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1 IntroductionIn most conventional network routing protocols, a packet makes its way from source to destinationin essentially the following way. When a router gets the packet, it analyses the packet header anddecides the next hop for it. These decisions are made locally and independently of other routers,based solely on the identity of the incoming edge, and the analysis of the packet header, whichcontains the destination address. For example, routers using conventional IP forwarding typicallylook for a longest-pre�x match to the entries in the routing table to decide the next hop. In general,each router has to extract out the information relevant to it from the (much longer) packet header.Furthermore, routers are not designed to use information about the source of the packets fromthese headers.An alternative proposed to this routing model by the IETF is calledMultiProtocol Label Switch-ing or MPLS [8, 14]. In this, the analysis of the packet (network layer) header is performed justonce, and causes the packet to be assigned a stack of labels, where the labels are usually muchsmaller than the packet headers themselves [25, 24]. At each subsequent hop, the router examinesthe label at the the top of the label stack, and makes the decision for the next hop based solely onthat label. It can then pop this label o� the stack if it so desires, and push on zero or more labelsonto the stack, before sending it on its merry way. (We shall refer to this as label replacement.)Note that there is no further analysis of the network layer header by any of the subsequent routers.There are a number of advantages of this over conventional network layer forwarding, theobvious one being the above-mentioned elimination of header analysis at each hop. This allows usto replace routers by simpler fast switches which are capable of doing label lookup and replacement.Furthermore, since we analyze the header and assign the stack to the packet when it enters thenetwork, the ingress router may use any additional information about the packet to route packetsdi�erently to satisfy di�erent QoS requirements. For example, data for time-sensitive applicationsmay be sent along faster but more expensive channels than regular data. Also, the ingress routercan encode information about the source as well as the destination in the labels, which cannotbe done with conventional forwarding. Apart from these factors improving network performance,it is also much easier to do traÆc engineering or network control using MPLS than conventionalrouting schemes, since the entire route taken by the packet can be speci�ed very naturally on thestack [2]. All these reasons have made MPLS very popular among network and router designers,and companies like Cisco, Juniper, Lucent and Nortel have been developing routers which supportMPLS protocols [6, 19].Despite the fact that MPLS is becoming widespread on the Internet, we know essentially nothingat a theoretical level about the performance one can achieve with it, and about the intrinsic trade-o�s in its use of resources. For instance, a pertinent question is the following: What is the depthof the stack required for routing in an n-node network, and how does this interact with the labelsize? We want small-sized labels, since bandwidth reservation in networks is often done by creatinga (virtual) channel for each label. A small number of labels ensures that the traÆc is not splittoo much, which usually implies a better bandwidth utilization. Furthermore, having a small labelspace makes the forwarding procedures simple and hence faster. On the other hand, we want asmall stack size as well, so as to keep the space requirements in the headers small. Obviously, thesegoals oppose each other, and their tradeo�s seem non-trivial. Previous papers on routing do notaddress such questions, and it is not clear whether the information theoretic bounds are close tothe truth. 1
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Figure 1: An example of MPLS routing.Note that a very important restriction while designing these routing protocols is that the routerscan only look at the top of the stack to decide the next hop (as well as the set of labels to pushon the stack). As an example, consider the following question: if we are given a constant-degreegraph, it is not clear whether shortest-path routing is at all possible when each router looks atonly one label of length O(log log n) bits, instead of having access to the entire network header ofO(log n) bits. Again, this is clearly a question that needs to be addressed.In this paper, we initiate a theoretical study of the protocol, and give routing algorithms andlower bounds in a variety of situations. We �rst study the routing problems on the line. We thenbuild up our results from paths through trees to more general graphs. The basic technique to goto general graphs is that of �nding a tree cover, which is a small set of subtrees of the graph suchthat for each pair of vertices, one of the trees contains an (almost-)shortest path between them.The concept of tree covers is interesting in its own right.The Model: Before we give our results, let us formalize the model. Each packet carries a stack Sof labels. The labels are drawn from a set � of size L, which is identi�ed with the set f1; 2; � � � ; Lg.The network is an undirected graph G = (V;E), where each node is a router and runs a routingprotocol. If the protocol does not depend of the node on which it is running, the protocol is calleduniform. When a packet reaches a router v on edge e = fu; vg, the router pops the top t(S) of thestack and examines it. (If the stack is empty, the packet should be destined for v.) The protocolat vertex v is just a function fv : Ev��! (Ev���), where Ev is the set of edges incident to v. Iffv(e; t(S)) = (e0; �), the router pushes the string � on the stack, and then sends the packet alongedge e0.A toy example is given in Figure 1 with � = f0; 1g. All functions fv are the same; and only therelevant subset of the actions is shown here. The packet in the example is destined for the vertexlabeled 10. Each node bases its decision on the top (shaded) label and the incoming edge.Note that there is no bound on the number of labels that can be pushed on and hence, for easeof exposition, we force the top of the stack be popped o� when reaching a router. The quantityof interest is the maximum stack depth required for routing between any two vertices, which wedenote by s. An (L; s) protocol is one which uses O(L) labels, and has maximum stack-depth O(s).Our Results: As a �rst step, we study routing on the path Pn, where we show a large gapbetween uniform and non-uniform protocols. We show that uniform protocols on the line with L2



