Traveling with a Pez* Dispenser

(Or, Routing Issues in MPLS)
t

Anupam Guptat Amit Kumar® Rajeev Rastogi!

Abstract

In most conventional network routing protocols, a packet makes its way from source to
destination essentially thus: when a router gets the packet, it analyses the packet header and
decides the next hop for it, and sends on the packet. These decisions are usually based on the
router’s analysis of the contents of the packet header, particularly the destination address, and
each router has to extract out the information relevant to it from the (much longer) packet
header. An alternative proposed to this routing model is MultiProtocol Label Switching or
MPLS [8, 14]. In this, the analysis of the packet (network layer) header is performed just once,
and causes the packet to be assigned a stack of labels, where the labels are usually much smaller
than the packet headers themselves [25, 24]. At each subsequent hop, the router examines the
label at the the top of the label stack, and makes the decision for the next hop based solely on
that label. It can then pop this label off the stack if it so desires, and push on zero or more
labels onto the stack, before sending on the packet. This scheme has a number of advantages,
over conventional routing protocols; the primary ones being a reduced amount of header analysis
allowing faster switching, and also traffic engineering.

Despite the fact that MPLS is becoming widespread on the Internet, we know essentially
nothing at a theoretical level about the performance one can achieve with it, and about the
intrinsic trade-offs in its use of resources. In this paper, we initiate a theoretical study of the
protocol and give routing algorithms and lower bounds in a variety of situations. We first study
the routing problem on the line, where it is already non-trivial; we give routing protocols that
are within constants of the information-theoretic bound for this case. We then extend our results
for paths to trees, and thence onto more general graphs. The technique used for this last step
is that of finding a tree cover of a graph, i.e., a small set of subtrees of the graph such that for
each pair of vertices, one of the trees contains an (almost-)shortest path between them. Our
results showing tree covers of logarithmic size for for planar graphs and graphs with bounded
separators seem to be of independent interest as well.

*Registered trademark of Pez Candy, Inc.

fA preliminary abstract of this work appeared in the Proceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science [13].

tLucent Bell Labs, 600 Mountain Avenue, Murray Hill NJ 07974. Email: anupamg@research.bell-labs.com.
Part of this research was done when this author was visiting Cornell University.

$Department of Computer Science, Cornell University, Ithaca NY 14853. Email: amitk@cs.cornell.edu. Sup-
ported in part by Lucent Bell Labs and the ONR Young Investigator Award of Jon Kleinberg.

TLucent Bell Labs, 600 Mountain Avenue, Murray Hill NJ 07974. Email: rastogi@research.bell-labs.com.

1 Introduction

In most conventional network routing protocols, a packet makes its way from source to destination
in essentially the following way. When a router gets the packet, it analyses the packet header and
decides the next hop for it. These decisions are made locally and independently of other routers,
based solely on the identity of the incoming edge, and the analysis of the packet header, which
contains the destination address. For example, routers using conventional IP forwarding typically
look for a longest-prefix match to the entries in the routing table to decide the next hop. In general,
each router has to extract out the information relevant to it from the (much longer) packet header.
Furthermore, routers are not designed to use information about the source of the packets from
these headers.

An alternative proposed to this routing model by the IETF is called MultiProtocol Label Switch-
ing or MPLS [8, 14]. In this, the analysis of the packet (network layer) header is performed just
once, and causes the packet to be assigned a stack of labels, where the labels are usually much
smaller than the packet headers themselves [25, 24]. At each subsequent hop, the router examines
the label at the the top of the label stack, and makes the decision for the next hop based solely on
that label. It can then pop this label off the stack if it so desires, and push on zero or more labels
onto the stack, before sending it on its merry way. (We shall refer to this as label replacement.)
Note that there is no further analysis of the network layer header by any of the subsequent routers.

There are a number of advantages of this over conventional network layer forwarding, the
obvious one being the above-mentioned elimination of header analysis at each hop. This allows us
to replace routers by simpler fast switches which are capable of doing label lookup and replacement.
Furthermore, since we analyze the header and assign the stack to the packet when it enters the
network, the ingress router may use any additional information about the packet to route packets
differently to satisfy different QoS requirements. For example, data for time-sensitive applications
may be sent along faster but more expensive channels than regular data. Also, the ingress router
can encode information about the source as well as the destination in the labels, which cannot
be done with conventional forwarding. Apart from these factors improving network performance,
it is also much easier to do traffic engineering or network control using MPLS than conventional
routing schemes, since the entire route taken by the packet can be specified very naturally on the
stack [2]. All these reasons have made MPLS very popular among network and router designers,
and companies like Cisco, Juniper, Lucent and Nortel have been developing routers which support
MPLS protocols [6, 19].

Despite the fact that MPLS is becoming widespread on the Internet, we know essentially nothing
at a theoretical level about the performance one can achieve with it, and about the intrinsic trade-
offs in its use of resources. For instance, a pertinent question is the following: What is the depth
of the stack required for routing in an n-node network, and how does this interact with the label
size? We want small-sized labels, since bandwidth reservation in networks is often done by creating
a (virtual) channel for each label. A small number of labels ensures that the traffic is not split
too much, which usually implies a better bandwidth utilization. Furthermore, having a small label
space makes the forwarding procedures simple and hence faster. On the other hand, we want a
small stack size as well, so as to keep the space requirements in the headers small. Obviously, these
goals oppose each other, and their tradeoffs seem non-trivial. Previous papers on routing do not
address such questions, and it is not clear whether the information theoretic bounds are close to
the truth.

@ @ @ @ @ @
co e 5 6 7 8 10

(o]

For all v: f(left, 0) = (right, <>)
fAleft, 1) = (right, <00>)

Figure 1: An example of MPLS routing.

Note that a very important restriction while designing these routing protocols is that the routers
can only look at the top of the stack to decide the next hop (as well as the set of labels to push
on the stack). As an example, consider the following question: if we are given a constant-degree
graph, it is not clear whether shortest-path routing is at all possible when each router looks at
only one label of length O(loglogn) bits, instead of having access to the entire network header of
O(logn) bits. Again, this is clearly a question that needs to be addressed.

In this paper, we initiate a theoretical study of the protocol, and give routing algorithms and
lower bounds in a variety of situations. We first study the routing problems on the line. We then
build up our results from paths through trees to more general graphs. The basic technique to go
to general graphs is that of finding a tree cover, which is a small set of subtrees of the graph such
that for each pair of vertices, one of the trees contains an (almost-)shortest path between them.
The concept of tree covers is interesting in its own right.

The Model: Before we give our results, let us formalize the model. Each packet carries a stack S
of labels. The labels are drawn from a set ¥ of size L, which is identified with the set {1,2,--- ,L}.

