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Abstract

We consider the problem of embedding a metric into
low-dimensional Euclidean space. The classical theo-
rems of Bourgain, and of Johnson and Lindenstrauss say
that any metric on n points embeds into an O(log n)-
dimensional Euclidean space with O(log n) distortion.
Moreover, a simple “volume” argument shows that this
bound is nearly tight: a uniform metric on n points re-
quires nearly logarithmic number of dimensions to em-
bed with logarithmic distortion. It is natural to ask
whether such a volume restriction is the only hurdle to
low-dimensional embeddings. In other words, do dou-
bling metrics, that do not have large uniform submetrics,
and thus no volume hurdles to low dimensional embed-
dings, embed in low dimensional Euclidean spaces with
small distortion?

In this paper, we give a positive answer to this question.
We show how to embed any doubling metrics into
O(log log n) dimensions with o(log n) distortion. This
is the first embedding for doubling metrics into fewer
than logarithmic number of dimensions, even allowing
for logarithmic distortion.

This result is one extreme point of our general trade-
off between distortion and dimension: given an n-point
metric (V, d) with doubling dimension dimD, and any
target dimension T in the range Ω(dimD log log n) ≤
T ≤ O(log n), we show that the metric embeds into
Euclidean space RT with O(log n

√
dimD /T ) distortion.

1 Introduction

We consider the problem of representing a metric (V, d)
using a small number of dimensions. Several appli-
cations represent data as points in a Euclidean space
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with thousands of dimensions. However, this high-
dimensionality poses significant computational chal-
lenges: many algorithms tend to have an exponential
dependence on the dimension. Hence we are constantly
seeking ways to combat this so-called curse of dimen-
sionality, by finding low-dimensional yet faithful repre-
sentations of the data.

This computational motivation leads one to an al-
ready compelling and fundamental mathematical ques-
tion: given a metric space (which may or may not be
Euclidean to begin with), what is the least number of
dimensions in which it can be represented with “reason-
able” distortion?

To answer these questions, dimension reduction in
Euclidean spaces have been studied extensively. The
celebrated and surprising “flattening” lemma of John-
son and Lindenstrauss [28] states that the dimension
of any Euclidean metric on n points can be reduced to
O( log n

ε2 ) with (1 + ε) distortion, and moreover, this can
be done via a random linear map. This result is exis-
tentially tight: a simple packing argument shows that
any distortion-D embedding of a uniform metric on n
points into Euclidean space requires at least Ω(logD n)
dimensions. Hence we do need the Ω(log n) dimensions,
and even allowing O(log n) distortion cannot reduce the
number of dimensions below Ω(log n/ log log n).

It is natural to ask if this “volume” restriction is
the only bottleneck to a low-dimensional embedding. In
other words, can metrics that do not have such volume
hurdles be embedded into low-dimensional spaces with
small distortion? The notion of doubling dimension [6]
makes this very idea concrete: roughly speaking, a
metric has doubling dimension dimD = k if and only if it
has (nearly-)uniform submetrics of size about 2k, but no
larger. A metric (or more strictly, a family of metrics)
is simply called doubling if the doubling dimension is
bounded by a universal constant. (See section 1.2 for a
more precise definition).
The Questions. The packing lower bound shows that
any metric requires Ω(dimD) dimensions for a constant-
distortion embedding into Euclidean space: is this lower
bound tight? We now know the existence of n-point
metrics with dimD = O(1) that require Ω(

√
log n)-

distortion into Euclidean space (of any dimension) [23],
but can we actually achieve this distortion with o(log n)-



dimensions? What if we give up a bit in the distortion?
Bourgain’s classical result (along with the JL-lemma)
shows that all metrics embed into Euclidean space of
O(log n) dimensions and O(log n) distortion [38], but
we do not even know if doubling metrics embed into
O(log1−ε n) dimensions with O(log1−ε n) distortion.

If we restrict our attention to Euclidean doubling
metrics, we know just as little: a tantalizing conjecture
of Lang and Plaut [35] states that all Euclidean metrics
with dimD = O(1) embed into O(1) dimensional Eu-
clidean space with O(1) distortion. However, the best
result we know is still the JL-Lemma (which is com-
pletely oblivious to the doubling dimension). Again,
we do not even know how to take a doubling Euclidean
point set and flatten it into (say) O(log1−ε n) dimen-
sions with O(log1−ε n) distortion!
The Answers. We make progress on the problem of
embedding doubling metrics into Euclidean space with
small dimension and distortion. (Our results hold for
all doubling metrics, not just Euclidean ones.)