labels require s = �(Ln1=L). However, we give a non-uniform protocol using L labels requiringstack depth O(logL n) only. Note that this is within a constant factor of the information-theoreticbound.These protocols serve as building-blocks when we go to arbitrary trees. We use them in con-junction with the so-called caterpillar decomposition [18, 15] of trees into paths to get a (� +k; kn1=k logn) uniform protocol, and a (�+ k; log2 nlog k ) non-uniform protocol. In the case of uniformprotocols, we prove an almost matching lower bound when k is O(log n). (Note that if the maximumdegree of a tree is �, then we clearly require at least �� 1 labels.) Note that the latter protocolcan give us stack depth O(log2 n= log logn) with �+O(log n) labels: we improve this non-uniformprotocol to get a (� + log log n; log n) protocol as well.Finally, we turn to the case of general graphs. Here, we use the protocols for trees as our basictools. We de�ne a tree cover of a graph, which is a small set of subtrees of the graph such thatfor each pair of vertices, one of the trees contains an (almost-)shortest path between them. (SeeDe�nition 4.1 for a formal de�nition.) If we have a graph with a tree cover with t trees, we canrun the tree routing algorithm on the appropriate tree. Note that we lose just a factor of t in thenumber of labels by this idea. Unfortunately, it can be shown that general graphs do not have(log n)-sized tree covers unless the trees are allowed to stretch distances by 
(logn).Since a non-constant stretch is inadmissible in our applications, we look at special classes ofgraphs, and as our �rst result, show that graph families with r(n)-sized balanced vertex-separatorshave O(r(n) logn) sized tree covers with no stretch. This result also gives O(pn)-sized tree coversfor planar graphs, which we show tight by exhibiting a simple length-assignment to the edges ofthe n-vertex grid. However, we then go on to show that allowing a small stretch (of 3) improvesmatters considerably: we can �nd a O(log n) sized tree cover for all planar graphs. The proof ofthis fact uses the Lipton Tarjan planar separator theorem [16] in a novel way, which we feel mayhave other implications.As the above discussion indicates, our algorithms are extremely modular in nature, and henceimprovements in routing strategies for (say) the path will result in improvements for trees andgraphs. Furthermore, though we have made no signi�cant e�orts to optimize constants, the con-stants involved are small, and hence the algorithms can be implemented in practice.Previous Work: Distributed packet routing problems in networks has been widely studied, e.g.,see [9, 10, 23, 22, 7], or [11] for a survey of some of the issues and techniques. In these papers,the emphasis has been to reduce the sizes of the routing tables and the sizes of the packet headerswhile performing near-shortest path routing. Our work is incomparable to this line of work. InMPLS, setting up the initial stack may require more memory than conventional routing problems,but once the stack is set up, the memory needed by each router to just forward the packets is verysmall. For example, in traditional routing on planar networks, the best result known for minimizingthe total memory (i.e., summed over all the routers) is ~O(n4=3). In our case, setting up the stackrequires more memory, but for just forwarding the packet, the total memory required is ~O(n).Furthermore, many previous results giving small storage allow the vertices to be labeled by thealgorithm, whereas we make no assumptions on the vertex names.There has also been substantial work on �nding sparse spanners of graphs [1, 5]. However, theseresults are interesting only when the graph is not sparse, whereas the problems we address in thispaper are non-trivial even for bounded degree graphs.Another di�erent (but related) large corpus of work has focussed on the problem of distance3



labeling of graphs [27, 20, 12]. Distance labeling problem involves assigning short labels to vertices,so that an algorithm given the labels of any two vertices in the graph can deduce the shortestdistance between them. (Note that the algorithm does not have any other knowledge of the graph).The techniques used in both this problem as well as ours are similar, often involving �nding goodseparators of graphs; however, the scope of the problems are quite di�erent. Indeed, distancelabeling precludes any knowledge of the global structure of the graph, and hence the label sizesare usually in the range of �(log n). In the case of MPLS, however, the graph structure is known,and the challenge lies in local routing algorithms that look at a much smaller set of bits, i.e.,O(log logn), or even a constant number of bits, to decide where the packet should be sent. Thismakes MPLS routing for even the path to be non-trivial, whereas the distance labeling problem isquite simple for this case. Furthermore, merely having an small stretch distance labeling schemedoes not appear to give us routing protocols in which packets travel along near-shortest paths.However, we note that some of our MPLS results can be used to improve known results ondistance labelings. In the case of planar graphs, we can use our ideas to get a stretch-3 distancelabelings of size O(log2 n) for planar graphs. Previously, no sub-polynomial labeling schemes wereknown for planar graphs (even with constant distortion) [12].A recent paper of Thorup and Zwick [26] gives constructions of a slightly di�erent variety oftree covers. Though their de�nitions di�er from ours, they can also be used for MPLS routing.Their results imply that for general graphs, there exist tree covers of size ~O(n1=k) with stretchO(k). This gives an MPLS routing scheme with ~O(n1=k) labels, poly-logarithmic stack depth andstretch O(k). We, however, concentrate on cases where it is possible to get poly-logarithmic stackdepth and labels, and constant stretch.2 Routing on the lineIn this section, we give shortest-path routing schemes for the path graph Pn. This is the basicbuilding block which we shall use to route on trees in the next section. We give two routingstrategies, depending on whether nodes are allowed to have di�erent routing protocols or not.We show that if the routers must run the same protocol, then the stack depth goes as �(Ln1=L);however, if they are allowed to use the information of their own position, then a very simple strategyallows us to have s = O(logL n), which is within constants of the best possible.2.1 Uniform protocolsIn this case, we assume that each router must run the same protocol. To achieve the upper boundof O(Ln1=L), we have the following simple strategy: nothing is pushed onto the stack when a 1 isseen, and seeing an i > 1 causes n1=L copies of (i � 1) to be pushed onto the stack. It is easy tosee that the total stack depth need only be Ln1=L. The following theorem, whose proof is in theappendix, shows that the construction is tight up to constants.Theorem 2.1 Any uniform routing protocol must require a stack depth of 
(Ln1=L).This boundcan be achieved by the scheme outlined above.