The network is an undirected graph G = (V, E), where each node is a router and runs a routing
protocol. If the protocol does not depend of the node on which it is running, the protocol is called
uniform. When a packet reaches a router v on edge e = {u, v}, the router pops the top ¢(S) of the
stack and examines it. (If the stack is empty, the packet should be destined for v.) The protocol
at vertex v is just a function f, : £, x ¥ — (E, x X*), where E, is the set of edges incident to v. If
fu(e, t(S)) = (€¢/,0), the router pushes the string o on the stack, and then sends the packet along
edge ¢'.

A toy example is given in Figure 1 with ¥ = {0,1}. All functions f, are the same; and only the
relevant subset of the actions is shown here. The packet in the example is destined for the vertex
labeled 10. Each node bases its decision on the top (shaded) label and the incoming edge.

Note that there is no bound on the number of labels that can be pushed on and hence, for ease
of exposition, we force the top of the stack be popped off when reaching a router. The quantity
of interest is the maximum stack depth required for routing between any two vertices, which we
denote by s. An (L, s) protocol is one which uses O(L) labels, and has maximum stack-depth O(s).

Our Results: As a first step, we study routing on the path P,, where we show a large gap
between uniform and non-uniform protocols. We show that uniform protocols on the line with L

labels require s = @(Lnl/ L), However, we give a non-uniform protocol using L labels requiring
stack depth O(log; n) only. Note that this is within a constant factor of the information-theoretic
bound.

These protocols serve as building-blocks when we go to arbitrary trees. We use them in con-
junction with the so-called caterpillar decomposition [18, 15] of trees into paths to get a (A +
k, kn/* log n) uniform protocol, and a (A + , lfog;]?) non-uniform protocol. In the case of uniform
protocols, we prove an almost matching lower bound when £ is O(log n). (Note that if the maximum
degree of a tree is A, then we clearly require at least A — 1 labels.) Note that the latter protocol
can give us stack depth O(log?n/loglogn) with A + O(logn) labels: we improve this non-uniform
protocol to get a (A + loglogn,logn) protocol as well.

Finally, we turn to the case of general graphs. Here, we use the protocols for trees as our basic
tools. We define a tree cover of a graph, which is a small set of subtrees of the graph such that
for each pair of vertices, one of the trees contains an (almost-)shortest path between them. (See
Definition 4.1 for a formal definition.) If we have a graph with a tree cover with ¢ trees, we can
run the tree routing algorithm on the appropriate tree. Note that we lose just a factor of ¢ in the
number of labels by this idea. Unfortunately, it can be shown that general graphs do not have
(logn)-sized tree covers unless the trees are allowed to stretch distances by Q(logn).

Since a non-constant stretch is inadmissible in our applications, we look at special classes of
graphs, and as our first result, show that graph families with r(n)-sized balanced vertex-separators
have O(r(n)logn) sized tree covers with no stretch. This result also gives O(y/n)-sized tree covers
for planar graphs, which we show tight by exhibiting a simple length-assignment to the edges of
the n-vertex grid. However, we then go on to show that allowing a small stretch (of 3) improves
matters considerably: we can find a O(logn) sized tree cover for all planar graphs. The proof of
this fact uses the Lipton Tarjan planar separator theorem [16] in a novel way, which we feel may
have other implications.

As the above discussion indicates, our algorithms are extremely modular in nature, and hence
improvements in routing strategies for (say) the path will result in improvements for trees and
graphs. Furthermore, though we have made no significant efforts to optimize constants, the con-
stants involved are small, and hence the algorithms can be implemented in practice.

Previous Work: Distributed packet routing problems in networks has been widely studied, e.g.,
see [9, 10, 23, 22, 7], or [11] for a survey of some of the issues and techniques. In these papers,
the emphasis has been to reduce the sizes of the routing tables and the sizes of the packet headers
while performing near-shortest path routing. Our work is incomparable to this line of work. In
MPLS, setting up the initial stack may require more memory than conventional routing problems,
but once the stack is set up, the memory needed by each router to just forward the packets is very
small. For example, in traditional routing on planar networks, the best result known for minimizing
the total memory (i.e., summed over all the routers) is O(n*?). In our case, setting up the stack
requires more memory, but for just forwarding the packet, the total memory required is O(n)
Furthermore, many previous results giving small storage allow the vertices to be labeled by the
algorithm, whereas we make no assumptions on the vertex names.

There has also been substantial work on finding sparse spanners of graphs [1, 5]. However, these
results are interesting only when the graph is not sparse, whereas the problems we address in this
paper are non-trivial even for bounded degree graphs.

Another different (but related) large corpus of work has focussed on the problem of distance

labeling of graphs [27, 20, 12]. Distance labeling problem involves assigning short labels to vertices,
so that an algorithm given the labels of any two vertices in the graph can deduce the shortest
distance between them. (Note that the algorithm does not have any other knowledge of the graph).
The techniques used in both this problem as well as ours are similar, often involving finding good
separators of graphs; however, the scope of the problems are quite different. Indeed, distance
labeling precludes any knowledge of the global structure of the graph, and hence the label sizes
are usually in the range of ©(logn). In the case of MPLS, however, the graph structure is known,
and the challenge lies in local routing algorithms that look at a much smaller set of bits, i.e.,
O(loglogn), or even a constant number of bits, to decide where the packet should be sent. This
makes MPLS routing for even the path to be non-trivial, whereas the distance labeling problem is
quite simple for this case. Furthermore, merely having an small stretch distance labeling scheme
does not appear to give us routing protocols in which packets travel along near-shortest paths.

However, we note that some of our MPLS results can be used to improve known results on
distance labelings. In the case of planar graphs, we can use our ideas to get a stretch-3 distance
labelings of size O(log?n) for planar graphs. Previously, no sub-polynomial labeling schemes were
known for planar graphs (even with constant distortion) [12].

A recent paper of Thorup and Zwick [26] gives constructions of a slightly different variety of
tree covers. Though their definitions differ from ours, they can also be used for MPLS routing.
Their results imply that for general graphs, there exist tree covers of size O(nl/ k) with stretch
O(k). This gives an MPLS routing scheme with O(nl/ k) labels, poly-logarithmic stack depth and
stretch O(k). We, however, concentrate on cases where it is possible to get poly-logarithmic stack
depth and labels, and constant stretch.

2 Routing on the line

In this section, we give shortest-path routing schemes for the path graph P,. This is the basic
building block which we shall use to route on trees in the next section. We give two routing
strategies, depending on whether nodes are allowed to have different routing protocols or not.
We show that if the routers must run the same protocol, then the stack depth goes as @(Lnl/ Ly,
however, if they are allowed to use the information of their own position, then a very simple strategy
allows us to have s = O(log; n), which is within constants of the best possible.

2.1 Uniform protocols

In this case, we assume that each router must run the same protocol. To achieve the upper bound
of O(Lnl/ L), we have the following simple strategy: nothing is pushed onto the stack when a 1 is
seen, and seeing an ¢ > 1 causes n'/L copies of (1 — 1) to be pushed onto the stack. It is easy to
see that the total stack depth need only be Ln'/L. The following theorem, whose proof is in the
appendix, shows that the construction is tight up to constants.

