesQ1 in P ′

u′

i
u′′

i
which have

`(e) = 0, (2) the edgesQ2 in P ′
u′

i
u′′

i
which havè (e) = ce,

and (3) the edgesQ3 which appear inGB[x′] for some some
nodex′ in P ′

u′

iu
′′

i
.

By the choice of u′′
i , we have

dGB
(core(u′

i), core(u′′
i)) ≥ 1/2Cr+1. The quantity∑

e∈Q2
ce is simply dG′(u′

i, u
′′
i) ≤ 1/3Cr+1. Finally,

Theorem A.9 implies that
∑

e∈Q3
ce is at most 2β×

(total budget of nodes inP ′
u′

i
u′′

i
), which is at most

2β × (8Cr+1/γ) ≤ Cr+1/8. But this implies that

dGB
(core(u′

i), core(u′′
i)) −

∑
e∈Q2∪Q3

ce ≥ Cr+1(1
2 − 1

3 − 1
8) = Ω(Cr+1)

(8)

Finally, we construct a graphH = (VH , EH), whereVH

is the set of all vertices inQ andDem(P ′
u′

i
u′′

i
), while EH

contains all the edges inQ2∪Q3. Furthermore, for a vertex
j ∈ Dem(P ′

u′

i
u′′

i
) and an edgee = (u, v) ∈ Q1, we join

j to u andv if j contributed to the left hand side of con-
straint (3) for the edgee. Note that Lemma A.16 implies
thatdGB

(j, u), dGB
(j, v) is O(αj). Since a node can con-

tribute at mostce to the left hand side of this constraint, it
must be the case that for any edgee = (u, v) ∈ Q1, there
are at leastM common neighbors ofu andv.

It is now possible to show that there areM paths
R1, . . . , RM from core(u′

i) to core(u′′
i) such that no de-

mandj ∈ Dem(P ′
u′

i
u′′

i
) appears in two of these paths. In-

deed, assume to the contrary. Now it must be possible to
deleteM − 1 of the demands inDem(P ′

u′

i
u′′

i
) and obtain a

graph in whichcore(u′
i) can reach one end point of some

(zero-cost) edgee in Q1, but not its other endpoint. How-
ever, this would mean that all theM demands adjacent to
both endpoints ofe must have been deleted, which is a con-
tradiction.

But each suchRi is a path of length at most∑
j∈Ri

O(αj) +
∑

e∈Q2∪Q3
ce in GB. Now substituting

16

this in (8) gives us that
∑

j∈Ri
O(αj) is Ω(Cr+1). Dis-

jointness of theM paths now completes the proof of the
lemma.

B Removing Earlier Assumptions

We made some assumptions during the statements of the
problems and the description of the algorithm, and here we
show how to discharge these assumptions.

1. Assumption from Section 2: all commodities wish to
send a single unit of flow. A natural idea to remove
this assumption is the following. Given an arbitrary
rational amountdk of flow to send fromsk to tk, we
makedk∆ copies of the demand pair(sk, tk), where
∆ is a sufficiently large integer so thatdk∆ is integral
for eachk (M is then replaced byM∆). As stated,
this approach leads to a pseudo-polynomial time algo-
rithm. However, the intuition is correct, and we have
to just be careful with the implementation. We ensure
that all copies of a single demand behave identically—
they have equalαj values and are tight with the same
set of facilities. Hence it suffices to keep track of only
one copy of the demand. Let us see how we main-
tain this property: In Phase 1, we raise theαj of these
demands identically. If one of these demand becomes
tight with a facility, all the other demands also become
tight with this facility. When a facility counts the num-
ber of demands tight with it, it can regardsk or tk as
contributingdk∆ units. TheRegrow step is imple-
mented in a similar manner. Phase 2 can be trivially
modified as well: if we need to raise theαj value of
only d′k < dk∆ of these (imaginary) demands, we
raise the dual variables of all thedk demands at rate
d′k/(dk∆). This will ensure that thesedk∆ demands
always behave the same.

2. Assumption from Subsection 2.1: Facilities can be lo-
cated at any vertex in the graph. Suppose this is not so,
andF is the set of vertices at which the facilities can
be located. We construct a new graphH = (VH , EH),
whereVH = F . There is an edge between each pair
of vertices inVH , and the length of this edge is the
length of the shortest path between its end-points inG.
Each demand is moved to the nearest facility inF . It
is easy to show that a solution in this new graph can
be mapped to a feasible solution in the original graph
with only a factor 2 loss in cost.

3. Assumption from Subsection 3.2: Facilities can be lo-
cated at any intermediate point of an edge. Suppose
e = (u, v) is an edge in the original graphG, and we
open a facility atw, a point that lies betweenu andv in
G. w must lie in a connected component; let us call it

C(w). Let us partition the demands assigned tow into
two parts:Au being those of the demands assigned to
w reaching it viau, andAv being those reaching it via
v, with |Au| ≤ |Av|. If C(w) is singleton, we can
move the facility atw to v; reassigning all demands in
Au ∪ Av to v only reduces the cost. IfC(w) contains
both u andv, then we would not have openedw, so
let us say thatv 6∈ C(w). Note that ifC(w) contains
any point in the portion(w, v), reassigning demands to
that point would reduce the connection cost. SoC(w)
contains a portione′ = (w′, w) ⊆ (u, w) of e, where
w′ 6= w. Note thatAu = ∅, because such demands
would preferw′ tow. If |Av| ≥ M , we can build edges
on the part ofe which joinsw andv, and reassign all
of Av to v. If |Av| < M , we can avoid buildinge′, and
instead directly connect all ofAv to w′. Since all these
operations can only reduce the cost of our solution, we
can convert our solution to one where facilities lie only
on the vertices of the original graph.

4. Assumption from Subsection 3.2: The numbers in-
volved in the problem are small. Note that the algo-
rithm, as defined, is only a pseudo-polynomial time al-
gorithm. This is because subdividing edges may create
a large number of vertices. This is easily handled: let
e be an edge inE subdivided several times, and letVe

be the new vertices one. For any demandj, it is easy
to see that the set of vertices inVe thatj is tight with is
a contiguous segment ofe. Maintaining this segment
for each demand handles this problem.

17