Theorem 1.1. (Ultra-Low-Dimension Embed-
ding) Any metric space with doubling dimension
dimD embeds into O(dimD log log n) dimensions with
O(log n/

√
log log n) distortion.

Hence we can embed the metric into very few Eu-
clidean dimensions (i.e., Õ(dimD), where the notation
Õ(·) suppresses a multiplicative factor polynomial in
log log n), and achieve a slightly smaller distortion than
even Bourgain’s embedding. Note that to achieve dis-
tortion O(log n), any metric with doubling dimension
dimD requires at least Ω( dimD

log log n ) Euclidean dimensions,
and hence we are within an O(log log n)2 factor to the
optimal dimension for this value of distortion. This is
a special case of our general trade-off theorem:

Theorem 1.2. (Main Theorem) Suppose (V, d) is a
metric space with doubling dimension dimD. For any
integer T such that Ω(dimD log log n) ≤ T ≤ lnn, there
exists F : V → RT into T -dimensional space such
that for all x, y ∈ V , d(x, y) ≤ ‖F (x) − F (y)‖2 ≤

O

(√
dimD

T log n

)
· d(x, y).

Varying the target dimension T , we can get some in-
teresting tradeoffs between the distortion and dimen-
sion. For instance, we can balance the two quantities
and get O(log2/3 n) dimensions and O(log2/3 n) distor-
tion for doubling metrics, as desired. On the other hand,
for large target dimension T = lnn, we get distortion
O(
√

dimD log n), which matches the best known result
from [32].

In the interests of clarity of presentation, we only
show the existence of such embeddings. Standard tech-

niques (e.g,. [9, 5, 41]) can be used to give algorithmic
versions of our results.
Techniques. Our embedding can best be thought of
as an extension of Rao’s embedding [42]: there are
O(log n) copies of coordinates for each distance scale,
hence leading to O(log n log ∆) dimensions. As observed
in [2], it is possible to sum up the coordinates over
different distance scales to form one coordinate, and in
expectation the contraction is bounded. Using bounded
doubling dimension, we show that there is limited
dependency between pairs of points (using the Lovasz
Local Lemma), and hence we only need much less than
O(log n) coordinates to ensure that the contraction for
all points are bounded.

For the tradeoff between the target dimension and
the distortion, we apply a random sign (±1) to the con-
tribution for each distance scale before summing them
up to form a coordinate. This process is analogous to
the random projection in JL-type embeddings. Indeed,
we use analysis similar to that in [3] to obtain a trade-
off between the target dimension and the expansion,
although in our case the original metric needs not be
Euclidean.

We give two embeddings: the first one uses a
simple decomposition scheme [44, 16] and illustrates
the above ideas in bounding both the contraction and
the expansion. The resulting embedding has distortion
O(dimD /

√
T · log n) with T dimensions. In order to

reduce the dependence on the doubling dimension to√
dimD, we use uniform padded decomposition schemes

based on [2].
Bibliographic Note. Independently of our work,
Abraham, Bartal, and Neiman (personal communica-
tion) have obtained results of a very similar nature,
showing how to achieve a trade-off between distortion
and dimension as a function of the doubling dimension
dimD and the number of points n. For instance, they
can achieve O(dimD)-dimensional embeddings—smaller
than ours by an O(log log n) factor—though only with
slightly super-logarithmic distortion.

However, we use random signs in our embedding
to bound the expansion and consequently our trade-off
at the higher end of dimension is slightly better than
theirs. They also present results on gracefully degrading
distortion and average distortion (in the sense defined
in [1, 2]).

Moreover, they also show explicitly how to apply
techniques [5, 41] of getting an algorithmic version of
the Local Lemma to construct such an embedding in
time k2O(k) log log n, where k = dimD. Hence, for dimD =
o(log log n), we have a polynomial time algorithm; for
dimD = o(log n), we have a sub-exponential time
algorithm.



1.1 Related Work Dimension reduction for Eu-
clidean space was first studied by Johnson and Lin-
denstrauss [28], using random projections. The results
and techniques have since been sharpened and simpli-
fied in [22, 26, 19, 3, 4]. The embeddings have been de-
randomized, see [20, 43]. Moreover, Matousek [40] has
obtained an almost tight tradeoff between the dimension
of the target space and the distortion of the embedding.
On the other hand, dimension reduction for L1 space
has been shown to be much harder in [12, 37].