Theorem 2.1 Any uniform routing protocol must require a stack depth of Q(Lnl/L).This bound
can be achieved by the scheme outlined above.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: Specifying the routing protocol for the path Pig.

2.2 Non-uniform protocols

Interestingly, the case for non-uniform protocols, where each vertex can run a different protocol, the
relationship between s and L is much closer to the information-theoretic bound. We will consider
the case when L = 2: in this case, it is easy to see that the stack depth must be Q(logn) for us
to encode n distinct addresses. Since the direction of travel of the packet is decided by which edge
it enters the vertex, it is enough to give a procedure to send a packet from left to right. Let the
vertices on the path P, be numbered 0,1,... ,n — 1, and let the two labels be 0 and 1. Direct all
edges in P, from left to right, and assign label 0 to these edges. Now add some new directed edges
E' to this graph, each edge in E’ being also directed from left to right, such that each vertex v
has at most one edge in E’ going out of it. Assign each edge in E’ the label 1. It can be shown
that there is a way of constructing E’ such that the edge set E' U P, satisfies the following two
properties :

e Low-diameter Property: For any two vertices u < v, there is a directed path from u to v of
length at most 3 logn.

e Nesting Property : Let u < u' < u” be three distinct vertices on the line ordered from left to
right. If (u,u”) and (u',v") are two directed edges in E’, then v" does not lie to the right of
u”, ie., v < u”. Essentially, no two edges in E' cross each other; either they span disjoint

portions of the line, or one is contained within the other.

One such example for n = 16 is shown in Figure 2, where the solid edges are labeled 0, and
the dotted edges are labeled 1. Note the recursive structure of the construction: to build a graph
Gyr on 2F nodes, take 2 copies of the graph Gyr—1 on 257! nodes and attach them in series. (A
graph on 2 nodes is just a single arc.) This gives a graph on 2¥ — 1 vertices. Now we take a new
vertex and attach it to the leftmost vertex by an arc labeled 0, and to the rightmost vertex by an
arc labeled 1. This new vertex becomes vertex 0 in the new graph Gor, and the other vertices get
suitably renumbered. In general, a graph G,, on n nodes is obtained by taking a graph on 2logz n]
nodes, and retaining only the leftmost n nodes.

The nesting property ensures the following fact in P, U E' for shortest paths defined in terms
of the number of hops:

Lemma 2.2 Let u < u' <v' <w be four distinct nodes on the line P,. If the shortest path P from
u to v in P, UE' contains v', then the shortest path from u' to v contains v'.

Proof: Suppose the shortest path P’ from u' to v does not contain v’. Let e = (w,w') be an
edge in P’ such that w < v' < w' (clearly, such an edge must exist). We claim that P must contain
w. If not, since u < w < v, P must contain an edge ¢’ = (z,z') such that © < w < 2. Further,
z' < v’ since P contains v'. But now e and ¢’ violate the nesting property, and hence P contains
w. Also, the portion of P from w to v must be the shortest path from w to v. Since we know that
P’ contains w, replacing the portion of P’ after w by that of P, we again get a shortest path P”
from u' to v which contains v'. This proves the lemma. []

We next describe the actual routing protocol. Given a node u and a stack of labels ly,... I,
(Ip being on the top), we define the path defined by the stack by the sequence of edges obtained by
starting from u» and following the edges labeled [y, ... ,[,. If u wants to send a packet to node v
(u < v), the stack is initialized so that the path defined by the stack is a shortest path from u to v.
Furthermore, we maintain the invariant that when a node v’ receives the packet, the path defined
by the stack at that point is a shortest path from v’ to v. Now the Low-diameter property ensures
that the stack depth is at most 3logn.

We now show how to maintain the invariant. Let the packet be at v’ and let the edges labeled
0 and 1 originating from u’ be ey = (v/,4”) and e; = (u/,u") respectively. (If there is no label 1
edge from u/, the argument gets even simpler). Note that edge e¢g € P and e; € E’. Thus, a packet
can be forwarded along ey but not along e;. Suppose the top of the stack contains label 0. Then
u' simply pops this label and sends the packet to «”, which must be the next vertex on the path.
Since the path defined by the stack when it was at u’ contained u”, it is easy to show that the path
defined by the stack when it is at u” is also a shortest path from u” to v. Otherwise, the top of the
stack has a 1. In this case, u’ pops this label and pushes a set of labels which encode a shortest
path from " to u”. Lemma 2.2 ensures that the shortest path from u” to v contains v as an
intermediate node, which implies that the path defined by the stack when it reaches " is also a
shortest path from u” to v, maintaining the invariant.

In fact, the above process to forward a packet so as to maintain the invariant is extremely
simple. As always, if a router gets a packet, and the stack is not empty, it performs the actions
described below and sends it out on the other edge. Each router pops off a 0 if it sees one on top of
the stack; the difference is in the handling of the 1’s. If the router has outdegree 1, it just pops off
the 1 (and in fact, such a vertex will never see a 1); if it has outdegree 2, it replaces it by two 1’s.

The following theorem follows from the above discussion:

Theorem 2.3 There is a non-uniform protocol for routing on the n-vertex path which uses 2 labels
and stack depth at most 3logn.

It is trivial to encode the top O(log L) labels on the stack in a label of size L, and hence we can
use the above protocol to get the following theorem:

Theorem 2.4 There is a non-uniform protocol for routing on the n-vertex path which uses L labels
and stack depth at most O(logy n), which is within a constant factor of the information-theoretic
bound.

3 An algorithm for trees

In this section, we consider the problem of routing on trees. Since we already have developed
algorithms for the line that are within constants of the best possible, we first show how to use them
to get protocols for trees. We then refine these to get better tradeoffs.

Let the tree be T, and let it be rooted at r. All the algorithms use the so-called caterpillar
decomposition of a tree into edge-disjoint paths. The caterpillar dimension [18, 15] of a rooted
tree T, henceforth denoted by x(T'), is defined thus: For a tree with a single vertex, x(7') = 0.
Else, k(T) < k + 1 if there exist paths P, P, ..., P; beginning at the root and pairwise edge-
disjoint such that each component T of T — E(P;) — E(P) — ... — E(P;) has (T}) < k, where
T — E(P,) — E(P;) —... — E(F;) denotes the tree T" with the edges of the P;’s removed, and
the components T} are rooted at the unique vertex lying on some F;. The collection of edge-
disjoint paths in the above recursive definition form a partition of E, and are called the caterpillar
decomposition of T'. It is simple to see that the unique path between any two vertices of T" intersects
at most 2k(7T") of these paths. It can also be shown that x(7') is at most logn (see, e.g., [18]).

