
Sorting and Selection with Structured Costs

Anupam Gupta�
Bell Laboratories

600 Mountain Ave.
Murray Hill NJ 07974.

anupamg@bell-labs.com

Amit Kumary
Department of Computer Science

Cornell University
Ithaca NY 14853.

amitk@cs.cornell.edu

December 26, 2001

Abstract

The (unit-cost) comparison tree model has long been the basis of evaluating the performance
of algorithms for fundamental problems like sorting and searching. In this model, the as-
sumption is that elements of some total order are not given to us directly, but only through
a black-box, which performs comparisons between the elements and outputs the result of the
comparison.

While the comparison tree model has served us well, the recent interest in the concept
of priced information [9, 10] encourages us to look more closely at this model. The study of
the effect of priced information on basic algorithmic problems was initiated by the paper of
Charikar et al. [5]. In this paper, we continue the study of sorting and selection in the priced
comparison model, i.e., when comparison has an associated cost and answer some of the open
problems suggested by [5]. If the comparison costs are allowed to be arbitrary, one can not get
good approximation ratios. A different way to assign costs is based on the idea that one can
distill out an intrinsic value for each item being compared such that the cost of comparing two
elements is some “well-behaved” or “structured” function of their values. We feel that most
practical applications will have some structured cost property.

In this paper, we study the problems of sorting and selection (which includes finding the
maximum and the median) in the structured cost model. We get a variety of approximation
results for these problems, depending on the restrictions we put on the structured costs. We
show that it is possible to get much improved results with the structured cost model than the
case when we do not have any assumptions on comparison costs.

�Part of this research was done when this author was visiting Cornell University.ySupported in part by Lucent Bell Labs and the ONR Young Investigator Award of Jon Kleinberg.

1 Introduction

The (unit-cost) comparison tree model has long been the basis of evaluating the performance of
algorithms for fundamental problems like sorting and searching. In this model, the assumption is
that elements of some total order are not given to us directly, but only through a black-box, which
performs comparisons between the elements and outputs the result of the comparison. This model
has proved both very robust and interesting, and tight bounds are known on the performance of
many basic problems like sorting, searching, and selection.

While the comparison tree model has served us well, the recent interest in the concept of priced
information [9, 10] encourages us to look more closely at this model. Since many of the objects being
compared are not directly available to us, the black-box comparison scheme seems very pertinent;
however, the concept of having a uniform cost for all comparisons seems rather conservative.

The study of the effect of priced information on basic algorithmic problems was initiated by
the paper of Charikar et al. [5]. They gave several results on the problem of evaluating AND-OR
trees with the inputs having costs, and for searching a sorted list, with a price associated with each
comparison. They also gave some preliminary results for finding the maximum of a total order
under this priced comparison model.

In this paper, we continue the study of sorting and selection in the priced comparison model,
and answer some of the open problems suggested by [5]. Since it turns out that even finding
the maximum can cost as much as
(n) times the optimal proof when the costs are allowed to be
arbitrary, the problem seems to be hopeless. However, there is more than one natural way to assign
costs to the comparisons. The paper of Charikar et al [5] used the model where it was possible to
give each comparison an arbitrary cost; however, as mentioned above (and noted independently
by [5] and [7]), the situation seems very bleak. A different possible way to assign costs is based on
the idea that one can distill out an intrinsic value for each item being compared such that the cost
of comparing two elements is some “well-behaved” or “structured” function of their values. We
feel that most practical applications will have some structured cost property.

In this paper, we concentrate on the latter structured cost model. One possible scenario where
this may arise is when comparing databases, the comparison cost of two databases be just the
time to scan the two databases, which is proportional to the sum of the sizes. Alternatively, it may
involve comparing each element of one database to all the elements of the other, which would
imply the comparison cost to be the product of the sizes. This are just two examples; different
functions may suggest themselves based on the application in question.

Our results: In most of the following results, we compare the performance of our algorithms to
the cost of the optimal solution. We denote the cost of this cheapest proof by OPT. E.g., when
considering the problem of sorting, the cost of the the optimal solution is just the cost of the n� 1
comparisons between the consecutive elements in the sorted order. Note that this is very similar
the concept of the competitive ratio in online algorithms [4], where our (online) algorithm decides
on which edges to query without knowing their outcomes, whereas the optimal solution knows
the outcomes of all the comparisons and can base its proof on that knowledge. In the case of
sorting, we also compare to our algorithm to all online algorithms.

We study the problems of sorting and selection (which includes finding the maximum and
the median) in the structured cost model. For finding the maximum, we show that we can come
within a factor of 2 of OPT for the addition function. We then extend this result to give an algo-

1

rithm incurring a cost of 8 OPT for any monotone function, which is the class of functions whose
values do not decrease on increasing any of the arguments.

For the problem of sorting, we give an algorithm that incurs a cost of O(log n)OPT for any
monotone function. Note that this is the best possible (up to constants), since for sorting with unit
costs, we know that any algorithm takes
(n logn) comparisons, while OPT is O(n). We then go
on to show that, for the special case of addition, this algorithm comes within a constant of any
online algorithm for sorting.

The case for median finding is more involved. For this, we give algorithms that come within a
constant of OPT for some special functions, which include addition and multiplication.

We can also give some results for the case of arbitrary comparison costs. For finding the max-
imum, we give an algorithm that incurs a cost of (n � 1)OPT . Furthermore, we show that any
online algorithm must incur a cost of (n�2)OPT For sorting, we give an algorithm within a factor
of
(n) OPT. Finally, for the problem of merging two sorted lists, we give an algorithm that comes
within O(log n) of OPT. This is also within constants of the best possible result, since it generalizes
the problem of searching a sorted list, the priced version of which was studied by [5],

Related Work: The paper of Charikar et al. [5] mention the problems of sorting and selection
in their paper; however, they look only at the arbitrary cost model. In a later version of their
paper, they show an O(n) approximation for finding the maximum independent of our work.
Also independent of our work, this result has been improved to (n� 1)OPT and a near-matching
lower bound has been given by by [7]. As far as we know, the structured cost model has not been
considered prior to our work.

There have been other attempts to generalize the comparison-based model. One well-known
recent example is the Nuts-and-Bolts problem studied by [2, 3, 8]. In this problem, the aim is to
sort n nuts and n bolts, when comparisons can be made only between a nut and a bolt. This can
be seem to be a special case of the sorting problem, where the comparison costs are 1 and1, and
the cost-1 edges form a complete bipartite graph. Recently, Winkler and Zuckerman solved the1-1 case for complete multipartite graphs, and for graphs with suitable expansion properties [11].
Another line of research is in the papers of Adler et al. [1] and Feige et al. [6] studied the problem
of finding the maximum element in the presence of probabilistic errors.

1.1 Notation

Let the elements be identified with V , the vertex set of a graph G = (V;E). The cost of comparing
vertices u and v is denoted by c(u; v) = c(e), where e represents the edge fu; vg. Furthermore, letK(u) be the value or key of a vertex u, and u is greater than v (or defeats v) if K(u) > K(v). For ease
of exposition, we will assume that all the values are distinct and we have a unique total order.