4
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Figure 2: Specifying the routing protocol for the path P16.2.2 Non-uniform protocolsInterestingly, the case for non-uniform protocols, where each vertex can run a di�erent protocol, therelationship between s and L is much closer to the information-theoretic bound. We will considerthe case when L = 2: in this case, it is easy to see that the stack depth must be 
(log n) for usto encode n distinct addresses. Since the direction of travel of the packet is decided by which edgeit enters the vertex, it is enough to give a procedure to send a packet from left to right. Let thevertices on the path Pn be numbered 0; 1; : : : ; n� 1, and let the two labels be 0 and 1. Direct alledges in Pn from left to right, and assign label 0 to these edges. Now add some new directed edgesE0 to this graph, each edge in E0 being also directed from left to right, such that each vertex vhas at most one edge in E0 going out of it. Assign each edge in E0 the label 1. It can be shownthat there is a way of constructing E0 such that the edge set E0 [ Pn satis�es the following twoproperties :� Low-diameter Property: For any two vertices u < v, there is a directed path from u to v oflength at most 3 log n.� Nesting Property : Let u < u0 < u00 be three distinct vertices on the line ordered from left toright. If (u; u00) and (u0; v0) are two directed edges in E0, then v0 does not lie to the right ofu00, i.e., v0 � u00. Essentially, no two edges in E0 cross each other; either they span disjointportions of the line, or one is contained within the other.One such example for n = 16 is shown in Figure 2, where the solid edges are labeled 0, andthe dotted edges are labeled 1. Note the recursive structure of the construction: to build a graphG2k on 2k nodes, take 2 copies of the graph G2k�1 on 2k�1 nodes and attach them in series. (Agraph on 2 nodes is just a single arc.) This gives a graph on 2k � 1 vertices. Now we take a newvertex and attach it to the leftmost vertex by an arc labeled 0, and to the rightmost vertex by anarc labeled 1. This new vertex becomes vertex 0 in the new graph G2k , and the other vertices getsuitably renumbered. In general, a graph Gn on n nodes is obtained by taking a graph on 2dlog2 nenodes, and retaining only the leftmost n nodes.The nesting property ensures the following fact in Pn [ E0 for shortest paths de�ned in termsof the number of hops: 5



Lemma 2.2 Let u < u0 < v0 < v be four distinct nodes on the line Pn. If the shortest path P fromu to v in Pn [E0 contains v0, then the shortest path from u0 to v contains v0.Proof: Suppose the shortest path P 0 from u0 to v does not contain v0. Let e = (w;w0) be anedge in P 0 such that w < v0 < w0 (clearly, such an edge must exist). We claim that P must containw. If not, since u < w < v, P must contain an edge e0 = (x; x0) such that x < w < x0. Further,x0 < v0 since P contains v0. But now e and e0 violate the nesting property, and hence P containsw. Also, the portion of P from w to v must be the shortest path from w to v. Since we know thatP 0 contains w, replacing the portion of P 0 after w by that of P , we again get a shortest path P 00from u0 to v which contains v0. This proves the lemma.We next describe the actual routing protocol. Given a node u and a stack of labels l0; : : : ; lr(l0 being on the top), we de�ne the path de�ned by the stack by the sequence of edges obtained bystarting from u and following the edges labeled l0; : : : ; lr. If u wants to send a packet to node v(u < v), the stack is initialized so that the path de�ned by the stack is a shortest path from u to v.Furthermore, we maintain the invariant that when a node u0 receives the packet, the path de�nedby the stack at that point is a shortest path from u0 to v. Now the Low-diameter property ensuresthat the stack depth is at most 3 log n.We now show how to maintain the invariant. Let the packet be at u0 and let the edges labeled0 and 1 originating from u0 be e0 = (u0; u00) and e1 = (u0; u000) respectively. (If there is no label 1edge from u0, the argument gets even simpler). Note that edge e0 2 P and e1 2 E0. Thus, a packetcan be forwarded along e0 but not along e1. Suppose the top of the stack contains label 0. Thenu0 simply pops this label and sends the packet to u00, which must be the next vertex on the path.Since the path de�ned by the stack when it was at u0 contained u00, it is easy to show that the pathde�ned by the stack when it is at u00 is also a shortest path from u00 to v. Otherwise, the top of thestack has a 1. In this case, u0 pops this label and pushes a set of labels which encode a shortestpath from u00 to u000. Lemma 2.2 ensures that the shortest path from u00 to v contains u000 as anintermediate node, which implies that the path de�ned by the stack when it reaches u00 is also ashortest path from u00 to v, maintaining the invariant.In fact, the above process to forward a packet so as to maintain the invariant is extremelysimple. As always, if a router gets a packet, and the stack is not empty, it performs the actionsdescribed below and sends it out on the other edge. Each router pops o� a 0 if it sees one on top ofthe stack; the di�erence is in the handling of the 1's. If the router has outdegree 1, it just pops o�the 1 (and in fact, such a vertex will never see a 1); if it has outdegree 2, it replaces it by two 1's.The following theorem follows from the above discussion:Theorem 2.3 There is a non-uniform protocol for routing on the n-vertex path which uses 2 labelsand stack depth at most 3 log n.It is trivial to encode the top O(logL) labels on the stack in a label of size L, and hence we canuse the above protocol to get the following theorem:Theorem 2.4 There is a non-uniform protocol for routing on the n-vertex path which uses L labelsand stack depth at most O(logL n), which is within a constant factor of the information-theoreticbound. 6



3 An algorithm for treesIn this section, we consider the problem of routing on trees. Since we already have developedalgorithms for the line that are within constants of the best possible, we �rst show how to use themto get protocols for trees. We then re�ne these to get better tradeo�s.Let the tree be T , and let it be rooted at r. All the algorithms use the so-called caterpillardecomposition of a tree into edge-disjoint paths. The caterpillar dimension [18, 15] of a rootedtree T , henceforth denoted by �(T ), is de�ned thus: For a tree with a single vertex, �(T ) = 0.Else, �(T ) � k + 1 if there exist paths P1; P2; : : : ; Pt beginning at the root and pairwise edge-disjoint such that each component Tj of T � E(P1) � E(P2) � : : : � E(Pt) has �(Tj) � k, whereT � E(P1) � E(P2) � : : : � E(Pt) denotes the tree T with the edges of the Pi's removed, andthe components Tj are rooted at the unique vertex lying on some Pi. The collection of edge-disjoint paths in the above recursive de�nition form a partition of E, and are called the caterpillardecomposition of T . It is simple to see that the unique path between any two vertices of T intersectsat most 2�(T ) of these paths. It can also be shown that �(T ) is at most log n (see, e.g., [18]).Now, given a pair of vertices to route between, there are O(log n) paths to travel on, andO(log n)changes of paths to specify. Hence, if we have a (L; s) routing protocol for the line, we could get a(�(T ) + L; s�(T )) protocol for the tree. Plugging in the values from the previous section, we getthe following theorem. (See the Appendix B for a formal de�nition of uniform protocols for trees.)Theorem 3.1 Given a tree T with maximum degree �, there exists a (�+ k; kn1=k�(T )) uniformrouting protocol and a (� + k; (logk n) �(T )) non-uniform routing protocol for T .In the Appendix, we also prove the following almost matching lower bound for k = log n.Theorem 3.2 There exists a binary tree T such that any uniform routing protocol with O(log n)labels requires stack depth 