Now, given a pair of vertices to route between, there are O(logn) paths to travel on, and O(log n)
changes of paths to specify. Hence, if we have a (L, s) routing protocol for the line, we could get a
(A(T') + L, sk(T)) protocol for the tree. Plugging in the values from the previous section, we get
the following theorem. (See the Appendix B for a formal definition of uniform protocols for trees.)

Theorem 3.1 Given a tree T with mazimum degree A, there exists a (A + k, kn'/*x(T)) uniform
routing protocol and a (A + k, (log, n) k(1)) non-uniform routing protocol for T'.

In the Appendix, we also prove the following almost matching lower bound for k& = logn.

Theorem 3.2 There exists a binary tree T such that any uniform routing protocol with O(logn)

labels requires stack depth Q((%jg—%)

Note that for k& = 2, we have a (A + 2,log?n) non-uniform protocol, and for k¥ = logn and
constant A, the worst case guarantees for both these algorithms are approximately (logn,log?n).
The results of the next section show how to get a much better result in the non-uniform case.

3.1 Improved Non-Uniform Protocols

Interestingly enough, we can improve the non-uniform routing algorithm of the previous section,
keeping the stack depth at O(logn), and get a label size of O(loglogn). Let k = [logyn]|. We will
prove the following lemma by induction on n (where ¢ is the constant in Theorem 2.3):

Lemma 3.3 We can route a packet from the root r to any node in T by using at most 2log k + A
labels, and stack depth at most 6¢ck.

As before, A of the labels are used to decide which branch to take when changing paths. For
the proof, we shall indicate how the rest of the 2logk = 2loglogn labels can be used for the rest
of the routing.

Proof: The base case follows trivially from Theorem 2.3. To show the inductive step, we use the
following fact, which we refer to as the halving property for caterpillar decompositions. One can

~T

W)

Figure 3: Proof of Lemma 3.3. Vertices marked by squares belong to V.

find a decomposition of size O(logn) with the following property: If Pp,..., P, be all the paths
originating at the root r, then for any vertex v € P;, any connected component of 7" — {v} not
containing a node of P; has at most |n/2]| nodes. (The proofs of [18, 15] show such a construction.)
We will assume this property of our caterpillar decomposition.

Let us fix a path P; in the caterpillar containing . We show how to route a packet from r to
any descendant of a node in P; — {r}. If we show that the conditions of the lemma hold for this
path, the lemma in general follows from the fact that the paths Py, ... , P; are disjoint except at 7.

Consider a vertex v € P;—{r}, and let V' be the children of v which are not in P; (see Figure 3).
Define T'(v) rooted at v to be the subtree containing v, the subset of its children V' just defined,
and all the descendents of V'. Observe that if v # w € P;, then T'(v) and T'(w) are disjoint. We
define t(v), the indez of a node v, to be [logy |T'(v)|]. Let I(j) be the set of nodes in P; — {r} with
index j. Note that if t(v) = j, then |T'(v)| > 24¥)=1, and since all these trees T'(v) are disjoint, it
follows that there are at most 2¢=7*! nodes in I(j).

We now form log k supergroups, each supergroup formed by the union of several I(j)’s. For each
p=0,...,logk, the supergroup Z(p) is the union of the groups I(k — 2Pt +2),... I(k—2P +1).
The number of nodes in Z(p) is maximum when all these nodes come from I(k — 2P*! + 2), and
so Z(p) contains at most 2241 nodes. We divide the labels L into log k sets, L1, ..., Liogk, with
each L; containing 2 labels. The labels in L, are used to route from r to nodes only in Z(p). If
any node in P; that does not lie in Z(p) sees a label in L, on top of the stack, it merely forwards
the packet to its child on ;. Theorem 2.3 now implies that we can use the labels in L, to route
from r to all nodes in Z(p) using a stack depth of at most ¢(2P*! +1). Note that this requires only
2log k labels.

Now consider the case when r wants to send a packet to v € T'(v). Suppose v € I(j) and
I(7) € Z(p). The top part of the stack contains labels that send the packet from r to v, requiring
a stack depth of at most c(2P™! 4 1). Let v' € V' be the child of v such that u is a descendant
of v'; the next symbol on the stack is one of the A labels that cause v to send the packet to v'.
The remaining part of the stack specifies how to route from v’ to u. Let 7" be the subtree rooted
at v', and j' be the smallest integer such that j' = [log|T"|]. Clearly, ;' < k — 2P + 1; also, the
halving property of the caterpillar decomposition implies that j* < k — 1. By induction, the stack
depth needed is at most 6¢;’. Hence the total stack depth needed is at most 2¢2P + ¢+ 1 4 6¢j’ <
2¢2P + ¢+ 2c(k — 2P + 1) + 1+ 4ce(k — 1) = 6¢ck + ¢+ 2¢ + 1 — 4¢ < 6¢k. This proves the desired

result. []

Though we have been showing how to route packets starting at the root, the same algorithm
can actually send packets from any vertex to its descendent with stack depth O(logn). Note that to
send a packet from v to an arbitrary vertex u, if we could first route to the least common ancestor
of w and v, we would have reduced the problem to the solved case of routing to a descendent.
However, this is fairly simple: to route to lca(u,v), we note that the packet is always traveling in
the upwards direction, and hence this is isomorphic to the problem of routing on a line, which we
can do with 2 labels and O(logn) stack depth using the scheme of Theorem 2.3. This concludes
the proof of the following theorem:

Theorem 3.4 There exists a (A + loglogn,logn) non-uniform routing protocol for trees.

4 Covering graphs by trees

There are several problems to extending the above scheme to route in arbitrary graphs: the shortest
paths between vertices are not unique, they intersect in non-trivial ways, and hence it is difficult to
come up with a useful notion of a path decomposition. However, if we could find a set of k£ subtrees,
such that for each pair of vertices, there was a tree in this set that maintained the shortest path
distance between them, we could use this for routing. This would just involve specifying which of
these trees we were routing on, which would cause the number of labels to increase by a factor of
k. Of course, we could relax the distance condition to allow distances to be stretched by a small
factor even in the best tree. Motivated by this, we define a tree cover of a graph:

Definition 4.1 Given a graph G = (V,E), a tree cover (with stretch D) of G is a family F
of subtrees {T1,T5,... , T} of G such that for every u,v € V, there is a tree T; € F such that
dr, (u,v) < Ddg(u,v).

The following theorem follows immediately from the discussion above.

Theorem 4.2 Let there be an (L, s) protocol for routing on trees. Let F be a tree cover of G with
stretch D. Then, there is an (L|F|,s) protocol for G. This protocol has stretch D, i.e., given any
pair of vertices u,v € V, this protocol routes from u to v on a path which has length at most D
times the shortest path between u and v.

Note that, since each tree is a subtree of G, dg(u,v) < dr,(u,v). When D = 1, we often say
that there is no stretch; furthermore, in this case, we will often omit mentioning the stretch.