Clearly this can also be modeled as follows: each element u is assigned a weight wu, and there is
a (symmetric) function f such that c(u; v) = f(wu; wv). In much of the following sections, we shall
explore the structured cost model, where the function f is “well-behaved”. For instance, we shall
look at cases where f is the addition or the multiplication function, or when f is a monotonically
increasing function.

2

2 Finding the Maximum

In this section, we look at algorithms to find the maximal element of the order. (I.e., an elementx such that K(x) > K(y) for all y 2 V .) We compare the cost incurred by our algorithms to the
cost of the optimal proof of optimality of such an x, which we denote by OPT. Note that this is just
the cost of the min-cost branching rooted at x. We show that for any monotone function f , we can
find the maximum with cost at most a constant factor of OPT. As the name suggests, a monotone
function f has the property that its value never decreases on increasing either of its arguments.

Throughout this section, we shall assume that the vertices are numbered 1; 2; : : : ; n, and thatwi � wj for 1 � i < j � n. To begin, let us look at the case when f is the addition function; i.e.,c(x; y) = wx +wy . In this case, we can get within a factor 2 of optimal by the following algorithm:

Algorithm Sum-Max:

let m 1.
for j = 2; : : : ; n do

if (K(j) > K(m)) then m j
Output m.

Theorem 2.1 The algorithm Sum-Max returns the maximal element in V, and incurs a cost at most twice
OPT.

Proof: The correctness of the algorithm is obvious. To bound the cost, note that the i-th compar-
ison is between m and i + 1, where m is no greater than i. Hence the cost of the i-th comparison
is at most wi + wi+1, using the fact that the weights are in non-decreasing order. Now summing
over all n� 1 comparisons gives a bound of w1+2P1<i<nwi+wn. However, OPT must examine
each element at least once, and hence must incur a cost of at least

Pwi. This is at least half the
algorithm’s cost, which proves the result.

But applying this strategy to more general functions can yield poor results. Indeed, supposef is multiplication, and consider a list of 3 elements such that K(1) < K(2);K(2) > K(3) andK(1) > K(3). Furthermore, let w1 = 1, while w2 = w3 = C � 1. If the algorithm orders them ash1; 2; 3i, it will pay C + C2, while the optimum need pay only 2C .
However, it is possible to modify the above algorithm to handle monotone functions. The

essential idea of the modification is to not compare a new element j with the current candidate
for the maximum immediately (since this comparison could have a very high cost), but instead to
maintain a budget and compare j to the maximum element x already examined for which c(x; j)
is no more than the budget. By doubling the budget at every step, the algorithm ensures that its
cost does not overshoot the optimal cost by more than a constant factor. We shall formally state
the algorithm in the following paragraphs.

Let us assume that the values of f are powers of 2. If they are not so, we can work instead
with the function f̂(x; y) = 2dlog f(x;y)e, which is also monotone, and the cost incurred by this new
algorithm is at most twice the original cost.

As noted above, any proof showing that an element m is maximal is a branching rooted at m
such that if i is the parent of j then K(i) > K(j). The cost of this proof is the sum of the costs of
edges in this tree. We shall, in the course of the algorithm, also build up such a witness tree.

3

An element j is considered a local winner at i if it is the maximum element among the elementsf1; 2; : : : ; ig. We maintain the invariant that at the moment the algorithm examines element j, it
has already built up the list L of the local winners at all positions i < j and furthermore, it knows
their sorted order. (Hence it knows the maximum element among the first j � 1 elements.) Also,
for each element i < j that is not the local winner at j, it knows a p(i) 2 L which defeats i; this is
the parent relation defining the witness tree for the algorithm.

Algorithm Monotone-Max:

let L = f1g. (L is the list of local winners).
for j = 2; : : : ; n do

Suppose L = hi1; : : : ; iri. (Note i1 < i2 < : : : < ir and K(i1) < K(i2) < : : : < K(ir).)
Initialize l = 1, flag = false.
repeat

let i be the node furthest to the right in L such that c(j; i) = 2l.
if such an element i does not exist or K(i) < K(j)l l + 1

if i = ir then

set p(ir) = j, add j to the end of L, and set flag to true.
else if K(i) > K(j)

set p(j) = i and set flag to true.
until flag = true.

Output the last element of L.

It is not difficult to see that the last element of L is the actual maximum. The following lemma
(whose proof is in the appendix) shows that the cost of this algorithm is bounded.

Theorem 2.2 The cost of comparisons performed by Monotone-Max is at most 4 times OPT when the
costs are powers of 2, and hence at most 8OPT in general.

It remains an interesting open problem to show broader class of natural functions for which
good performance guarantees can be obtained.

3 Sorting

The optimal proof in the case of sorting is a path giving the total order, and hence if the order ish�(1); : : : ; �(n)i, then OPT is
Pn�1i=1 c(�(i); �(i + 1)).

Note that, in contrast to the previous section, we cannot hope to be within a constant factor of
OPT when sorting. Indeed, if wu = 1=2 for all u, then we are in the realm of traditional sorting,
and sorting requires �(n logn) steps; however, OPT is just (n� 1), and thus we cannot hope for a
smaller gap than log n.

Our first result of this section is a very simple algorithm which is within O(log n) of OPT for
all monotone functions. Our second result is that for the special case of addition, this algorithm
actually incurs a cost which is within a constant of that incurred by any online algorithm. This
generalizes previous results showing that any sorting algorithm requires
(n logn) comparisons.

4

3.1 An algorithm for sorting

For the algorithm, we use the procedure of Charikar et al. [5], which performs binary search with
comparison costs. This procedure locates an element in a sorted list, incurring a cost at most2 log n times the optimal proof. If an element x is not present in the list, this cost is merely the cost
of comparing x to its neighboring elements in the list. (For a simpler version of this procedure
which is less careful with constants, see Section 5.3.)

We start with an empty list L, and consider the elements in increasing order of their weights.
As before, let us assume the elements are 1; 2; : : : ; n in this order. When processing element j, we
use the binary search procedure to locate it in the current listL, and add it in that position. The cost
of inserting j is at most (c(j; j<) + c(j; j>))2 log j, where j< and j> are the neighboring elements
of j when it is inserted. Note that in the entire sorted list, if j�< and j�> are the neighbors of j, then
it must be the case that j< � j�< and j> � j�>, and thus by monotonicity, the cost of inserting j is
at most (c(j; j�<) + c(j; j�>))2 log j. But OPT, the cost of the optimal proof, is just

Pj c(j; j�<), and
hence the algorithm incurs a cost which is at most O(log n) times OPT.

For the special case of addition, it is easy to see that the above expression for the cost is at most8Pj wj log j. Let us assume that the weights are powers of 2, and let ti (respectively, t(i)) be the

elements of weight exactly (respectively, at most) 2i, then the cost is at most 8 �Pi 2iti log t(i). In
the next section, we will show that this cost is within a constant of the cost incurred by any online
algorithm, thus showing that it is close to the best possible.