The notion of doubling dimension was introduced
by Larman [36] and Assouad [6], and first used in
algorithm design by Clarkson [17]. The properties
of doubling metrics and their algorithmic applications
have since been studied extensively, a few examples of
which appear in [23, 33, 34, 44, 24, 10, 18, 27, 31, 30].

There is extensive work on metric embeddings,
see [25]. Bourgain [11] gave an embedding whose coor-
dinates are formed by distances from random subsets.
Low diameter decomposition is a useful tool and was
studied by Awerbuch [7], and Linial and Saks [39]. Ran-
domized decompositions for general metrics are given
in [8, 15, 21]. Klein et al. [29] gave decomposition
schemes for minor-excluding graphs, which were used
by Rao [42] to obtain embeddings for planar graphs into
Euclidean space. These ideas were developed further
in [32, 1, 2].

On the other hand, there is also research on embed-
dings into constant dimensional spaces, both for general
metrics [14] and special classes of metrics, for instance
ultra-metrics [13].

1.2 Notation and Preliminaries We denote a fi-
nite metric space by (V, d), its size by n = |V |, and its
doubling dimension dimD by k. For any positive inte-
ger A, we denote [A] := {0, 1, 2, . . . , A− 1}. We assume
that the minimum distance between two points is 1, and
hence its diameter ∆ is also the aspect ratio of the met-
ric. A ball B(x, r) is the set {y ∈ V | d(x, y) ≤ r}.
Recall that for r > 0, an r-net N for (V, d) is a subset
of V such that (i) for all x ∈ V , there exists y ∈ N such
that d(x, y) ≤ r; and (ii) for alll x, y ∈ N such that
x 6= y, d(x, y) > r.

Definition 1.1. (Doubling Dimension dimD) The
doubling dimension of a metric (V, d) is at most k if
for all x ∈ V , for all r > 0, every ball B(x, 2r) can be
covered by the union of at most 2k balls of the form
B(z, r), where z ∈ V .

Definition 1.2. (Padded Decompostion) Given a
finite metric space (V, d), a positive parameter D > 0
and α > 1, a D-bounded α-padded decomposition is
a distribution Π over partitions of V such that the

following conditions hold.
(a) For each partition P in the support of Π, the
diameter of every cluster in P is at most D.

(b) If P is sampled from Π, then Pr[B(x, D
α ) ⊆

P (x)] ≥ 1
2 , where P (x) is the cluster in P con-

taining x.

2 The Basic Embedding

We give two embeddings: the one from this section is the
basic embedding, which achieves the following trade-off
between dimension and distortion:

Theorem 2.1. (The Basic Embedding) Given
a metric space (V, d) with doubling dimension
dimD, and a target dimension T in the range
Ω(dimD log log n) ≤ T ≤ lnn, there exists a map-
ping f : V → RT such that for all x, y ∈ V ,
Ω

( √
T

dimD

)
·d(x, y) ≤ ||f(x)−f(y)||2 ≤ O(log n) ·d(x, y).

Hence, the distortion is O(dimD log n√
T

).

Note that this trade-off is slightly worse than than the
one claimed in Theorem 1.2 in terms of its dependence
on the doubling dimension; however, the advantage is
that this embedding is easier to state and prove. We will
then improve on this embedding in the next section.

2.1 Basic Embedding: Defining The Embed-
ding The embedding f : (V, d) → RT we describe is
of the form f := ⊕t∈[T ]Φ(t), where the symbol ⊕ is used
to denote the concatenation of the various coordinates.
Each Φ(t) : V → R is a single coordinate generated
independently of the other coordinates according to a
probability distribution described as follows. To sim-
plify notation, we drop the superscript t and describe
how a random map Φ : V → R is constructed, and f is
just the concatenation of T such coordinates.

Let Di := Hi, for some constant H ≥ 2. (Later we
see that H is set large enough to bound the contraction.)
Suppose all distances in the metric space are at least 1,
and I is the largest integer such that DI−1 < ∆. The
mapping Φ : V → R is of the form Φ :=

∑
i∈[I] ϕi. We

describe how ϕi : V → R is constructed, for each i ∈ [I].
Fix i ∈ [I]. We view the metric (V, d) as a weighted

complete graph, and contract all edges with lengths at
most Di/2n. The points that are contracted together in
this process would obtain the same value under ϕi. Let
the resulting metric be (V, di). Here are a few properties
of the metric (V, di).