(� log2 nlog log n�.Note that for k = 2, we have a (� + 2; log2 n) non-uniform protocol, and for k = logn andconstant �, the worst case guarantees for both these algorithms are approximately (log n; log2 n).The results of the next section show how to get a much better result in the non-uniform case.3.1 Improved Non-Uniform ProtocolsInterestingly enough, we can improve the non-uniform routing algorithm of the previous section,keeping the stack depth at O(log n), and get a label size of O(log log n). Let k = dlog2 ne. We willprove the following lemma by induction on n (where c is the constant in Theorem 2.3):Lemma 3.3 We can route a packet from the root r to any node in T by using at most 2 log k +�labels, and stack depth at most 6ck.As before, � of the labels are used to decide which branch to take when changing paths. Forthe proof, we shall indicate how the rest of the 2 log k = 2 log log n labels can be used for the restof the routing.Proof: The base case follows trivially from Theorem 2.3. To show the inductive step, we use thefollowing fact, which we refer to as the halving property for caterpillar decompositions. One can7
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Figure 3: Proof of Lemma 3.3. Vertices marked by squares belong to V 0.�nd a decomposition of size O(log n) with the following property: If P1; : : : ; Pt be all the pathsoriginating at the root r, then for any vertex v 2 Pi, any connected component of T � fvg notcontaining a node of Pi has at most bn=2c nodes. (The proofs of [18, 15] show such a construction.)We will assume this property of our caterpillar decomposition.Let us �x a path Pi in the caterpillar containing r. We show how to route a packet from r toany descendant of a node in Pi � frg. If we show that the conditions of the lemma hold for thispath, the lemma in general follows from the fact that the paths P1; : : : ; Pt are disjoint except at r.Consider a vertex v 2 Pi�frg, and let V 0 be the children of v which are not in Pi (see Figure 3).De�ne T (v) rooted at v to be the subtree containing v, the subset of its children V 0 just de�ned,and all the descendents of V 0. Observe that if v 6= w 2 Pi, then T (v) and T (w) are disjoint. Wede�ne t(v), the index of a node v, to be dlog2 jT (v)je. Let I(j) be the set of nodes in Pi �frg withindex j. Note that if t(v) = j, then jT (v)j � 2t(v)�1, and since all these trees T (v) are disjoint, itfollows that there are at most 2k�j+1 nodes in I(j).We now form log k supergroups, each supergroup formed by the union of several I(j)'s. For eachp = 0; : : : ; log k, the supergroup I(p) is the union of the groups I(k� 2p+1 + 2); : : : ; I(k � 2p + 1).The number of nodes in I(p) is maximum when all these nodes come from I(k � 2p+1 + 2), andso I(p) contains at most 22p+1+1 nodes. We divide the labels L into log k sets, L1; : : : ; Llog k, witheach Li containing 2 labels. The labels in Lp are used to route from r to nodes only in I(p). Ifany node in Pi that does not lie in I(p) sees a label in Lp on top of the stack, it merely forwardsthe packet to its child on Pi. Theorem 2.3 now implies that we can use the labels in Lp to routefrom r to all nodes in I(p) using a stack depth of at most c(2p+1+1). Note that this requires only2 log k labels.Now consider the case when r wants to send a packet to u 2 T (v). Suppose v 2 I(j) andI(j) 2 I(p). The top part of the stack contains labels that send the packet from r to v, requiringa stack depth of at most c(2p+1 + 1). Let v0 2 V 0 be the child of v such that u is a descendantof v0; the next symbol on the stack is one of the � labels that cause v to send the packet to v0.The remaining part of the stack speci�es how to route from v0 to u. Let T 0 be the subtree rootedat v0, and j0 be the smallest integer such that j0 = dlog jT 0je. Clearly, j0 � k � 2p + 1; also, thehalving property of the caterpillar decomposition implies that j0 � k � 1. By induction, the stackdepth needed is at most 6cj0. Hence the total stack depth needed is at most 2c2p + c+ 1 + 6cj0 �2c2p + c + 2c(k � 2p + 1) + 1 + 4c(k � 1) = 6ck + c + 2c + 1 � 4c � 6ck. This proves the desired8



result.Though we have been showing how to route packets starting at the root, the same algorithmcan actually send packets from any vertex to its descendent with stack depth O(logn). Note that tosend a packet from v to an arbitrary vertex u, if we could �rst route to the least common ancestorof u and v, we would have reduced the problem to the solved case of routing to a descendent.However, this is fairly simple: to route to lca(u; v), we note that the packet is always traveling inthe upwards direction, and hence this is isomorphic to the problem of routing on a line, which wecan do with 2 labels and O(logn) stack depth using the scheme of Theorem 2.3. This concludesthe proof of the following theorem:Theorem 3.4 There exists a (� + log log n; logn) non-uniform routing protocol for trees.4 Covering graphs by treesThere are several problems to extending the above scheme to route in arbitrary graphs: the shortestpaths between vertices are not unique, they intersect in non-trivial ways, and hence it is diÆcult tocome up with a useful notion of a path decomposition. However, if we could �nd a set of k subtrees,such that for each pair of vertices, there was a tree in this set that maintained the shortest pathdistance between them, we could use this for routing. This would just involve specifying which ofthese trees we were routing on, which would cause the number of labels to increase by a factor ofk. Of course, we could relax the distance condition to allow distances to be stretched by a smallfactor even in the best tree. Motivated by this, we de�ne a tree cover of a graph:De�nition 4.1 Given a graph G = (V;E), a tree cover (with stretch D) of G is a family Fof subtrees fT1; T2; : : : ; Tkg of G such that for every u; v 2 V , there is a tree Ti 2 F such thatdTi(u; v) � DdG(u; v).The following theorem follows immediately from the discussion above.Theorem 4.2 Let