3.2 Lower bounds for sorting

In this section, we shall show that for the sum function (i.e., when c(i; j) = wi+wj), the algorithm
in the previous section incurs a cost which is within a constant of any online algorithm. For this,
we need to exhibit a lower bound on the cost incurred by any online algorithm. It is easy to see
that maxk 2ktk log tk is a lower bound on the cost of sorting, where tk is the number of elements
with weight 2k. However, this can be very far off the mark; e.g., in the case where there is one
element with weight C � 1 and all the others have weight 1, the best algorithm must incur aboutC logn in cost, but this bound merely gives us a C .

Let us assume that the weights are powers of some numberC � 2, andLi be the set of elements
with weight Ci, with ti = jLij. Let L(i) be [j�iLi, and t(i) = jL(i)j. Consider any (deterministic)
algorithm, and let us look at the comparison tree T implicit in this algorithm. Each vertex v in
this tree corresponds to some partial order P (v), and also to some comparison (i; j) between two
vertices in that partial order. For a permutation � on L(i), define the tree T� to be the subtree
obtained by dropping all the vertices v 2 T at which the partial order P (v)jL(i) is not consistent
with �.

Lemma 3.1 There exists a permutation � on L(0) such that the length of each root-leaf path in T� is at leastt0 log t0.

Proof: If not, then each tree T� has a path of length less than t0 log t0, and pasting these paths
together will give us a decision tree with depth less than t0 log t0 which sorts all the t0 elements inT(0), which gives the contradiction.

Let � be as in Lemma 3.1. We claim that we can prune the tree T� so that each branch corre-
sponds to a non (L(0); L(0)) comparison, and can (w.l.o.g.) assume that each branch costs at least

5

C + 1. Indeed, if there is a branch in T� that compares two elements in L(0), then either only one
of the two outcomes can be consistent with � and the other branch will not belong to T� . An ex-
ception is when the result of the comparison is already decided, but then we can just delete one of
the children of that branch without affecting the results.

Now each branching point in T� must have cost at least C + 1, where as the other vertices cost
at least 2. Now suppose we subtract 2 from each node of T� , then each root-path goes down by
at least 2t0 log t0 (by Lemma 3.1). However, there are at least t(1)!=t(0)! leaves in the tree, since we
have to fix the positions of the elements in L(1), but only conditioned on the order of the elements
in L(0). Thus there must be at least log(t(1)!=t(0)!) branches, each of which (remaining) cost at leastC � 1. Thus there must be a path in T� that costs at least 2t0 log t(0) + (C � 1)t1 log t(1).

But we can extend this proof simply to more levels. Let us assume that the permutation on L(1)
be �1, and focus on T�1 . Again, there must be t(2)!=t(1)! leaves, and hence log(t(2)!=t(1)!) leaves, each
of which have a remaining cost of (C2+1)� (C+1), since we have subtracted a total of 2+(C�1)
from each vertex. Proceeding on the same lines, the lower bound for weights is:2t0 log t(0) + kXi=1(Ci�1 � Ci�2)ti log t(i): (3.1)

Now placing C = 2, we get a lower bound of the same order as the cost calculation of the
algorithm in the previous Section 3.1, showing that it is optimal up to constants for the case of
addition.

4 Median

We now consider finding the median of a list. We obtain constant factor approximations for some
special cost functions, which include addition and multiplication.

The traditional median finding algorithm which recursively partitions the list by choosing
elements from the list at random does not work with costs. Indeed, suppose the median is a low
weight element, but the elements near it have very high weight. It is unlikely that a random
element will weed out the high weight elements close to the median, and hence will incur a high
cost. On the other hand, if we just pick a low weight element at random, it is not clear if we can
partition the whole list evenly.

4.1 The Addition function

In this section, let f be the addition function. Again, we assume that each wi is a power of 2,
and this only introduces a factor of 2 loss in the objective function. Let there be tk elements Lk of
weight 2k, k = 0; : : : ; r. A trivial lower bound on OPT is

Pi2V wi = Prk=0 2k tk
Given a list L, and two indices i; j, i < j, let L(i; j) denote the list of elements in L which lie

between the ith smallest and the jth smallest elements of L (including these two elements). We
will give an algorithm that, given L; i; j, finds the set of elements L(i; j). For ease of exposition,
we shall often allow i to be less than 0, and j to be greater than jLj i � 0, and we actually meanmaxfi; jg and minfj; jLjg respectively. We now observe the following simple fact.

Lemma 4.1 Let L0; L00 be two disjoint lists, and let L = L0[L00. If t00 = jL00j, then L(i; j) � L0(i� t00; j+t00) [L00.
6

During the execution of our algorithm, L0 will be the low weight vertices and L00 will be the high
weight vertices. Using the above lemma, we will reduce the length of L0 close to the length of L00,
which will allow us to charge our comparisons to the weight of L00. The algorithm is given more
formally below.

Let A be an algorithm which, given a list of n elements, finds their median using at most �n
comparisons, where � is a constant. Let Li be the list of all elements of weight 2i. Let m = bn=2c,
and m0 = dn=2e. Let L(k) denote L0 [� � � [Lk.

Algorithm Sum-Median:

initialize Lc = L0; i = m� (t1 + � � �+ tr); j = m0 + (t1 + � � �+ tr)
for k = 1; : : : ; r do

Find the elements in L(k�1)(i; j) by running A on Lc.Lc = L(k�1)(i; j) [Lk.i = i+ tk; j = j � tk.
Output the element at location m in V by running A on Lc.

Theorem 4.2 The algorithm Sum-Median finds the median and incurs a cost of O(Pi2V wi).
Proof: To prove the correctness of the algorithm, we need to explain how we can find the elementsL(k�1)(i; j) by only looking at Lc. Clearly, this is true when k = 1. Now, Claim 4.1 implies that we
can find the elements L(k)(i; j) by just looking at Lk and the elements in L(k�1)(i� tk; j + tk).

Let us compute the cost incurred by this algorithm. When the kth iteration finishes, the size ofLc is tk+2(tk+� � �+tr). Hence the next iteration does at most 2� (tk + 2(tk + � � �+ tr)) comparisons,
each costing at most 2wk. Thus, the cost incurred in this stage is at most 12�(tk + � � �+ tr)2k . Thus,
the cost of this algorithm is at most12� rXk=0 2k(tk + � � �+ tr) � 12� rXk=0(20 + � � �+ 2k)tk � 24� rXk=0 2ktk:
But this is within a constant of OPT, which proves the result.

4.2 Medians with Multiplication

In this section, we give a brief outline of the constant factor approximation algorithm for median
finding when the function f is multiplication — this method in fact generalizes to many other
functions f which include constant degree polynomials. The complete algorithm is given in the
appendix.

Let L be the list of elements in V . C is a large enough constant that we decide later. L is
partitioned into lists L0; : : : ; Lk, list Li containing elements of weight Ci. Let ti = jLij.

Suppose a weight 1 element is the median of L. Then, our algorithm should be able to find it
by doing comparisons of elements with weight 1 elements only — other comparisons may turn
out to be too costly because the function f is multiplication. But we don’t know beforehand if the
median is a weight 1 element. So, we first find the two weight 1 elements closest to the median on
either side. We can then recurse on the sublist between these two weight 1 elements. Cost scaling

7

ensures that the comparison cost involving elements which occur in several of these recursive
steps scales geometrically. So, it is enough to find the weight 1 elements closest to the median.