Proposition 2.1. Suppose for each i ∈ [I], the metric
(V, di) is defined as above. Then, di ≤ d ≤ di + Di

2 .

Observe that Proposition 2.1 implies that the metric
(V, di) gives good approximations of the distances in



(V, d) of scales above Di. In particular, (V, di) admits
an O(k)-padded Di-bounded stochastic decomposition.

Proposition 2.2. (Padded Decomposition for
Doubling Metrics [44, 16]) Suppose the metric
(V, d) has doubling dimension k. Then, there is an
α-padded Di-bounded stochastic decomposition Πi for
the metric (V, di), where α = O(k). Moreover, the
event {Bi(x,Di/α) ⊆ Pi(x)} is independent of all the
events {Bi(z,Di/α) ⊆ Pi(z) : z 6∈ Bi(x, 3Di/2)}, where
Bi(u, r) := {v ∈ V : di(u, v) ≤ r}.

Suppose Pi is a random partition of (V, di) sampled
from the padded decomposition Πi of Proposition 2.2.
Let {σi(C) : C is a cluster in Pi} be uniform {0, 1}-
random variables, and γi be a uniform {−1, 1}-random
variable. The random objects Pi, σi and γi are sampled
independently of one another. Define ϕi : V → R by

ϕi(x) := γi · κi(x),(2.1)

where κi(x) := σi(Pi(x)) ·min{di(x, V \ Pi(x)), Di/α}.
Hence we take the distance from the point x to

the closest point outside its cluster, truncate it at
Di/α (recall that α is as defined in Proposition 2.2),
and multiply it with the {0, 1} r.v. associated with its
cluster, and the {−1, 1} r.v. associated with the distance
scale i. We shall see that the σi’s play an important role
in bounding the contraction, while the role of γi’s is to
bound the expansion.

To summarize, the embedding is defined to be:

f := ⊕t∈[T ]Φ(t); Φ(t) :=
∑
i∈[I]

ϕ
(t)
i .(2.2)

We rephrase Theorem 2.1 in terms of the above
randomized construction.

Theorem 2.2. Suppose the input metric (V, d) has
doubling dimension k, and the target dimension T is
in the range Ω(k log log n) ≤ T ≤ lnn. Then, with
non-zero probability, the above procedure produces a
mapping f : V → RT such that for all x, y ∈ V ,
Ω

( √
T

dimD

)
·d(x, y) ≤ ||f(x)−f(y)||2 ≤ O(log n) ·d(x, y).

In other words, there exist some realization of the var-
ious random objects such that the distortion of the re-
sulting mapping is O(dimD log n√

T
).

Note. Before we dive in, let us note that we consider
the modified metrics (V, di) in order to avoid a depen-
dence on the aspect ratio ∆ in the expansion bound for
the embedding. First observe that |ϕ(t)

j (x)− ϕ
(t)
j (y)| ≤

min{dj(x, y), Dj/α}. The proof of the following lemma
is given in the full version.

Lemma 2.1. Suppose x, y ∈ V and for each j ∈ [I],
define dj := min{dj(x, y), Dj/α}. Then,

∑
j≥i dj ≤

O(logH n) ·di(x, y) and
∑

i∈[I] d
2
i ≤ O(logH n) ·d(x, y)2.

2.2 Basic Embedding: Bounding Contraction
A natural idea to bound the contraction for a particular
pair of points x, y is to use the padding property of the
random decomposition: if d(x, y) ≈ Hi, then at the
corresponding scale i ∈ [I] the two vertices will be in
different clusters, and will contribute a large distance.
This idea has been extensively used in previous work
starting with [42]. However, in these previous works,
we have a separate coordinate for each distance scale,
which leads to a large number of dimensions. Abraham
et al. [2] show that the coordinates for distance scales
can actually be combined to form one single coordinate,
and with constant probability the contraction is still
bounded. Now we want to use a small number of
coordinates as well: to do this, we use the small doubling
dimension to use the Lovasz Local Lemma and bound
the contraction for all pairs of points.
Fixing the γ’s. As noted in the description of the
embedding, the γ’s do not play any role in bounding
the contraction. In fact, we will show something
stronger : for any realization of the γ’s, there exists some
realization of the P ’s and σ’s for which the contraction
of the embedding f is bounded. For the rest of this
section, we assume that the γ’s are arbitrarily fixed
upfront.