there be an (L; s) protocol for routing on trees. Let F be a tree cover of G withstretch D. Then, there is an (LjFj; s) protocol for G. This protocol has stretch D, i.e., given anypair of vertices u; v 2 V , this protocol routes from u to v on a path which has length at most Dtimes the shortest path between u and v.Note that, since each tree is a subtree of G, dG(u; v) � dTi(u; v). When D = 1, we often saythat there is no stretch; furthermore, in this case, we will often omit mentioning the stretch.Tree covers have been previously de�ned and used for conventional routing applications in [4, 3](see also [21]). Note that this de�nition of tree covers is slightly di�erent from previous de�nitions,since it does not place a restriction on the number of trees in which a vertex appears, but insteadplaces a uniform restriction on the number of trees in the family.Of course, it is easy to see that the size of a tree cover may be large: if we require a stretch 1tree cover for the complete graph Kn, the union of the Ti must cover every edge, and hence 
(n)trees are required. By the trick of replacing the edges incident to a vertex by a (weighted) binarytree, it can be seen that a lower bound of 
(n) holds even for degree-3 graphs.As for lower bounds for covers with stretch: there are explicit constructions of graphs with
(n1+4=(3g�6)) edges which have girth g [17]. For these graphs, if we want a stretch less than g, the9



union of our Ti must also contain every edge of such a graphs. Hence we can get a lower bound of
(n4=(3D�6)) for covers of stretch D � 1. A case of particular interest is when D = 4, for completebipartite graphs show that stretch-3 covers may require 
(n) trees. (A trick similar to that alludedto above shows a similar result for bounded-degree graphs.)In view of these general negative results, the question of interest is to �nd families of graphsfor which we can �nd small tree covers. In this section, we study the problem of �nding small treecovers for families of graphs with small sized vertex separators. For example, for planar graphs,we know that separators of size O(pn) exist, while bounded tree-width graphs have constant-sizedseparators.4.1 Unit weighted gridBefore we present the constructions for small-separator and planar graphs, let us give the followingsimple result :Theorem 4.3 The unit-weighted grid has tree covers of size O(log n).Proof: Let the vertices be referred to in the usual way as (i; j) for 1 � i; j � pn. Now considerthe tree T de�ned by the union of the paths P = f(pn=2; j)j1 � j � pn)g and Pj = f(i; j)j1 �i � pn)g for all j. It is easy to check that for any two vertices that lie in di�erent halves of thegrid de�ned by the vertical path, the shortest path lies in T .Now to �nd paths between vertices which lie in the same half, we recurse on both the smallergrids. (Note that a similar construction would work for rectangular grids as well, and so therecursion is well-de�ned.) Inductively, we get two families of at most t = log(n=2) forests, onefor each part; let them be F 01; F 02; : : : ; F 0t , and F 001 ; F 002 ; : : : ; F 00t respectively. Note that de�ningFi = F 0i [ F 00i gives us t forests of the original graph G (since F 0i and F 00i are vertex disjoint), andhence adding the tree T to these log n� 1 forests gives us the desired logn-sized non-stretch treecover. Note that it was not important that two components were created by the separator; thetechnique would have worked with many components as well.Note that it is possible to design a better routing scheme for grids. Given two vertices u = (i; j)and v = (i0; j0), there is a shortest path between them that goes from u to w = (i; j0) and then fromw to v. The protocol speci�es how much distance to go without changing the �rst coordinate, andthen how far to go without changing the second coordinate.4.2 Graphs with Small SeparatorsUsing some of the ideas from the previous section, we give a tree cover of size O(r(n) log n) forfamilies of graphs which admit r(n)-sized hierarchical separators. (I.e., these are graphs which canbe separated into pieces of size at most 2n=3 by removing at most r(n) vertices, and any connectedcomponent Gi thus obtained has a separator of size r(jGij), and so on.) It is well-known that forplanar graphs, r(n) = O(pn), and for treewidth-k graphs, r(n) = k. (We shall make the reasonableassumption that r(n) is monotonically increasing.)The idea is very simple: we �rst �nd a separator S of G having size at most r(n). For each ofthe vertices s 2 S, we take the shortest-path tree Ts rooted at S.10



Lemma 4.4 For any pair of vertices u; v 2 T for which the shortest path P connecting themintersects S, there is a tree Ts which contains the shortest path between u and v.Proof: For any such pair of vertices u and v, let P \S contain the vertex s. Then P must be theconcatenation of the shortest path from s to u, and that from s to v. But then both these pathslie in Ts, and hence the claim is proved. (We are implicitly assuming in this proof that there areunique shortest paths; this assumption is purely for convenience and can be discharged in the usualways.)We are now left with G� S, which has components of size at most 2n=3, and we just have toconstruct trees to maintain distances between vertices that lie within these components. Recur-sively, each of these can be done by a family of size r(2n=3) log3=2(2n=3) � r(n)(log3=2 n� 1), andby pairing them up and adding the set of r(n) trees created at this level, we get the claimed coverof r(n) log3=2 n subtrees.Note that for planar graphs, plugging in r(n) = O(pn) and being slightly more careful in theabove analysis gives us a tree cover of size O(pn).4.3 Lower boundsIn this section, we show that the result of the previous section for planar graphs is existentiallytight.Theorem 4.5 There exist length assignments to the edges of the grid so that any tree cover (withstretch 1) is of size 
(pn).Proof: Let G = (V;E) be an n = t � t square grid, where the vertices are (i; j), 1 � i; j � tin the obvious manner. Let � be a small enough positive number (� = 1n will suÆce). Let ebe an edge joining vertices (i; j) and (i0; j0). Then let us de�ne ce, the length of edge e to be1 + 1n (min(i; i0) + (1 + �)min(j; j0)).The basic intuition behind assigning these edge-lengths ce is just symmetry breaking, which isformalized in the following lemma. (We defer the proof of this fact to the appendix.)Lemma 4.6 Given any two vertices in G, there is a unique shortest path between them. Further-more, this shortest path has at most one bend.Let T be a spanning tree of G, and let ST be the set of pairs of vertices (u; v) in V such that Tcontains a shortest path between u and v (with respect to the edge costs ce). In Appendix C, weshow the following key lemma:Lemma 4.7 For any spanning tree of the above grid, jST j is O(t3).Since there are 
(t4) pairs of vertices, this shows that we require 
(t) = 
(pn) trees in the cover,completing the proof.