To carry out our induction argument, we need a more general procedure. We say that a
weight 1 element in a list L0 is at position p if it is the highest element of weight 1 in L0 which
has at least p elements greater than or equal to it. Given a list L0 and two positive integers n1; n2,n1 � n2, we define the partition [n1; n2] as a partition of the list L0 into three sets as follows —
let x and y be the weight 1 elements at positions n1 and n2 in L0 respectively. Then, L0 should
be partitioned into the elements less than x, elements between x and y (including x and y) and
those greater than y. By a slight abuse of notation, we refer to the list [n1; n2] as the list of elements
between x and y.

For any list L0, let L0i denote the weight Ci elements and t0i the size of L0i. For a list L0, L0(i) shall

denote L00 [� � � [L0i. Let t0(i) denote the quantity t00 + Ct01 + � � �+ Cit0i.
We prove by induction on k the following : given any list L, and two numbers n1; n2, n1 � n2,

we can find the partition [n1; n2] and its subsequent interval by paying at most �(t0+ � � �+Cktk)+Ck+1(n1 � n2 + 1), where � is a constant. Suppose this fact is true for k and we are given a list L
where the highest weight of an element is Ck+1.

We first reduce the size of L(k) to make it comparable to that of Lk+1. For this, we must also
reduce the quantity n1�n2. This is the goal of the cutting lemma (lemma B.3). So, suppose we are
in this case. But unlike the case for addition, we still cannot compare the elements of Lk+1 with
each other. The second idea is to find a new sublist, which halves the size of Lk+1. This is the goal
of the procedure Partition outlined in more detail in the appendix. We pick an element x fromLk+1 which divides it almost evenly (using randomization). We compare x with all elements inL(k) to find the two consecutive elements in L(k) between which it lies — call these x and y. Usingx and y — we can partition the whole list L into three parts — those less than x, between x and y
and greater than y. The key thing to note is that this procedure doesn’t involve any comparison
between two elements of Lk+1. Suppose both the weight 1 elements that we want lie in the first of
these three lists (other cases turn out to be similar), L0. We now apply the whole process to L0, i.e.,
cutting lemma followed by Partition. This process continues till we find the desired elements.

5 Handling Arbitrary Costs

In this section, we shall consider the case when there is no special structure on the costs. In this
case, we can show that any online algorithm for finding the maximum must incur a cost of
(n)
OPT in the worst case; we also present a very natural algorithm which finds the maximum while
incurring a cost of (n�1) OPT. We also give an algorithm for sorting incurring a cost of O(n)OPT ,
and for merging two sorted lists with cost at most O(log n) OPT.

5.1 Finding the maximum

Let us give a very natural and simple algorithm for finding the maximum with cost O(n)OPT .
Initially, all the vertices are winners. Whenever we compare two winners, the element with a
smaller value becomes a loser. The algorithm looks at the edges in order of non-decreasing costs,
but it does not perform any comparisons where both the end-points are losers. It stops when
only one winner remains. Let OPT be the minimum cost of comparisons required to prove the

8

maximality of an element, which is the cost of a minimum weight branching rooted at the maximal
element m.

Lemma 5.1 The above algorithm for finding the maximum incurs a cost of at most (2n� 3) OPT.

Proof: Consider the optimal branching B, in which a non-root vertex v has parent p(v). If the
algorithm looks at edge e = fu; vg, where both u; v are non-root vertices, we claim that the cost ofe must be at most maxfc(v; p(v)); c(u; p(u))g: (5.2)

Indeed, suppose c(u; v) were more than this value. Now our algorithm must have looked at both
the edges (v; p(v)) and (u; p(u)) before looking at e. But at this time, both u and v are losers, which
contradicts the fact that we never do loser-loser comparisons. We can now charge the cost of e
to the vertex that achieves the maximum in (5.2), and since each vertex u can have at most n � 2
edges charged to it (excluding edges from vertices u and m) of cost at most c(u; p(u)), this proves
that all edges not incident to the root contribute (n � 2) OPT. Further, there are at most (n � 1)
edges adjacent to the root, and the edges queried all have weight at most the heaviest edge in B.
This, in turn, is at most OPT, and combining the two factors completes the proof.

It can be easily seen that the above analysis is tight. However, if we also keep the transitive
closure of the comparisons already performed, and never perform a comparison which is in this
closure, we can give an improved performance guarantee, whose proof we defer to the appendix.

Theorem 5.2 This algorithm incurs a cost which is at most (n� 1) OPT.

This is almost the best result we can hope for, since there are inputs on which any online
algorithm must incur a cost of (n � 2) OPT. (See Theorem C.1 for this lower bound.) After this
research was done, we were informed that Charikar et al. [5], and Hartline et al. [7] have obtained
the results in Theorems 5.2 and C.1 independently, with an arguably more involved algorithm.

5.2 Sorting

In this section, we give an O(n)-approximation algorithm for sorting with arbitrary comparison
costs. As the usual preprocessing step, we round all the edge costs to the nearest power of 2; this
affects our final cost by at most a factor of 2. Let K(i) be the key given to element i; this defines
the total order.

Our algorithm is the following: From the set of all edges not lying in the transitive closure of
the previously queried edges, we pick an edge of minimum cost; if there is more that one such
edge, we use a tie breaking rule to be described below. This process is continued until the entire
total order has been inferred.

The tie breaking rule is equally simple. We define a partial order over the edges of minimum
cost: if e = (u; v) and e0 = (u0; v0) are two minimum cost edges, then e � e0 if we can infer (based
on the edges the algorithm has previously queried) that K(u) � K(u0) and K(v) � K(v0). The
rule now says that we must pick a maximal element in this partial order.

The following theorem is the main result of this section, the proof of which we defer to the
appendix.

9

Theorem 5.3 The above algorithm incurs cost at most O(n) times the cost of the optimal proof.

The problem of sorting even when the edge costs are either 1 or1 seems very hard. In fact, it
is equivalent (to within constant factors) to a variant of the famous “Nuts-and-Bolts” problem [2,
3, 8]. In this variant, the set of n nuts and n bolts have to be sorted by performing only nut-
bolt comparisons, but now each nut can be compared to only some subset of the bolts, and vice
versa. To the best of our knowledge, no algorithms are known for this problem which perform a
sub-quadratic number of comparisons in general.

5.3 Merging two lists

Finally, we consider the problem of merging two sorted lists. This generalizes the problem of
binary searching considered by Charikar et al. [5], and is a special case of the sorting problem. For
this problem, we can give the following result, the proof of which is given in Section C.

Theorem 5.4 There is an algorithm for merging two sorted lists which incurs a cost of at most O(log n)
times OPT.

Note that the lower bound of O(log n) for binary search implies that this result cannot be im-
proved in the worst case.

Acknowledgments

Many thanks to Ranjit Jhala, Jon Kleinberg, Éva Tardos and Peter Winkler for helpful comments.

References

[1] Micah Adler, Peter Gemmell, Mor Harchol-Balter, Richard M. Karp, and Claire Kenyon. Se-
lection in the presence of noise: The design of playoff systems. In Proceedings of the 5th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 564–572, 1994.