For each i ∈ [I], let the subset Ni be an arbitrary
βDi-net of (V, di), for some 0 < β < 1 to be specified
later.
Bounding the Contraction for some Special
Points. We first bound the contraction for the pairs
in Ei := {(x, y) ∈ Ni ×Ni : 3Di/2 < di(x, y) ≤ 3HDi},
i ∈ [I]. (Note that from Proposition 2.1(a), it follows
that for each (x, y) ∈ Ei, d(x, y) < 4HDi.)

For t ∈ [T ], and (x, y) ∈ Ei, define A(t)(x, y) to be
the event that all the following happens:
• the vertex x is well-padded: i.e., Bi(x, Di

α ) ⊆
P

(t)
i (x);

• the vertex y is mapped to 0: σ
(t)
i (P (t)

i (y)) = 0;
• if |

∑
j>i(ϕ

(t)
i (x) − ϕ

(t)
i (y))| ≤ Di

2α , then

σ
(t)
i (P (t)

i (x)) = 1, otherwise σ
(t)
i (P (t)

i (x)) = 0.

Proposition 2.3. (Conditioning on Higher Lev-
els) Let (x, y) ∈ Ei. Suppose for j > i, the random
objects {γ(t)

j , P
(t)
j , σ

(t)
j : t ∈ [T ]} have been arbitrar-

ily fixed. For each t ∈ [T ], sample random partition
P

(t)
i from Proposition 2.2 and random {0, 1}-variables
{σ(t)

i (C) : C is a cluster of P
(t)
i } uniformly, all inde-

pendently of one another. Then, for each t ∈ [T ], with



probability at least 1
8 , the event A(t)(x, y) happens inde-

pendently over the different t’s.
Moreover, if the event A(t)(x, y) happens, then the

inequality |
∑

j≥i(ϕ
(t)
j (x) − ϕ

(t)
j (y))| ≥ Di

2α holds; fur-
thermore, for any realization of the remaining random
objects, i.e., γ

(t)
i and {γ(t)

j , P
(t)
j , σ

(t)
j : j < i}, the in-

equality |
∑

i∈[I](ϕ
(t)
i (x)−ϕ

(t)
i (y))| ≥ Di

4α holds, provided
H ≥ 8. (Recall that Di+1 = HDi.)

In order to show that the contraction for the pair
(x, y) is small, we need to show that the event A(t)(x, y)
happens for a constant fraction of t’s. We define C(x, y)
to be the event that for at least T

16 values of t, the
event A(t)(x, y) happens. We conclude that the event
C(x, y) happens with high probability (as a function
of T ), by using a Chernoff bound: if X is the sum
of i.i.d. Bernoulli random variables, then Pr[X <
(1− ε)E[X]] ≤ exp(− 1

2ε2E[X]), for 0 < ε < 1.

Proposition 2.4. (Using Concentration) Under
the sampling procedure described in Proposition 2.3, the
event C(x, y) fails to happen with probability at most
p := exp(− T

64 ).

Proof. This follows by applying the Chernoff bound
mentioned above with ε = 1

2 . 2

Now that these events C(x, y) happen with high
enough probability, we use the Lovasz Local Lemma
to show that there is some realization of {P (t)

i , σ
(t))
i :

t ∈ [T ]} such that for all (x, y) ∈ Ei, the events
C(x, y) happen simultaneously. In order to use the Local
Lemma, we need to analyze the dependence of these
events. Recall that Ni is a βDi-net of (V, di).

Lemma 2.2. (Limited Dependence) For each
(x, y) ∈ Ei, the event C(x, y) is independent of all but
B := (H

β )O(k) of the events C(u, v), where (u, v) ∈ Ei.