11



5 Tree Covers for Planar GraphsIn this section, we will show that all planar graphs have stretch-3 tree covers of size O(log n). Thisis in sharp contrast to the results of the previous sections that planar graphs do not have o(pn)sized covers in general if no stretch is allowed, and that general bounded degree graphs do not haveo(n2=3D) sized stretch-D tree covers.5.1 Isometric SeparatorsWe can re�ne the ideas in Section 4.2 to get a O(logn) sized family for all planar graphs. Let us�rst make a few de�nitions: given a graph G = (V;E), a k-part isometric separator is a family Sof k subtrees S1 = (V1; E1); : : : ; Sk = (Vk; Ek) of G such that1. S = [iVi is a 1/3-2/3 separator of G.2. For each i and each pair of vertices u; v 2 Si, dSi(u; v) = dG(u; v). I.e., the each of the subtreesSi contain the shortest paths between their constituent vertices, and hence are isometric tothe restriction of G on Vi.Note that we do not care about the total number of vertices in S; just the number of isometricsubtrees.For instance, any graph having a 1/3-2/3 separator of size r(n) has a trivial r(n)-part isometricseparator, where each Si contains just a single vertex. However, if we look at the proof of the planarseparator theorem [16], it can be inferred that any planar graph has a 2-part isometric separator.Now an extension of the ideas in the previous sections shows the following theorem:Theorem 5.1 For any graph G = (V;E) with r(n)-part isometric separators, there exists a treecover with stretch 3 having O(r(n) logn) trees.Proof: The following algorithm is very similar in spirit to that in Section 4.2. For each of thetrees Si, we contract the vertices of Si and construct a shortest-path tree in the resulting graph,and then expand back the tree Si. The resulting tree is call Ti. Note that Ti contains Si, and theunion of the shortest paths from every other vertex in V � Vi to the subtree Si. This gives us r(n)trees, and we now recurse on the two parts in a by now familiar fashion. It is clear that this processgives us at most r(n) log3=2 n trees.
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b, say). The path P 0 between u and v in Ti can be divided into three sections P 01; P 02; P 03, where P 01is the shortest path from u to Si, P 03 is the shortest path from v to Si, and P 02 is the unique pathin Si connecting the points a and c at which P 01 and P 03 meet Si. (See Figure 4 for an illustration.)For nodes x; y, let [x; y] denote the shortest-path between x and y in G. Now since [u; a] and[v; b] are the shortest paths to Si, dG(u; a) � dG(u; b), and dG(v; c) � dG(v; b). Furthermore, by thefact that [a; c] is the shortest path, dG(a; c) � dG(a; u) + dG(u; v) + dG(v; c). But the length of thepath dTi(u; v) = dG(u; a) + dG(a; c) + dG(c; v)� dG(u; a) + (dG(a; u) + dG(u; v) + dG(v; c)) + dG(c; v)� 2(dG(u; b) + dG(v; b)) + dG(u; v) = 3dG(u; v);which proves the claim.Now using the fact that planar graphs have 2-part isometric separators gives us the followingtheorem:Theorem 5.2 There exists a stretch-3 tree cover of size O(log n) for all planar graphsCorollary 5.3 Given an (L; s) routing scheme for trees, there is an (L log n; s) routing scheme forplanar graphs. This routing protocol has stretch at most 3.Proving such a result for broader classes of graphs still remains open. One of the problems withextending the above approach is that isometric separators are not known for many classes of graphs,even for graphs with small sized separators.5.2 An Application To Small Distance LabelingsIn this section, we give another application of isometric separators. A stretch-D distance labelingscheme is a way of assigning a label l(v) to each vertex v, and specifying a scheme f such that givena graph G, 1 � f(l(u); l(v))=dG(u; v) � D for all pairs of vertices u; v 2 G. This has been studiedin [27, 20, 12].Theorem 5.4 For any planar graph G = (V;E) with diameter diam(G), a stretch-3 distancelabeling scheme with labels of size O(log2 n) bits exists.This result should be contrasted with the result of Gavoille et al. [12] that 
(n1=3) bits arerequired when no stretch is allowed. We should note that it is possible to get a quick-and-dirtyO(log3 n) bit result, by taking the O(logn) tree cover of Theorem 5.2, and using the distancelabeling scheme of Peleg [20] to embed each tree with O(log2 n) bits.Proof of Theorem 5.4: For each vertex, we generate O(log n) coordinates thus: we look at2-part isometric separator S0 of G, which consists of 2 shortest paths P0 and P 00, and let a0 and a00be an endpoint of each of these paths. We will de�ne 2 coordinates for each path. For P0, the �rstcoordinate records the distance of v from P0, and the second records the distance of v0, the closestvertex on P0 from v. Two coordinates are similarly de�ned for P 00. After this, we look at the graphobtained by removing S0, and record the connected component in which v lies in a �fth coordinate(where we have number the components by some consistent canonical order). We now recurse on13