[2] Noga Alon, Manuel Blum, Amos Fiat, Sampath Kannan, Moni Naor, and Rafail Ostrovsky.
Matching nuts and bolts. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 690–696, 1994.

[3] Noga Alon, Phillip G. Bradford, and Rudolf Fleischer. Matching nuts and bolts faster. Inform.
Process. Lett., 59(3):123–127, 1996.

[4] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, New York, 1998.

[5] Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon Kleinberg, Prabhakar Raghavan,
and Amit Sahai. Query strategies for priced information. In Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing, pages 582–591, 2000.

[6] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy infor-
mation. SIAM J. Comput., 23(5):1001–1018, 1994.

10

[7] J. Hartline, E. Hong, A. Mohr, E. Rocke, and K. Yasuhara. As reported in [3].

[8] János Komlós, Yuan Ma, and Endre Szemerédi. Matching nuts and bolts in O(n logn) time.
In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 232–241,
1996.

[9] Web page for Pricing Economic Access to Knowledge (PEAK).
http://www.lib.umich.edu/libhome/peak/papers.html.

[10] S. Sairamesh, C. Nikolaou, D. F. Ferguson, and Y. Yemeni. Econimic framework for pricing
and charging in digital libraries. D-Lib Magazine, February 1996.

[11] Peter Winkler and David Zuckerman. Personal Communication.

A Proofs from Section 2

Proof of Theorem 2.2: Let T and T � denote the witness trees produced by our algorithm and by
the optimum strategy respectively. Consider a node i which is not the maximum, and let j and j�
be the parents of i in T and T � respectively. We will show that the cost of processing i will be at
most 2c(i; j�). Let us look at two cases:� j� < i : In this case, j� has already been processed when i is considered. Note that either j�

is a local winner (and hence in L) or it is a child of a local winner — let x denote the local
winner in either case. Hence, K(x) � K(j�) > K(i). Let c(x; i) = 2r, and x0 be the node
with the largest value in L at this point with c(x0; i) = 2r; clearly k(x0) � k(x). Since the
algorithm works by doubling the value of l at each step, the cost of processing i is at most2 + � � �+ 2r � 2r+1 = 2c(x; i).
If x = j� then we are done. If not, then j� is not a local winner. But then we claim that x
was considered before j�; if not, the only other way that j� can be a child of x is when j� is
a local winner. Thus wx � wj� , which implies that c(i; x) � c(i; j�), and the cost is thus at
most 2c(i; j�).� j� > i : Consider the tree T after i gets processed. Suppose i is not the root, and is defeated
by j. This implies that j < j�, and hence wj � wj� and c(i; j) � c(i; j�). Arguing as above,
we can show that the cost of inserting i is at most 2c(i; j). On the other hand, suppose that i
is the root of T at this time. If i0 is the (unique) child of i at this point; we can now show that
the cost of processing i is at most 2f(i; i0) � 2f(i; j�).

Finally, we have to account for the cost of processing the maximum element m. Clearly, m will
be the root of the witness tree when it is processed, and the cost can be bounded by 2c(m;m0),
where m0 is the unique child of m at this point. Let us consider the path from m to m0 in T �, and
let m00 be the closest node to m in this path. If m00 = m0, we are done. If not, then K(m00) � K(m0).
Suppose wm00 < wm0 , then m00 was considered before m0, and hence m00 was already in T when m
was being inserted. But then, by our tie-breaking rule, m00 should have been the root of T , and
hence m0 could not be the child of m. Thus, wm00 � wm0 and hence, c(m;m0) � c(m;m00).

Now the cost of the algorithm is just the cost of processing all its elements. But we have shown
that this cost is at most 4 times the cost of T �, and hence the theorem follows.

11

B Proofs of Section 4

B.1 Details of finding medians with multiplication

In this section, we give a constant factor approximation when the function f is multiplication. This
method in fact generalizes to many other functions f which include constant degree polynomials.

Let L be the list of elements in V , whose weights are powers of C , which is a large enough
constant we specify later. L is partitioned into lists L0; : : : ; Lk, with list Li containing elements of
weight Ci. Let ti = jLij.

The basic idea is the following: Suppose the median of L is a weight 1 element. Then our
algorithm should be able to find it by comparing elements only with weight 1 elements, since
any other comparisons may turn out to be too costly (because f is multiplication). Of course, we
do not know if the median is a weight 1 element, and hence our procedure finds the weight 1
elements closest to the median on either side. We then apply the same procedure recursively to
the set of higher weight elements between these two elements. Cost scaling ensures we do not
pay too much in this recursive process.

We say that a weight 1 element in a list L0 is at position p if it is the maximum weight 1 element
in L0 which has at least p elements greater than or equal to it. For simplicity of notation, if all
weight 1 elements have less than p elements above it, define p to be the position of the smallest
weight 1 element in L0. Further, if p < 1, then we assume p = 1. Given a list L0 and two positive
integers n1; n2 with n1 � n2, we define the partition [n1; n2] as a partition of the list L0 into three
sets as follows — let x and y be the weight 1 elements at positions n1 and n2 in L0 respectively.
Then, L0 should be partitioned into the elements less than x, elements between x and y (includingx and y) and those greater than y. By a slight abuse of notation, we refer to the list [n1; n2] as the
list of elements between x and y. Note that the list [n1; n2] can contain more than n1 � n2 + 1
elements, but it contains at most n1 � n2 + 1 weight 1 elements. Define the subsequent interval
of [n1; n2], sub[n1; n2] as follows : if the list [n1; n2] is singleton, then sub[n1; n2] is the empty set.
Otherwise, let x and y be the elements at position n1 and n2 respectively. Let x0 be the weight 1
element succeeding x in the (ascending) sorted order. Define sub[n1; n2] as the set of elements
between x0 and y. The reason why we need the list sub[n1; n2] is that the size of this list is always
at most n1 � n2.

We prove by induction on k the following : given any list L, and two numbers n1; n2, n1 � n2,
we can find the partition [n1; n2] and its subsequent interval by paying at most �(t0+ � � �+Cktk)+Ck+1(n1 � n2 + 1), where � is a constant. Suppose this fact is true for k and we are given a list L
where the highest weight of an element is Ck+1.

Let us give some intuition for our proof. Using techniques similar to Lemma 4.1, we first
reduce the size of list L(k) to make it comparable to tk+1 — this implies that we must also reduce
the quantity n1�n2. This is the goal of lemma B.3. So, suppose we are in this case. Unlike addition,
we are not done. We still cannot compare elements in Lk+1 with each other. The second idea is
to choose an element from from Lk+1 which partitions it almost evenly (using randomization) —
this allows us to partition the whole list into two almost even pieces and then we can recurse on
the appropriate part.

In our algorithm, we shall reduce the list L by removing certain elements at various stages. But
we shall always maintain the following invariant — if a weight 1 element x has not been deleted
from L, then we know which deleted elements are greater than (and so, which are less than) x.