Proof. Observe that the event C(x, y) is determined
by the random objects {P (t)

i , σ
(t)
i : t ∈ [T ]}. More

specifically, it is determined completely by the events
{Bi(w, Di

α ) ⊆ P
(t)
i (w) : t ∈ [T ]} and {σ(t)

i (P (t)(w)) =
0 : t ∈ [T ]}, for w ∈ {x, y}. Note that if di(x,w) >
3Di/2, then the corresponding events for the points x
and w are independent. Note that if di(x,w) ≤ 3Di/2,
then d(x,w) ≤ 2Di; moreover, any two net-points in
(V, di) must be more than βDi apart in (V, d). Hence,
observing that the doubling dimension of the given
metric is at most k, for each of x and y, only ( 2Di

βDi
)O(k)

net points are relevant. Now, each net point can be
incident by at most ( 4H

β )O(k) edges in Ei. Hence, it
follows that C(x, y) is independent of all but (H

β )O(k) of
the events C(u, v), where (u, v) ∈ Ei. 2

Now we can apply the (symmetric form of the)
Lovasz Local Lemma.

Lemma 2.3. (Lovasz Local Lemma) Suppose there
is a collection of events such that each event fails with
probability at most p. Moreover, each event is indepen-
dent of all but B other events. Then, if ep(B + 1) < 1,
then all the events in the collection happen simultane-
ously with non-zero probability.

Proposition 2.5. (One More Level) Suppose for
j > i, the random objects {γ(t)

j , P
(t)
j , σ

(t)
j : t ∈ [T ]} have

been arbitrarily fixed. If T = Ω(k log H
β ), then there is

some realization of {P (t)
i , σ

(t)
i : t ∈ [T ]} such that all

the events {C(x, y) : (x, y) ∈ Ei} happen. In particular,
such a realization does not depend on the γ’s at scale i.

Define E to be the event that for all i ∈ [I], for all
(x, y) ∈ Ei, the event C(x, y) happens. By applying
Proposition 2.5 repeatedly, we show that the event E
happens with non-zero probability.

Proposition 2.6. (Contraction for Nearby Net
Points) Suppose in the construction the γ’s are arbi-
trarily fixed, and the P ’s and σ’s are still random and
independent. Moreover, suppose T = Ω(k log H

β ). Then,
with non-zero probability, our random construction pro-
duces an embedding f : (V, d) → RT such that the event
E happens; in particular, there exists some realization
of the P ’s and σ’s such that ||f(x)− f(y)||2 ≥

√
T
4 · Di

4α .

Bounding the Contraction for All Points. We
next bound the contraction for an arbitrary pair (u, v)
of points noting that if all net points do not suffer
large contraction (by the above argument), and all pairs
do not incur a large expansion (by the argument of
Lemma 2.1), then one can extend the contraction result
to all pairs of points. Of course, to do so, the net Ni

must be sufficiently fine. Recall that Ni is a βDi-net for
(V, di).

Lemma 2.4. (Extending to All Pairs) Suppose
the event E happens, and β is small enough such that
1
β = Θ(α logH n). Then, for any x, y ∈ V , there exist
T/16 values of t’s for which

|Φ(t)(x)− Φ(t)(y)| = Ω(d(x, y))/αH.

Hence, by setting H = 16 and 1
β = Θ(α logH n),

and observing α = O(k) from Proposition 2.2 (where k
is the doubling dimension and is at most log n), we have
the following result.

Proposition 2.7. (Bounding Contraction)
Suppose the γ’s are arbitrarily fixed and β is sufficiently



small such that 1
β = Θ(α logH n) and H ≥ 16. Then, for

T = Ω(k log log n), there exists some realization of P ’s
and σ’s that produces an embedding f : V → RT such
that for all x, y ∈ V , ‖f(x)− f(y)‖2 ≥ Ω(

√
T

k ) · d(x, y).

2.3 Basic Embedding: Bounding Expansion
Recall that E is the event ∩i∈[I] ∩(x,y)∈Ei

C(x, y). We
showed in Proposition 2.6 that Pr[E ] > 0, and if the
event E happens, the resulting embedding f : V → RT

has bounded contraction. We now bound the expansion
of the embedding f : V → RT for every pair (x, y) of
points. In order to bound this expansion, the {−1,+1}-
random variables γi will finally be used. Their role
is fairly natural: if the contributions from different
distance scales are simply summed up, then there
would be a factor of |I| (roughly speaking) appearing
in the expansion for each coordinate. However, with
the random variables γi’s, the sum starts to behave
like a random walk, and the expectation of the sum
of the signed contributions would only suffer a factor
of