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[26] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proceedings of the 33nd An-nual ACM Symposium on Theory of Computing, 2001. To appear.[27] Peter Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135{139, 1983.A Proofs of Section 2Proof of Theorem 2.1: In the following discussion, let the labels be given by the integersf1; 2; : : : ; L). Consider a graph with the labels as vertices, and draw an edge from j to i if seeinglabel i causes j (among others) to be pushed on the stack. Note that any label that lies on adirected cycle is not useful, since the stack can never empty if this label reaches the top of thestack. Hence, let us look at the set of vertices that do not lie on cycles: they form a DAG.Let us look at a topological sort of this DAG, which (say) places the labels ascending order.Then each label i just corresponds to placing some speci�c number of labels 1; : : : ; i � 1 on thestack, and hence the ordering of the labels on the stack does not make a di�erence. Let ki be thenumber of copies of label i on the stack; hence k1 + k2 + � � �+ kL � s. Since, the ordering of theselabels does not matter, it follows that the number of solutions to this equation, �s+LL �, must be atleast n. Hence s = 
(Ln1=L), proving that the above strategy was optimal up to constants.B Proofs of Section 3B.1 A note on uniform protocols for treesLet us formally de�ne a uniform protocol on a tree. Clearly, we cannot expect each vertex to behaveidentically on each label (as on the line), because di�erent vertices may have di�erent degrees.We assume that there are � special labels, called L�, which are used only for going a distanceof one hop from a vertex, essentially by specifying which of the edges going out of it should betaken. Let L be the set of other labels. For each edge e = fu; vg, the vertex v speci�es anotheredge e0 = fv; wg, such that any packet arriving at v on edge e having a label from L on top of thestack is forwarded along e0 only. Hence each vertex associates an exit edge with each edge e. Theaction of a vertex when it sees a label l 2 L on top of the stack is identical: it places an identicalset of labels on top of the stack and sends the packet along the appropriate exit edge. This is thesense in which the protocol is uniform.B.2 Uniform lower bounds for treesProof of Theorem 3.2: We show that any uniform protocol running on a tree T = (V;E) usingonly O(� + log n) labels must use 
� log2 nlog log n� stack depth. Our lower bound example will be abinary tree. Let T = (V;E) be any binary tree. It is not diÆcult to show that in a binary tree, L�needs to have size 1 only. So, let L� = fl�g.Given two nodes u; v 2 T , let S[u; v] denote the stack depth needed to route a packet from uto v. Given a label l, de�ne Sl[u; v] as the stack depth needed to route a packet from u to v suchthat when the packet reaches v, the top of the stack contains l. If we want to specify a protocolP for routing, then we use the terms Sl[u; v](P) and S[u; v](P). The following lemma follows fromthe de�nition of a uniform protocol. 16



Lemma B.1 Let v 2 T be a node of degree 3 and let C1; C2; C3 be the components of T � fvg.Let vi be the neighbor of v in Ci. Then there exists a j 2 f2; 3g such that given any x1 2 C1 andxj 2 Cj, S[x1; xj ] � Sl� [x1; v] + S[v; xj ]� 1.Proof: Let the neighbors of v be v1; v2; v3, where vi 2 Ci. Consider the edge e = fv1; vg. Supposev speci�es the exit edge for e containing a label in L to be the edge fv; v2g. Now if we want tosend a packet from x1 to x3, it must contain l� on top of stack when it reaches v. Hence the partof this stack which takes the packet from x1 to v contributes to Sl� [x1; v]. The part of the stackbelow l� can actually route from v1 to x3. Adding l� on top of it gives a routing scheme from v tox3. This proves the lemma.Given two vertices u; v in T , we say that they are connected by a straight path if all the internalvertices in the unique path connecting u and v have degree 2. Note that the total number oflabels is �xed to be O(log n). Fix a uniform routing protocol P on T such that there does notexist another protocol P 0 with the following property: for every pair of vertices u; v and label l,Sl[u; v](P 0) � Sl[u; v](P), S[u; v](P 0) � S[u; v](P) and there is a pair u; v and label l such thatSl[u; v](P 0) < Sl[u; v](P).Lemma B.2 Let T contain a straight path of length n0 joining vertices u and v. There exists anx, n0=2 � x � n0, such that if u0; v0 are any two vertices in T connected by a straight path of lengthx, then Sl� [u0; v0] is 
(logn0= log log n0).Proof: Let P be the path joining u and v. Let V 0 be the vertices in P whose distance fromu is between n0=2 and n0. We claim that there is a vertex w 2 V 0 such that Sl� [u;w] is s0 =
(log n0= log logn). Indeed, a simple information theoretic argument, and the fact that we haveonly O(log n) labels implies this fact. Let x be the distance of u from w.Suppose u0 and v0 are two vertices such that there is a straight path joining them of lengthx. Suppose Sl� [u0; v0] < s0. Then the uniformity of P implies that keeping other things the same,we can make Sl� [u;w] < s0. But this contradicts the de�nition of the protocol P, and proves thelemma.Our lower bound instance T will contain a disjoint family of trees. Since we will route withinthese trees and not between them, it suÆces to prove a lower bound in this case. Given a numberx, let Tx denote the complete binary tree of depth 1=6 log n and having x subdivisions on each edge.T is the union of Tx, for x = n1=3; : : : ; 2n1=3. A branching node in Tx will be a node of degree 3. Itis easy to check that T contains at most n nodes.Note that T contains a straight path of length 2n1=3 between two vertices. So, by Lemma B.2,there is n1=3 � x � 2n1=3 such that if u; v are two branching nodes in Tx joined by a straight path,then Sl� [u; v] is 