Tree covers have been previously defined and used for conventional routing applications in [4, 3]
(see also [21]). Note that this definition of tree covers is slightly different from previous definitions,
since it does not place a restriction on the number of trees in which a vertex appears, but instead
places a uniform restriction on the number of trees in the family.

Of course, it is easy to see that the size of a tree cover may be large: if we require a stretch 1
tree cover for the complete graph K,,, the union of the 7; must cover every edge, and hence Q(n)
trees are required. By the trick of replacing the edges incident to a vertex by a (weighted) binary
tree, it can be seen that a lower bound of ©(n) holds even for degree-3 graphs.

As for lower bounds for covers with stretch: there are explicit constructions of graphs with
Q(n'+4/(9-6)) edges which have girth g [17]. For these graphs, if we want a stretch less than g, the

union of our 7; must also contain every edge of such a graphs. Hence we can get a lower bound of
Q(n4/ (3D *6)) for covers of stretch D — 1. A case of particular interest is when D = 4, for complete
bipartite graphs show that stretch-3 covers may require Q(n) trees. (A trick similar to that alluded
to above shows a similar result for bounded-degree graphs.)

In view of these general negative results, the question of interest is to find families of graphs
for which we can find small tree covers. In this section, we study the problem of finding small tree
covers for families of graphs with small sized vertex separators. For example, for planar graphs,
we know that separators of size O(y/n) exist, while bounded tree-width graphs have constant-sized
separators.

4.1 Unit weighted grid

Before we present the constructions for small-separator and planar graphs, let us give the following
simple result :

Theorem 4.3 The unit-weighted grid has tree covers of size O(logn).

Proof: Let the vertices be referred to in the usual way as (4, 7) for 1 <i,5 < y/n. Now consider
the tree T' defined by the union of the paths P = {(/n/2,7)|1 < j < /n)} and P; = {(i,)|1 <
i < y/n)} for all j. It is easy to check that for any two vertices that lie in different halves of the
grid defined by the vertical path, the shortest path lies in T'.

Now to find paths between vertices which lie in the same half, we recurse on both the smaller
grids. (Note that a similar construction would work for rectangular grids as well, and so the
recursion is well-defined.) Inductively, we get two families of at most ¢ = log(n/2) forests, one
for each part; let them be F|,F},... ,F/, and F{,F),... F]' respectively. Note that defining
F; = F] U F/' gives us t forests of the original graph G (since F; and F]" are vertex disjoint), and
hence adding the tree T" to these logn — 1 forests gives us the desired log n-sized non-stretch tree
cover. Note that it was not important that two components were created by the separator; the
technique would have worked with many components as well. [|

Note that it is possible to design a better routing scheme for grids. Given two vertices u = (%, j)
and v = (7', 4'), there is a shortest path between them that goes from u to w = (4, j') and then from
w to v. The protocol specifies how much distance to go without changing the first coordinate, and
then how far to go without changing the second coordinate.

4.2 Graphs with Small Separators

Using some of the ideas from the previous section, we give a tree cover of size O(r(n)logn) for
families of graphs which admit r(n)-sized hierarchical separators. (I.e., these are graphs which can
be separated into pieces of size at most 2n/3 by removing at most r(n) vertices, and any connected
component G; thus obtained has a separator of size r(|G;|), and so on.) It is well-known that for
planar graphs, r(n) = O(y/n), and for treewidth-k graphs, r(n) = k. (We shall make the reasonable
assumption that r(n) is monotonically increasing.)

The idea is very simple: we first find a separator S of G having size at most r(n). For each of
the vertices s € S, we take the shortest-path tree T rooted at S.

10

Lemma 4.4 For any pair of vertices u,v € T for which the shortest path P connecting them
intersects S, there is a tree Ts which contains the shortest path between u and v.

Proof: For any such pair of vertices u and v, let P NS contain the vertex s. Then P must be the
concatenation of the shortest path from s to u, and that from s to v. But then both these paths
lie in T, and hence the claim is proved. (We are implicitly assuming in this proof that there are
unique shortest paths; this assumption is purely for convenience and can be discharged in the usual
ways.)]

We are now left with G — S, which has components of size at most 2n/3, and we just have to
construct trees to maintain distances between vertices that lie within these components. Recur-
sively, each of these can be done by a family of size r(2n/3) logs /5(21/3) < r(n)(logs/, n — 1), and
by pairing them up and adding the set of r(n) trees created at this level, we get the claimed cover
of r(n) logs /o n subtrees.

Note that for planar graphs, plugging in r(n) = O(y/n) and being slightly more careful in the
above analysis gives us a tree cover of size O(y/n).

4.3 Lower bounds

In this section, we show that the result of the previous section for planar graphs is existentially
tight.

Theorem 4.5 There exist length assignments to the edges of the grid so that any tree cover (with
stretch 1) is of size Q(y/n).

Proof: Let G = (V,E) be an n = t x t square grid, where the vertices are (i,7), 1 < 4,5 <t
in the obvious manner. Let € be a small enough positive number (¢ = % will suffice). Let e
be an edge joining vertices (i,7) and (i',j’). Then let us define c., the length of edge e to be
1+ 2 (min(4,7') + (1 + €) min(j, j)).

The basic intuition behind assigning these edge-lengths c, is just symmetry breaking, which is
formalized in the following lemma. (We defer the proof of this fact to the appendix.)

Lemma 4.6 Given any two vertices in G, there is a unique shortest path between them. Further-
more, this shortest path has at most one bend.

Let T be a spanning tree of G, and let St be the set of pairs of vertices (u,v) in V' such that T
contains a shortest path between u and v (with respect to the edge costs c.). In Appendix C, we
show the following key lemma:

Lemma 4.7 For any spanning tree of the above grid, |St| is O(t3).

Since there are Q(t*) pairs of vertices, this shows that we require Q(t) = Q(y/n) trees in the cover,
completing the proof. [|

11

5 Tree Covers for Planar Graphs

In this section, we will show that all planar graphs have stretch-3 tree covers of size O(logn). This
is in sharp contrast to the results of the previous sections that planar graphs do not have o(y/n)
sized covers in general if no stretch is allowed, and that general bounded degree graphs do not have
0(n?/3P) sized stretch-D tree covers.

5.1 Isometric Separators

We can refine the ideas in Section 4.2 to get a O(logn) sized family for all planar graphs. Let us
first make a few definitions: given a graph G = (V, E), a k-part isometric separator is a family S
of k subtrees S1 = (V1, E1),...,Sk = (Vi, Ex) of G such that

1. S =U,V; is a 1/3-2/3 separator of G.

2. For each i and each pair of vertices u,v € S;, dg, (u,v) = dg(u,v). Le., the each of the subtrees
S; contain the shortest paths between their constituent vertices, and hence are isometric to
the restriction of G on Vj.

Note that we do not care about the total number of vertices in S; just the number of isometric
subtrees.