√
I. In order to make this argument formal, we

use techniques similar to those used in analyzing the
Johnson-Lindenstrauss lemma [3]. The main problem
that arises here is that if we condition on the event E ,
not only the different coordinates of the map but also
the γ’s are no longer independent, and hence we would
not be able to use the “random walk”-like argument.
Instead, we sample the γ’s first and fix the P ’s and
σ’s accordingly in order to apply the large-deviation
arguments.
Fixing the P ’s and σ’s. Suppose the γ’s are sampled
uniformly and independently. From Proposition 2.7,
there exists some realization of the P ’s and the σ’s such
that the contraction of the embedding f is bounded.
Hence, from this point, we can concentrate on bounding
the expansion. Since the γ’s are randomly drawn, the
P ’s and the σ’s are random variables too, and are
functions of the γ’s. Proposition 2.5 gives a clear idea
of the dependency between the random variables: the
P ’s and the σ’s at scale i are determined only by the
random objects at scales strictly larger than i, and in
particular are independent of the γ’s at scale i.

Let us fix x, y ∈ V and define the random variable

S := ||f(x)− f(y)||22 =
∑
t∈[T ]

(Q(t))2,

where Q(t) := Φ(t)(x) − Φ(t)(y). (The coordinates Φ
were defined in (2.1).) We want to show that for large
enough T , the r.v. S does not deviate too much from
its mean with high probability. Then, a union bound
over all pairs (x, y) of points leads to the conclusion
that with non-zero probability, the embedding f has

bounded expansion.
Observe that Q(t) :=

∑
i∈[I] γ

(t)
i Y

(t)
i , where Y

(t)
i :=

κ
(t)
i (x) − κ

(t)
i (y). Define di := min{di(x, y), Di/α}.

Recall that the random variables γ
(t)
i are uniformly

picked from {−1,+1}, and |Y (t)
i | ≤ di. We can illustrate

the dependency between the different random objects in
Figure 1.

For i from I − 1 down to 0, do:

1. For each t ∈ [T ], the value Y
(t)
i is picked adver-

sarially from [−di, di], hence possibly depending
on previously picked values {Y (t)

j , γ
(t)
j : j > i, t ∈

[T ]}.
2. For each t ∈ [T ], γ

(t)
i is picked uniformly

from {−1,+1}, and moreover, independent of any
random objects picked thus far.

Figure 1: Sampling the various random variables.

Lemma 2.5. (Computing the m.g.f.) Suppose the
γ’s and Y ’s are picked according to the above descrip-
tion. Moreover, ν2 :=

∑
i∈[I] d

2
i . Then for 0 ≤ hν2 <

1/2, E[exp(hS)] ≤ (1−2hν2)−T/2. Moreover, for ε > 0,
Pr[S > (1 + ε)Tν2] ≤ ((1 + ε) exp(−ε))T/2.

The proof of Lemma 2.5 appears in Section 2.4.
Using this lemma, we can bound the expansion of the
embedding.

Proposition 2.8. (Bounding Expansion) Suppose
the target dimension T is at most lnn. Then, for
each pair x, y ∈ V , with probability at least 1 − 1

n2 ,
||f(x)− f(y)||2 ≤ O(log n) · d(x, y).

Proof. Let ν2 :=
∑

i∈[I] d
2
i , and recall that S = ||f(x)−

f(y)||22. Then, from Lemma 2.5, we have for ε > 0,
Pr[S > (1 + ε)Tν2] ≤ ((1 + ε) exp(−ε))T/2.

Note that for ε ≥ 8, (1 + ε) exp(−ε) ≤ exp(−ε/2).
Hence, for T ≤ lnn, we set ε := 8 ln n

T and from
Lemma 2.1, we have ν2 =

∑
i∈[I] d

2
i ≤ O(log n)·d(x, y)2.

Hence, with failure probability at most 1
n2 , we have

||f(x) − f(y)||22 ≤ (1 + 8 ln n
T ) · T · O(log n) · d(x, y)2 ≤

O(log2 n) · d(x, y)2. 2

Using the union bound over all pairs (x, y) and com-
bining with Proposition 2.7, we complete the proof for
the low distortion embedding claimed in Theorem 2.2,
modulo the proof of Lemma 2.5 that is given in Sec-
tion 2.4. In Section 3, we will give an embedding im-
proves the dependence on the doubling dimension dimD.