12

This shall help us in the following way — suppose we find the required partition in a sublist L0 ofL, i.e., the partition [n1; n2] of L restricted to L0, and suppose the two weight 1 elements at positionn1 and n2 in L are also in L0. Then we can actually recover the desired partition from this.
For any list L0, let L0i denote the weight Ci elements and t0i the size of L0i. For a list L0, L0(i) shall

denote L00[� � � [L0i. Let t0(i) denote the quantity t00+Ct01+ � � �+Cit0i. We now worry about finding

the partition [n1; n2] only and shall show how to find sub[n1; n2] later. We begin with two simple
lemmas, whose proofs are in Appendix B.

Lemma B.1 Outer Cutting Lemma Suppose we are given a list L0 and two positive integers n1; n2,n1 � n2. We can reduce the problem of finding the partition [n1; n2] in L0 to finding a partition [n01; n02] in
a sublist L00 of L0 such that n01 � n02 � n1 � n2 and t000 + � � � + t00k � n1 � n2 + t0k+1 + 1. This reduction

requires at most �t0(k) + (n1 � n2 + 1)Ck+1 + t0k+1Ck+1 comparison cost.

Proof of Theorem B.1: By induction, find the partition [n1; n2 � t0k+1] and its subsequent interval
in L0(k). Let m be the number of elements in the third list of this partition. Let I be the list [n1; n2�t0k+1]. It is easy to see that all elements in L0(k) which are also in the list [n1; n2] in L0 lie in I . So, we

can throw away all other elements of L0(k). If the subsequent interval is empty, we are done.

Let x be the element at position n1 in L0(k) and x0 be the weight 1 element succeeding it in this

list. By induction, we know both x, x0 and the set of elements in L0(k) lying strictly between these

two elements, call it S. Let m0 = jSj. Define L00 = L0k+1 [(I � S). Note that I � S has at mostn1 � n2 + t0k+1 + 1 elements.
Compare x with all elements of L0k+1. After this, we know the exact position of x in L0k+1,

and so, we know if it as at position n1 in L0 or not. Suppose x is at position n1 in L0. Definen01 = n1 �m0 �m. Otherwise, delete x from L00 and define n01 = n1 �m. Define n02 = n2 �m. It
is not difficult to show that we have reduced the problem to that of finding the interval [n01; n02] inL00.

Also, we maintained the invariant whenever we deleted any element from the list L0.
Lemma B.2 Inner Cutting Lemma Suppose we are given a list L0 and two positive integers n1; n2,n1 � n2. We can reduce the problem of finding the partition [n1; n2] in L0 to finding a partition [n01; n02]
in a sublist L00 of L0 such that n01 � n02 � t0k+1 + 1. The comparison cost in this reduction is at most(�+ 1)t0(k) + (n1 � n2 + 1)Ck+1 + Ck+1tk+1.

Proof of Theorem B.2: Assume n1 � n2 > t0k+1 + 1; n2 > 0, otherwise we are done. Let xi be
the weight 1 element at position ni in L0. Find the partition [n1 � t0k+1; n2] in L0(k), let yi be the

two weight 1 elements which define this partition, y1 � y2. Let I denote the middle list in this
partition. Let I 0 be the interval I with y1 and y2 deleted from it. Define m = jI 0j. It is easy to
observe that xi =2 I 0. Following cases can happen (note that given the partition, we can easily find
which case has happened) :� Both y1 and y2 do not have at least n2 elements (in L0(k)) above it : in this case, y1 = y2 is the

smallest weight 1 element. Further, x1 = y1, though x2 may not equal y2. Define n01 to be the
number of elements in L0 which are at least x1. Then, it follows that n01 � n2 + t0k+1. So, the
problem reduces to finding the partition [n2 + t0k+1; n2] in L0.

13

� y1 does not have more than n1 � t0k+1 elements above it in L0(k), but there are at least n2 ele-

ments in L0(k) above y2 : again, x1 = y1 is the smallest weight 1 element. Find the weight 1

element succeeding y2, call it y3. Compare all elements in L0(k) with y3 to find out the ele-

ments in L0(k) which (strictly) lie between y2 and y3 — call this S, and let m0 = jSj (in case y2
is the largest weight 1 element, S is just the set of all elements in L0(k) greater than y2). LetL00 = L0 � (S [I 0).
Compare y3 with all elements in L0k+1 (we already know how y3 compares with other ele-
ments of L0) — this will tell us if x2 is greater than or equal to y3, i.e., if x2 = y2 or not. Ifx2 = y2, we are done. Note that there are at most n2 + t0k+1 + 1 elements of L00 which are at
least y1. So, the problem reduces to finding the partition [n2 + t0k+1 + 1; n2] in L00.� There are at least n1� t0k+1 and n2 elements in L0(k) above y1 and y2 respectively : define S;m0
as in the case above. We can argue as above that jI 0 [Sj = m +m0 � n1 � t0k+1 � n2 � 1.
Again, compare y3 with all elements of L0k+1 to decide if x2 = y2. Suppose x2 = y2. Let S0 be
the elements in L0(k) greater than y2. Let m00 = jS0j. Clearly, m+m00 � n1 � t0k+1 � 2. DefineL00 = L0 � S0, n01 = n1 � (m +m00) � t0k+1 + 2; n02 = 1. Otherwise, define L00 = L0 � (S [I),n01 = n1 � (m+m0) � n2 + t0k+1 + 1; n02 = n2.

Again, it is easy to check that we maintain the invariant.
Combining the two lemmas above, we get the main cutting lemma:

Lemma B.3 Cutting Lemma Suppose we are given a list L0 and two positive integers n1; n2, n1 � n2.
We can reduce the problem of finding the interval [n1; n2] in L0 to finding an interval [n01; n02] in a sublistL00 of L0 such that n01 � n02 � t0k+1 + 1 and t000 + � � � + t00k � (n1 � n2 + 1) + t0k+1. Further, this can be

achieved by at most �t0(k) + 2(n1 � n2 + 1)Ck+1 + 3Ck+1t0k+1 comparison cost, provided C � �+ 1.

Start with the input list L. Apply the cutting lemma to L; n1; n2, to get a new list L(1) and

interval [n(1)1 ; n(1)2]. We now outline a procedure Partition(L0) which takes a list and outputs two
disjoint sublists of L0.
Algorithm Partition(L0)

repeat

Pick element x 2 L0k+1 uniformly at random.
Find two consecutive elements of L00 between which x lies.

Let these two elements be y and z.
Partition L0k+1 into three lists M1;M2;M3.M1 is the set of elements � y, M2 those elements between y and z, and M3 those� y.
Let N1 be elements of L0(k) which are � y, and N2 the elements of L0(k) which are � z.

Define L00 = N1 [M1; L000 = N2 [M3.
until (jM1j � 3jL0k+1j=4 and jM3j � 3jL0k+1j=4)
Output L00 and L000.

Lemma B.4 The expected cost of comparisons made by the above procedure is at most (t00+2t0k+1)Ck+1+2t0(k).
14

Proof: The expected number of iterations, i.e., the expected number of steps until x lies in the
middle half of L0k+1, is two. In each iteration, the operations on L00 and L0(k) cost t00Ck+1 + 2t0(k),
while the partitioning of L0k+1 costs at most 2t0k+1Ck+1.