For instance, any graph having a 1/3-2/3 separator of size r(n) has a trivial r(n)-part isometric
separator, where each 5; contains just a single vertex. However, if we look at the proof of the planar
separator theorem [16], it can be inferred that any planar graph has a 2-part isometric separator.
Now an extension of the ideas in the previous sections shows the following theorem:

Theorem 5.1 For any graph G = (V, E) with r(n)-part isometric separators, there exists a tree
cover with stretch 3 having O(r(n)logn) trees.

Proof: The following algorithm is very similar in spirit to that in Section 4.2. For each of the
trees S;, we contract the vertices of S; and construct a shortest-path tree in the resulting graph,
and then expand back the tree S;. The resulting tree is call 7;. Note that 7; contains .S;, and the
union of the shortest paths from every other vertex in V' — V; to the subtree S;. This gives us r(n)
trees, and we now recurse on the two parts in a by now familiar fashion. It is clear that this process
gives us at most r(n)logs/, 1 trees.

Figure 4: Proof of small stretch in theorem 5.1

What remains to be shown is that, for each pair of vertices, there is a tree which maintains
distances between them to within a factor of 3. The proof mimics that of Theorem 4.4. Counsider
a pair of vertices u,v for which the shortest path P between u and v intersects some S; (at point

12

b, say). The path P’ between v and v in T; can be divided into three sections P{, Py, Pj, where P]
is the shortest path from u to S;, Pj is the shortest path from v to S;, and Pj is the unique path
in S; connecting the points a and ¢ at which P| and P; meet S;. (See Figure 4 for an illustration.)

For nodes z,y, let [z,y] denote the shortest-path between z and y in G. Now since [u, a] and
[v, b] are the shortest paths to S;, dg(u,a) < dg(u,b), and dg(v,c) < dg(v,b). Furthermore, by the
fact that [a,] is the shortest path, dg(a,c) < dg(a,u) + dg(u,v) + dg (v, c). But the length of the
path

dr, (u,v) = dg(u,a) + dg(a, c) + de(c,v)
<dg(u,a) + (dg(a,u) + dg(u,v) + dg(v,c)) + da(c,v)
< 2(dg(u,b) + dg(v, b)) + da(u, v) = 3dg (u, v),

which proves the claim. [|

Now using the fact that planar graphs have 2-part isometric separators gives us the following
theorem:

Theorem 5.2 There exists a stretch-3 tree cover of size O(logn) for all planar graphs

Corollary 5.3 Given an (L, s) routing scheme for trees, there is an (Llogn,s) routing scheme for
planar graphs. This routing protocol has stretch at most 3.

Proving such a result for broader classes of graphs still remains open. One of the problems with
extending the above approach is that isometric separators are not known for many classes of graphs,
even for graphs with small sized separators.

5.2 An Application To Small Distance Labelings

In this section, we give another application of isometric separators. A stretch-D distance labeling
scheme is a way of assigning a label [(v) to each vertex v, and specifying a scheme f such that given
a graph G, 1 < f(l(u),l(v))/dg(u,v) < D for all pairs of vertices u,v € G. This has been studied
in [27, 20, 12].

Theorem 5.4 For any planar graph G = (V, E) with diameter diam(G), a stretch-3 distance
labeling scheme with labels of size O(log? n) bits exists.

This result should be contrasted with the result of Gavoille et al. [12] that (n'/?) bits are
required when no stretch is allowed. We should note that it is possible to get a quick-and-dirty
O(log®n) bit result, by taking the O(logn) tree cover of Theorem 5.2, and using the distance
labeling scheme of Peleg [20] to embed each tree with O(log?n) bits.

Proof of Theorem 5.4: For each vertex, we generate O(logn) coordinates thus: we look at
2-part isometric separator Sy of G, which consists of 2 shortest paths Py and PJ, and let ag and aj
be an endpoint of each of these paths. We will define 2 coordinates for each path. For Py, the first
coordinate records the distance of v from Py, and the second records the distance of vy, the closest
vertex on Py from v. Two coordinates are similarly defined for Pj. After this, we look at the graph
obtained by removing Sy, and record the connected component in which v lies in a fifth coordinate
(where we have number the components by some consistent canonical order). We now recurse on

13

this component containing v. Note that if v was in the separator, the rest of the label would have
0’s.

For the decoding function f(u,v), we look at the first level in which the two vertices lie in
different components. For each of the recursive levels till that point, and for each pair of coordinates
corresponding to either shortest-path at that level, we do the following: we add the distance of u
and v from the the path, and to this we add the absolute value of the difference of their distances
from the chosen endpoint. Finally, we take the minimum among all these values. Using an argument
similar to the one used in Theorem 5.2, it is not difficult to show that this minimum is within 3 of
the distance between v and v. [|

Acknowledgments

Many thanks to Jon Kleinberg, Bruce Shepherd, Eva Tardos, Peter Winkler, and Francis Zane for
discussions and helpful comments. Thanks to Peter also for suggesting the title of the paper.

References

[1] Ingo Althofer, Gautam Das, David Dobkin, Deborah Joseph, and Jose Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81-100, 1993.

[2] Daniel O. Awduche. MPLS and traffic engineering in IP networks. IEEE Communications
Magazine, December 1999.

[3] Baruch Awerbuch, Shay Kutten, and David Peleg. On buffer-economical store-and-forward
deadlock prevention. In Proceedings of the IEEE INFOCOM, pages 410-414, 1991.

[4] David Peleg Baruch Awerbuch. Routing with polynomial communication-space trade-off.
SIAM Journal of Discrete Mathematics, 5(2):151-162, 1992.

[6] Barun Chandra, Gautam Das, Giri Narasimhan, and Jose Soares. New sparseness results on
graph spanners. International Journal of Computational Geometry & Applications, 5(1-2):125—
144, 1995.

[6] CISCO MPLS web page. http://www.cisco.com/warp/public/732/Tech/mpls/.

[7] Lenore Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170-183,
2001. (Preliminary version in 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 255-260, 1999).

[8] Bruce Davie and Yakov Rekhter. MPLS: Technology and Applications. Morgan Kaufmann
Publishers, 2000.

[9] Greg N. Frederickson and Ravi Janardan. Designing networks with compact routing tables.
Algorithmica, 3:171-190, 1988.

[10] Greg N. Frederickson and Ravi Janardan. Efficient message routing in planar networks. STAM
Journal on Computing, 18(4):843-857, 1989.

14

[11]

[12]

[13]

[18]

[19]

[20]

22]

23]

[24]

[25]

Cyril Gavoille. Routing in distributed networks: Overview and open problems. ACM SIGACT
News - Distributed Computing Column, 32(1):36-52, March 2001.

Cyril Gavoille, David Peleg, Stephane Perennes, and Ran Raz. Distance labeling in graphs. In
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 210—
219, 2001.

Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Routing issues in MPLS (or how to travel
with a Pez dispenser). In Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, pages 148-157, 2001.

MPLS Charter. http://www.ietf.org/html.charters/mpls-charter.html.