 (log n0= log log n). Now, iteratively using Lemma B.1, we can demonstrate a pathfrom the root to a leaf y of Tx such that routing from the root of Tx to y requires stack depth
� log2 nlog log n�.C Proofs of Section 4Proof of Lemma 4.6: We will prove the lemma for the slightly di�erent edge weights ce =min(i; i0) + (1 + �)min(j; j0), but it is easy to alter the proof to give the result for the original17



edge-lengths.Consider the vertices in Figure 5. We claim that cost path P1 is less than that of P2. Indeed, costof P1 = (i+1)+(1+�)j+i+(1+�)j = 2i+2(1+�)j+1, while cost of P2 = i+(1+�)(j+1)+i+(1+�)j =2i + 2(1 + �)j + 1 + �. Similarly, cost of P3 = i+ (1 + �)j + i+ (1 + �)j = 2i+ 2(1 + �)j, whereascost of P4 = i+1+ (1+ �)j + i+ (1+ �)(j +1) = 2i+2(1 + �)j +2+ �. Thus, cost of P3 is at mostthat of P4. So, it follows that no shortest path can contain a bend of type P2 or P4. Now, consider
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Figure 6: The straight path is the shortest onevertices whose i or j coordinates are same, then it must contain the straight path joining them.Such a path with no bends of type P2 or P4 of Figure 5 must be a path with at most one bend.This proves the theorem.Proof of Lemma 4.7: We say that a connected path P in T is straight if it does not have anybends and is of maximal length (i.e., adding any other edge of T to P will result in a bend). Let18



P1; : : : ; Pk be the set of all straight paths in T . We denote the vertex set of Pi also by Pi. It iseasy to see that for all i, jPij � t. Furthermore, for any i 6= j, jPi \ Pj j � 1.Construct a new graph T 0 = (V 0; E0) as follows, where V 0 contains one vertex pi for each pathPi. E0 contains an edge joining pi and pj if and only if Pi \ Pj 6= ;. It is not too diÆcult to showthat T 0 is a tree. Furthermore, the following claim follows directly from the property of weights onedges.Claim C.1 Let u; v 2 T , u 2 Pi, v 2 Pj. T preserves the shortest path between u and v only ifi = j or (pi; pj) is an edge in T 0.Let ti = jPij, and de�ne the cost of the tree T 0 to bef(T 0) = Xpi2V 0 t2i + X(pi;pj)2E0(ti � 1)(tj � 1) (C.1)It follows from Claim C.1 that jST j � f(T 0), and so it suÆces to obtain an upper bound on f(T 0).For the rest of the proof, we do not look at the semantics of the sets again, but instead argueabout arbitrary set systems on t2 vertices, where each set Pi is of size ti � t, any two sets intersectin at most one element, and their intersection graph is a tree. For any such intersection tree T 0, weassign weight t2i to each node and (ti�1)(tj �1) to each edge (pi; pj) in T 0. Now f(T 0) be the totalweight of vertices and edges in T 0. We now show the following claim, which proves the theorem.Claim C.2 For any such intersection tree T 0, f(T 0) is O(t3).Proof of Claim C.2: Let us �rst record the following lemma.Lemma C.3 Let pi be a leaf in T 0 and pj be the parent of pi in T 0. Then, either ti � t=2 ortj � t=2. If pj is a degree two node and pi is its unique child, then ti � t=2 or tj � t=2.Proof of Lemma C.3: Suppose ti; tj < t=2. Delete Pi and replace Pj by Pi [ Pj ; it is easy tosee that the tree corresponding to this set system is the tree T 0 with pi deleted (because Pi wasdisjoint from all other sets except Pj). The increase in weight of the tree is greater than(ti + tj � 1)2 � t2i � t2j � (ti � 1)(tj � 1) = 2titj � 2ti � 2tj � titj + ti + tj= (ti � 1)(tj � 1)� 1 � 0:The argument about degree 2 nodes is similar, and is omitted.We say that a leaf pi in T 0 is bad if ti < t=2. Delete all bad leaves from T 0 to get a tree T 00.Then, the lemma above implies that all leaves pi in T 00 have the property ti � t=2. We now claimthat the tree T 00 without the bad nodes has O(t) nodes.Indeed, let I be the index set of those pi such that ti � t=2. We claim that jIj = O(t). To seethis, note that no three of the sets Pi intersect and at most jIj of the pairs of Pi have any pairwiseintersection, since their intersection graph is a forest. Hence the principle of inclusion and exclusionimplies that t2 � j [i2I Pij �Xi2I t=2� jIj = (t=2� 1)jIj:19



Hence there are at O(t) leaves in T 00, which implies in turn that there are O(t) nodes of degree 3or more. Any degree node 2 which has less than t=2 elements can be charged uniquely to its child,which has more than t=2 elements by Lemma C.3.Also, the contribution of cost of edges in T 00 to f(T 0) is at most O(t3), since each edge cancontribute at most t2. The contribution of edges joining a bad leaf to its parent in T 0 is at mostt3, since Pi ti (where the sum is over bad leaves) is at most t2, the bad leaves being all disjoint.Finally, we have to add up vertex contributions. T 00 has O(t) nodes, each having at most telements. So the vertex weight contribution of these vertices is at most O(t3). Finally, the badleaves are all disjoint, so their weights can be bounded by the following fact:Fact C.4 Suppose xi are positive integers such that Pi xi � t2 and xi � t. Then Pi x2i � t3.Summing all these terms up shows that f(T 0) = O(t3), proving the theorem.
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