We apply Partition(L(1)) to get lists L(1)0 and L(1)00 . Suppose the desired interval lies entirely in

one of these two lists, call it ~L(2). Let the interval in this list be [~n(2)1 ; ~n(2)2]. We now apply the cutting

lemma to ~L(2) and [~n(2)1 ; ~n(2)2] to get L(2), [n(2)1 ; n(2)2]. The procedure Partition is again applied to

this, and the process repeated till we get a list L(r); [n(r)1 ; n(r)2] for which Partition(L(r)) yields two
lists L(r)0 and L(r)00 , such that each of these two lists contain one of the two weight 1 elements that
we want. After this, we shall maintain two lists instead of just one.

We now apply Partition to both L(r)0 and L(r)00 to get lists L(r)0(1) ; L(r)0(2) and L(r)00(1) ; L(r)00(2) respec-

tively. One of the weight 1 elements will be in one of the two lists L(r)0(1) ; L(r)0(2) , call it ~L(r+1)0 . Simi-

larly, the other weight 1 element lies in one of the two lists L(r)00(1) ; L(r)00(2) , call it ~L(r+1)00 . Define Define~L(r+1) = ~L(r+1)0 [~L(r+1)00 . So, our problem basically reduces to finding an interval [~n(r+1)1 ; ~n(r+1)2]
in ~L(r+1). We apply the cutting lemma to ~L(r+1), [~n(r+1)1 ; ~n(r+1)2] to get a list L(r+1); [n(r+1)1 ; n(r+1)2].
Define L(r+1)0 and L(r+1)00 as L(r+1) \ ~L(r+1)0 and L(r+1) \ ~L(r+1)00 respectively.

Now, we apply the same process to the lists L(r+1)0 and L(r+1)00 , and so on. If we compare the
situations when i � r and i > r, the only difference (in terms of number of comparisons) is that in
the latter stage, we need to call the procedure Partition twice. But since Partition is being applied
to two disjoint pieces of the list L(r+1), the expected cost is the same as that of applying Partition

to the whole list L(r+1) once. So, we can assume without loss of generality that r = 1.

Let us now compute the total cost of comparisons. Observe that t(1)0 � (n1�n2+1)+tk+1, t(1)(k) �Ck(n1�n2+1)+Cktk+1. So, Partition(L(1)) costs at most 5Ck+1tk+1+(2Ck+Ck+1)(n1�n2+1).
Claim B.5 Let i � 1. t(i)k+1 � �34�i�1 tk+1; n(i)1 � n(i)2 � �34�i�1 tk+1 + 1; t(i+1)0 + � � � + t(i+1)k �2 �34�i tk+1 + 1.

Proof: At the ith step, we have lists L(i); L(i)0 and L(i)00 . After applying Partition to the latter two
lists, we get new lists which combine to give a list ~L(i+1). The definition of Partition implies that~t(i+1)k+1 � 3=4t(i)k+1. Clearly, ~n(i+1)1 � ~n(i+1)2 � n(i)1 � n(i)2 and ~t(i+1)j � t(i)j for any j � k.

Now, we apply the cutting lemma to ~L(i+1) to get the list L(i+1). So t(i+1)k+1 � ~t(i+1)k+1 � 3=4t(i)k+1.

Furthermore, t(i+1)0 + � � � + t(i+1)k � (~n(i+1)1 � ~n(i+1)2 + 1) + ~t(i+1)k+1 � t(i+1)k+1 + n(i)1 � n(i)2 + 1, andn(i+1)1 � n(i+1)2 � ~t(i+1)k+1 + 1: This implies the claim.

Let us now compute the total cost at step i. Partition and the cutting lemma together cost at

most (�+2)t(i)(k) +2(n(i)1 �n(i)2)Ck+1+5Ck+1t(i)k+1+ t(i)0 Ck+1. Adding this over all values of i, (note

that the number of steps is at most tk+1) and using the above lemma, we get the total cost over all
the steps is at most (15Ck+1 + 9(�+ 2)Ck)tk+1 + (Ck+1 + (�+ 2)Ck)(n1 � n2 + 1). Thus, the total
comparison cost to find the partition [n1; n2] is at most �t(k) + (4Ck+1 + (�+4)Ck)(n1� n2 +1)+(23Ck+1 + 9(�+ 2)Ck)tk+1.

We have yet to show how to find the subsequent interval. Let x and y be the weight 1 elements
at position n1 and n2 in the list L respectively. Note that we first apply the outer cutting lemma to

15

the input list L. Let L00 denote the list output by the outer cutting lemma. We have shown that x
and y must lie in L00. Moreover, L00 contains all elements between x and y. We find the weight 1
element z succeeding x in L00 — this costs at most t000 . Now, we compare all elements in L00 with z —
this costs at most Ct001+ : : :+Ck+1t00k+1. Thus, the total cost is at most (t000+ � � �+ t00k)Ck+Ck+1tk+1 �(n1 � n2 + 1)Ck + (Ck + Ck+1)tk+1.

Thus, the total cost is at most �t(k)+(4Ck+1+(�+5)Ck)(n1�n2+1)+(24Ck+1+9(�+3)Ck)tk+1.

Choose � = 25, C = 9(�+3). Then, we see that this cost is at most �t(k+1) +Ck+2(n1�n2+1). In
the special case, n1 = n2, we see that there is a constant �0 (�0 < �+ C) such that we can find the
partition [n1; n1] by at most �0t(k+1) comparison cost.

Let x� be the median in the list L and Ck be the highest weight of any element in L. Let L(0)
denote the original list. Let x(i) and y(i) be the weight Ci elements which are closest to x� on the
left and on the right respectively. Define L(i) as the list of elements lying (strictly) between x(i�1)
and y(i�1) — note that L(i) does not contain any element of weight Ci�1 or less. It is easy to see
that optimum cost of any proof that shows that x� is the median is at least (let L(k+1) be the empty
list) kXi=0 Xx2L(i)�L(i+1)Cic(x); where c(x) denotes the weight of x= kXi=0 Ci0@ kXj=i Cj(t(i)j � t(i+1)j)1A � 1=2 kXi=0 kXj=i Ci+jt(i)j = 1=2 kXi=0 Cit(i)k

We start with the list L(0). We maintain the following invariant when we process a list L(i) :
we always know at exactly what position in the sorted order the median x� lies in L(i). When we
process the list L(i) we can use exactly the same algorithm described above with the additional
modification that now weight 1 elements get replaced by weight Ci elements. So, if x� lies at
position ri (in the sorted order) in L(i), then we can find the partition [ri; ri] in L(i) by paying at

most �0Cit(i)k comparison cost. This will give us the element x(i) (as defined above). Similarly, we
can get the element y(i). Note that by definition of partition, we also get the list L(i+1) and we
know the position of x� in this list. So, we can recurse on the list L(i+1).

Thus, we can find the median x� by incurring at most 2�0Pki=0 Cit(i)k comparison cost, which
is within a constant factor of the optimum cost.

C Proofs of Section 5

Theorem C.1 There are inputs on which any deterministic strategy (or even randomized strategies against
oblivious adversaries) incurs cost at least
(n) OPT.