Nathan Linial, Avner Magen, and Michael Saks. Trees and Euclidean metrics. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, pages 169-177, 1998.

Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
J. Appl. Math., 36(2):177-189, 1979.

G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their
applications in the construction of expanders and concentrators. Problems in Information
Transmission, 24(1):51-60, 1988.

Jifi MatouSek. On embedding trees into uniformly convex Banach spaces. Israel Journal of
Mathematics, 114:221-237, 1999. (Czech version in : Lipschitz distance of metric spaces, C.Sc.
degree thesis, Charles University, 1990).

Nortel MPLS web page.
http://www.nortelnetworks.com/corporate/technology/mpls/index.html.

David Peleg. Proximity-preserving labeling schemes and thei applications. In 25th Workshop
on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science 1665,
pages 30—41, 1999.

David Peleg. Distributed computing. Society for Industrial and Applied Mathematics (STAM),
Philadelphia, PA, 2000. A locality-sensitive approach.

David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J.
Assoc. Comput. Mach., 36(3):510-530, 1989.

David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages 43-52, 1998.

Eric C. Rosen, Dan Tappan, Yakov Rekhter, Guy Federkow, Dino Farinacci, Tony Li, and Alex
Conta. MPLS label stack encoding (RFC 3032). http://www.ietf.org/rfc/rfc3032.txt,
January 2001.

Eric C. Rosen, Arun Viswanathan, and Ross Callon. MultiProtocol Label Switching architec-
ture (RFC 3031). http://www.ietf.org/rfc/rfc3031.txt, January 2001.

15

[26] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proceedings of the 33nd An-
nual ACM Symposium on Theory of Computing, 2001. To appear.

[27] Peter Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135-139, 1983.

A Proofs of Section 2

Proof of Theorem 2.1: In the following discussion, let the labels be given by the integers
{1,2,...,L). Consider a graph with the labels as vertices, and draw an edge from j to i if seeing
label i causes j (among others) to be pushed on the stack. Note that any label that lies on a
directed cycle is not useful, since the stack can never empty if this label reaches the top of the
stack. Hence, let us look at the set of vertices that do not lie on cycles: they form a DAG.

Let us look at a topological sort of this DAG, which (say) places the labels ascending order.
Then each label 4 just corresponds to placing some specific number of labels 1,... ,¢ — 1 on the
stack, and hence the ordering of the labels on the stack does not make a difference. Let k; be the
number of copies of label ¢ on the stack; hence k1 + ko + -+ - + kr < s. Since, the ordering of these
labels does not matter, it follows that the number of solutions to this equation, (SEL), must be at

least n. Hence s = Q(Lnl/ L), proving that the above strategy was optimal up to constants. [|

B Proofs of Section 3

B.1 A note on uniform protocols for trees

Let us formally define a uniform protocol on a tree. Clearly, we cannot expect each vertex to behave
identically on each label (as on the line), because different vertices may have different degrees.

We assume that there are A special labels, called La, which are used only for going a distance
of one hop from a vertex, essentially by specifying which of the edges going out of it should be
taken. Let L be the set of other labels. For each edge e = {u,v}, the vertex v specifies another
edge ¢ = {v,w}, such that any packet arriving at v on edge e having a label from L on top of the
stack is forwarded along ¢’ only. Hence each vertex associates an exit edge with each edge e. The
action of a vertex when it sees a label [€ L on top of the stack is identical: it places an identical
set of labels on top of the stack and sends the packet along the appropriate exit edge. This is the
sense in which the protocol is uniform.

B.2 Uniform lower bounds for trees

Proof of Theorem 3.2: We show that any uniform protocol running on a tree T' = (V, E) using

only O(A + logn) labels must use (2 (132%23? n) stack depth. Our lower bound example will be a
binary tree. Let T' = (V, E) be any binary tree. It is not difficult to show that in a binary tree, La
needs to have size 1 only. So, let La = {Ia}.

Given two nodes u,v € T, let S[u,v] denote the stack depth needed to route a packet from u
to v. Given a label [, define Sj[u,v] as the stack depth needed to route a packet from u to v such
that when the packet reaches v, the top of the stack contains [. If we want to specify a protocol
P for routing, then we use the terms Sj[u, v|(P) and S[u,v](P). The following lemma follows from

the definition of a uniform protocol.

16

Lemma B.1 Let v € T be a node of degree 3 and let Cy,Cy,Cs be the components of T — {v}.
Let v; be the neighbor of v in C;. Then there exists a j € {2,3} such that given any x; € C; and
zj € Cj, Sz, xj] > Si\|21,v] + Slv,z;] — 1.

Proof: Let the neighbors of v be vy, vy, v3, where v; € C;. Consider the edge e = {v1,v}. Suppose
v specifies the exit edge for e containing a label in L to be the edge {v,v2}. Now if we want to
send a packet from x, to z3, it must contain /A on top of stack when it reaches v. Hence the part
of this stack which takes the packet from z; to v contributes to Sj,[z1,v]. The part of the stack
below [a can actually route from v; to x3. Adding [a on top of it gives a routing scheme from v to
x3. This proves the lemma. [|

Given two vertices u,v in T', we say that they are connected by a straight path if all the internal
vertices in the unique path connecting u and v have degree 2. Note that the total number of
labels is fixed to be O(logn). Fix a uniform routing protocol P on T such that there does not
exist another protocol P’ with the following property: for every pair of vertices u,v and label [,
Si[u,v](P) < Si[u,v](P), S[u,v](P') < S[u,v](P) and there is a pair u,v and label I such that
Si[u, v](P") < Si[u, v](P).

Lemma B.2 Let T contain a straight path of length n' joining vertices u and v. There exists an
x, n' /2 <z <n!, such that if u',v" are any two vertices in T connected by a straight path of length
x, then Sy, [u,v'] is Q (logn'/loglogn').

Proof: Let P be the path joining u and v. Let V' be the vertices in P whose distance from
u is between n//2 and n’. We claim that there is a vertex w € V' such that Sj, [u,w] is s’ =
Q2 (logn'/loglogn). Indeed, a simple information theoretic argument, and the fact that we have
only O(logn) labels implies this fact. Let x be the distance of u from w.

Suppose «' and v’ are two vertices such that there is a straight path joining them of length
z. Suppose Sj, [u/,v'] < s'. Then the uniformity of P implies that keeping other things the same,
we can make S, [u,w] < s'. But this contradicts the definition of the protocol P, and proves the
lemma. [|

Our lower bound instance 7" will contain a disjoint family of trees. Since we will route within
these trees and not between them, it suffices to prove a lower bound in this case. Given a number
x, let T, denote the complete binary tree of depth 1/6 log n and having = subdivisions on each edge.
T is the union of Ty, for z = n'/3,... ,2n!/3. A branching node in T} will be a node of degree 3. It
is easy to check that 7" contains at most n nodes.

Note that 71" contains a straight path of length 2n*/° between two vertices. So, by Lemma B.2,
there is n'/3 < z < 2n'/3 such that if u,v are two branching nodes in T, joined by a straight path,
then S, [u,v] is ©Q (log '/ loglog n). Now, iteratively using Lemma B.1, we can demonstrate a path
from the root to a leaf y of T, such that routing from the root of T, to y requires stack depth

log2 n
Q (loglogn) ' .

1/3

C Proofs of Section 4

Proof of Lemma 4.6: We will prove the lemma for the slightly different edge weights ¢, =
min(i,i') + (1 + €) min(j, j'), but it is easy to alter the proof to give the result for the original

17

edge-lengths.

Consider the vertices in Figure 5. We claim that cost path P is less than that of P». Indeed, cost
of P, = (i+1)+(14€)j+i+(1+€)j = 2i+2(1+€)j+1, while cost of Py = i+(1+€)(j+1)+i+(1+€)j =
2i +2(1+¢€)j +1+e Similarly, cost of Ps =i+ (14+¢€)j +i+ (1 +¢€)j = 2i + 2(1 + €)j, whereas
cost of Py =i+ 1+ (l4+e€)j+i+(1+e€)(j+1)=2i+2(1+¢€)j+2+¢€ Thus, cost of Ps is at most
that of P;. So, it follows that no shortest path can contain a bend of type P or P4. Now, consider

(i+1)) (i+1j+1) A
a b
d c
(i) (i,j+1)

Figure 5: The local path interchange operations

Figure 6. We claim that in both the cases, path P is shorter than path P,. Let us consider the left
figure first. Cost of path P = (i+1)r+(1+¢€)(j+---+(+7r)) =ir+(1+e)(G+---+(G+r)) +7,
while cost of path P, = i + 1+ e€)j+ir+ (1 +e)+ - +G+r))+i+ 1A+ +r) =
ir+(1+e)(f+---+G+r)+r+i+2(1+¢€)j+2i+er. So, cost of Py is at most that of P;.
Let us now look at the case on the right of Figure 6. Cost of P, = (1+4€)(j+1)r+(i+---+(i+r)) =
(14€)jr+(i+- - -+ (i+7))+(14€)r. Cost of Py = i+r+(1+4€)j+(1+€)jr+(i+- - -+ (i+r))+it+(1+€)j =
(I+e)jr+(+---+0GE+r)+r+2i+2(1+¢€)j. If €is small enough, er < 1 < 2. So, we have
that cost of P; is at most that of Py. This fact shows that whenever a shortest path contains two

(i+1)) R (i+1,j+r) (i.ﬂ“r,j)—g+r,j+1)
B P
) (1+0) % '
o—©O
(i) (i,j+1)

Figure 6: The straight path is the shortest one

vertices whose ¢ or j coordinates are same, then it must contain the straight path joining them.
Such a path with no bends of type % or Py of Figure 5 must be a path with at most one bend.
This proves the theorem. [|

Proof of Lemma 4.7: We say that a connected path P in T is straight if it does not have any
bends and is of maximal length (i.e., adding any other edge of T' to P will result in a bend). Let

18

Py, ... P be the set of all straight paths in T'. We denote the vertex set of P; also by P;. It is
easy to see that for all 4, |P;| < t. Furthermore, for any i # j, |[P; N Pj| < 1.

Construct a new graph 7" = (V', E') as follows, where V' contains one vertex p; for each path
P;. E' contains an edge joining p; and p; if and only if P; N P; # 0. It is not too difficult to show
that T" is a tree. Furthermore, the following claim follows directly from the property of weights on
edges.

Claim C.1 Letu,v € T', u € P;, v € Pj. T preserves the shortest path between u and v only if
i =7 or (pi,pj) is an edge in T".

Let t; = |P;|, and define the cost of the tree T" to be

FT) = Y G+ Y -1t -1) (C.1)

pi€V’ (pi>pj)EE’

It follows from Claim C.1 that |Sy| < f(T"), and so it suffices to obtain an upper bound on f(7").
For the rest of the proof, we do not look at the semantics of the sets again, but instead argue
about arbitrary set systems on ¢? vertices, where each set P; is of size t; < t, any two sets intersect
in at most one element, and their intersection graph is a tree. For any such intersection tree T”, we
assign weight ¢7 to each node and (¢; — 1)(t; — 1) to each edge (p;,p;) in T". Now f(T") be the total
weight of vertices and edges in T”. We now show the following claim, which proves the theorem.

Claim C.2 For any such intersection tree T', f(T") is O(t?).

Proof of Claim C.2: Let us first record the following lemma.

Lemma C.3 Let p; be a leaf in T" and p; be the parent of p; in T'. Then, either t; > t/2 or
tj > t/2. If p; is a degree two node and p; is its unique child, then t; > t/2 ort; > t/2.

Proof of Lemma C.3: Suppose t;,t; < t/2. Delete P; and replace P; by P; U Pj; it is easy to
see that the tree corresponding to this set system is the tree 7" with p; deleted (because P; was
disjoint from all other sets except Pj). The increase in weight of the tree is greater than

(tit+t;— 1) =t —t5 — (i —1)(t; — 1) = 25t —2t; — 25 — tit; +t; + 1;
= G-t -1)—1 > 0.

The argument about degree 2 nodes is similar, and is omitted. [

We say that a leaf p; in T" is bad if ¢; < t/2. Delete all bad leaves from T to get a tree T".
Then, the lemma above implies that all leaves p; in 7" have the property ¢; > ¢/2. We now claim
that the tree 7" without the bad nodes has O(t) nodes.

Indeed, let I be the index set of those p; such that ¢; > t/2. We claim that |I| = O(t). To see
this, note that no three of the sets P; intersect and at most |I| of the pairs of P; have any pairwise
intersection, since their intersection graph is a forest. Hence the principle of inclusion and exclusion
implies that

2> |Vier P 2) t/2 |1 = (t/2 = D]I].
el

19

Hence there are at O(t) leaves in 7", which implies in turn that there are O(t) nodes of degree 3
or more. Any degree node 2 which has less than ¢/2 elements can be charged uniquely to its child,
which has more than ¢/2 elements by Lemma C.3.

Also, the contribution of cost of edges in 7" to f(1") is at most O(3), since each edge can
contribute at most ¢2. The contribution of edges joining a bad leaf to its parent in 7" is at most
t3, since Y, ¢; (where the sum is over bad leaves) is at most ¢?, the bad leaves being all disjoint.

Finally, we have to add up vertex contributions. 7" has O(t) nodes, each having at most ¢
elements. So the vertex weight contribution of these vertices is at most O(¢?). Finally, the bad
leaves are all disjoint, so their weights can be bounded by the following fact:

Fact C.4 Suppose x; are positive integers such that), x; < t2 and z; < t. Then > xf < 3.

Summing all these terms up shows that f(7") = O(t®), proving the theorem.]]

20