Proof: Let the element 1 (resp. 2) be connected to S = f3; 4; : : : ; ng by edges of cost 0 (resp. 1).
Let there also be an edge of cost n between 1 and 2. Lastly, let 1 defeat all elements in S. Now
if any algorithm queries (1; 2) before querying all edges between S and 2, then the adversary can
make one of the remaining edges between S and 2 defeat 2, thus making OPT = 1. Else, we have
to query all the edges between S and 2, which will cost n� 2 as well.

16

Showing this for randomized strategies against oblivious adversaries is equivalent to finding
an element in an unordered list of length (n� 2), which has a lower bound of (n� 2)=2.

Proof of Theorem 5.2: Let B be the optimal branching that proves that m is the maximum. We
start off by the simple observation that the algorithm queries all the edges in B. To see this, note
that each edge e = (u; v) 2 B is the cheapest edge that defeats v, else we can replace e by such
a cheaper edge and reduce the cost of the branching. Hence v will be a winner at the time e is
examined, which also means there cannot be a set of implications showing that u defeats v.

Now let us modify the argument above, and separate E0, the edges queried into two parts;
those which go between elements related in B (denoted by E01) and those which do not (denoted
by E02). Note that the edges in E02 go between two eventual losers, and hence they can be charged
to edges in B in exactly the same way as above.

If an edge e = (u; v) 2 E01 is examined, it must be the case that there is some highest edge(u0; v0) 2 B on the directed path between u and v in B that has not been yet been examined, and
hence cu0;v0 > cu;v . We will now charge e to (u0; v0) 2 B. It now remains to show that for any edge
in B, at most n� 1 edges are charged to it.

To see this, let us look at an edge e = (p(u); u) 2 B. Let k be the number of descendents of u
in B (including u itself). It is clear any edge in E02 which is charged to e must be incident to u, and
must go to an element not related to u. There can be at most n � 1 � k elements. We now claim
that at most k edges in E01 can be charged to e, which will complete the proof of the theorem.

To prove this, let us prove the fact that if edges (x; y); (x0; y) 2 E01 are queried by the algorithm
and charged to e, then x = x0; this will show that there is at most one edge per descendent y of u
in E01 that is charged to e, which will prove the claim.

Indeed, let x be an ancestor of x0 in B. Then walking from x to y in B, we shall encounterx0; p(u); u in that order. Note that since we charged e for the (x; y) comparison, it must be that we
must have already examined the path from x to x0 (and in fact, to p(u)) at the time we examine(x; y). Suppose cx;y > cx0;y. Since (x0; y) must have been examined when we consider (x; y), we
can infer (x; y) by transitivity and will not examine it. In the other case, when cx;y < cx0;y, both x0
and y must be losers (due to the path from x to x0, and the edge (x; y) respectively) when (x0y) is
considered, and will not be examined. This completes the proof.

Proof of Theorem 5.3: Let us assume, for the sake of the proof, that the vertices are f1; 2; : : : ; ng,
and that K(1) < K(2) < � � � < K(n). Let edge ei be (i; i + 1), and P be the path feign�1i=1 . The cost
of the optimal proof is simply

Pn�1i=1 c(ei).
As before, we shall charge each edge the algorithm examines to some edge ei 2 P . Suppose

it looks at edge e = (i; j), where i < j. Let Pij denote the portion of P between i and j. We
claim that at least one of the edges in Pij has cost at least c(e). To see this, let us assume to the
contrary. Since all these edges have cost less than c(e), they must have been considered beforee; and further, they must have been queried by the algorithm, since the outcome of ek cannot be
inferred by the outcomes of querying edges other than ek. Thus all edges in Pij must have been
queried, and hence e would be implied by transitivity; this gives the desired contradiction. Thus
one of the edges in Pij must have cost at least c(e); we charge the cost of edge e to such an edge
which is closest to i.

It now suffices to show that, for any edge ek 2 P , the amount charged to it is at most 2nc(ek).
It is clear that an edge (i; j) charged to the edge ek must have i � k < k + 1 � j. Fixing a j,
we now show that the total cost of edges (i; j) charged to ek is at most 2 c(ek). Let these edges be

17

f(i1; j); (i2; j); : : : ; (ir; j)g, where ir < � � � < i2 < i1, and fl denote the edge (il; j). We claim thatc(f1) > c(f2). Indeed, consider the portion Pi2;i1 between i2 and i1; any edge in Pi2;i1 must have
been queried before f2, else f2 would have been charged to such an edge. But now the algorithm
must have queried f1 after f2, else f2 could be inferred by transitivity, and hence c(f1) � c(f2). To
show that equality cannot hold, note that if c(f1) were equal to c(f2), our tie-breaking rule would
have picked f1 before f2. Proceeding in this manner, we can prove that c(fr) < � � � < c(f2) < c(f1).
However, since the costs are powers of 2, these costs add up to at most 2 c(f1) � 2 c(ek).
Proof of Theorem 5.4: We give an O(logn) approximation algorithm for merging of two sorted
lists. Let the list (sorted in ascending order) be X = (x1; : : : ; xn); Y = (y1; : : : ; ym). We introduce
four artificial elements, two of them x0; y0 of value smaller than any other value in X and Y , withK(x0) < K(y0), and xn+1; ym+1 with values greater any other element with K(ym+1) > K(xn+1).
The comparison cost of these new elements with any element is 0. As always, we assume that all
costs are powers of 2.

We can write the merged list as (x0;M1; N1; : : : ;Ms; Ns; ym+1), where Li is a sequence of el-
ements from Y , and Ni a sequence of elements from X . Note that L1 begins with y0 and Ms
end with xn+1. Let Li = (yli ; : : : ; yli+1 � 1) and Mi = (xmi ; : : : ; xmi+1 � 1). Hence OPT isPsi=1 �c(xni�1); ymi) + c(ymi+1�1; xni)�.

Let us suppose we know xni and xni�1, i.e., the first element of Ni, and the last element ofNi�1. Furthermore, suppose we are given an element y 2Mi. We now show how to find ymi+1�1,
the last element of Mi, while paying at most O(c(ymi+1�1; xni) + c(ymi+1 ; xni+1�1). This algorithm
is as follows :

Procedure:

let yc y.
for K = 1; 2; 4; : : : do

let Y 0 be elements of Y greater than yc whose comparison cost with xni is K .
locate xni in Y 0 by binary search.

Let the element in Y 0 immediately smaller than xni be y0.
(in case xni is smaller than all elements in Y 0, y0 = yc.)

Update yc to y0. Let y00 be the element in Y following y0.
let X 0 be elements in X greater than xni whose comparison cost with y00 is at most K .

let x0 be the smallest element in X 0.
Compare x0 with y00. If K(x0) < K(y00), then yc is the desired element.

endfor

It is not difficult to show that this algorithm has the desired properties. Now we can apply the
same procedure with the roles of x and y reversed.

Thus the merging procedure is as follows: we know that y0 lies between x0 and x1. Now using
the above procedure, we can find yn2�1. Now we know M1, since we know the last element of M1
and the first element of M2. Furthermore, we know the first element of N1, which is x1, and so
we can apply the same procedure again. It is not difficult to show that the total cost is at most a
constant times OPT.

18