2.4 Resolving Dependency among Random
Variables Suppose we wish to bound the magnitude
of the following sum, whose terms are dependent on
one another:

S :=
∑

t∈[T ](Q
(t))2,(2.3)

where for each t ∈ [T ], Q(t) :=
∑

i∈[I] γ
(t)
i Y

(t)
i . The

γ
(t)
i ’s are {−1,+1} random variables; for each i ∈ [I],

the Y
(t)
i ’s are random variables taking values in the

interval [−di, di]. Figure 1 specifies how the various
random variables are being sampled.

A standard technique to analyze the magnitude of
S defined in (2.3) is to consider the moment generating
function (m.g.f.) E[exp(hS)], for sufficiently small h >
0. This is fairly easy when the terms in the summation
S are independent: however, observe that each Y (t)

is dependent on the random objects indexed by j >
i. Moreover, the Q(t)’s are not independent either.
However, we can get around this and prove the following
result, via Lemmas 2.6 and 2.7.

Lemma 2.5 (Computing the m.g.f.) Suppose ν2 :=∑
i∈[I] d

2
i . Then for 0 ≤ hν2 < 1/2, E[exp(hS)] ≤ (1 −

2hν2)−T/2. Moreover, for ε > 0, Pr[S > (1 + ε)Tν2] ≤
((1 + ε) exp(−ε))T/2.

Recall that the problem was that each Y (t) is dependent
on the random objects indexed by j > i. Moreover, the
Q(t)’s are not independent either. To get around this,
we consider random variables related to Q(t). Define
Q̂(t) :=

∑
i∈[I] γ

(t)
i di and Q

(t)
:=

∑
i∈[I] g

(t)
i di, where

the g
(t)
i ’s are independent normal N(0, 1) variables. De-

fine Ŝ :=
∑

t∈[T ] (Q̂
(t))2 and S :=

∑
t∈[T ] (Q

(t)
)2 analo-

gously. Observe that both the Q̂(t)’s and the Q
(t)

’s are
independent over different t’s. Define ν2 :=

∑
i∈[I] d

2
i .

A standard calculation gives us that E[exp(hS)] ≤
(1 − 2hν2)−T/2, for 0 ≤ hν2 < 1/2. We show that
E[exp(hS)] is bounded above by the same quantity.

As observed in [3], by the Monotone Convergence
Theorem, we have E[exp(hS)] =

∑
r≥0

hr

r! E[Sr]. Hence,
we compare the even powers of Q, Q̂ and Q.

Lemma 2.6. The following inequalities hold.
1. For any integer r ≥ 0, E[Q̂2r] ≤ E[Q

2r
].

2. For any real number h > 0, E[exp(hŜ)] ≤
E[exp(hS)].

Proof. The first statement follows from the observation
that E[γ2r

i ] = 1 ≤ E[g2r
i ]. The second statement

follows from the first statement, observing that the
Q̂(t)’s and the Q

(t)
’s are independent, and using the

identity E[exp(hZ)] =
∑

r≥0
hr

r! E[Zr]. 2

The next lemma resolves the issue that the Q(t)’s
are not independent. The idea is to replace each random
variable Y

(t)
i by a constant di and show that this does

not decrease the expectation of the relevant random
variables.

Lemma 2.7. The following properties hold.
1. For all rt ≥ 0 (t ∈ [T ]), E[

∏
t∈[T ](Q

(t))2rt ] ≤
E[

∏
t∈[T ](Q̂

(t))2rt ].

2. For h > 0, E[exp(hS)] ≤ E[exp(hŜ)].

Proof. Note the second statement follows from the first
using the identity E[exp(hZ)] =

∑
r≥0

hr

r! E[Zr], and
hence it suffices to prove the first statement. Let
us define the partial sums Q

(t)
i :=

∑
j≥i γ

(t)
i Y

(t)
i and

Q̂
(t)
i :=

∑
j≥i γ

(t)
i di. We show the following statement

by backward induction on i. The case i = 1 gives the
required result. We show that for i ∈ [I], for all rt ≥ 0
(t ∈ [T ]), E[

∏
t∈[T ](Q

(t)
i )2rt ] ≤ E[

∏
t∈[T ](Q̂

(t)
i )2rt ].

The case i = I follows from the fact that for all
r ≥ 0, for all t ∈ [T ], |Y (t)

I | ≤ dI . Hence, for all rt ≥ 0
(t ∈ [T ]), E[

∏
t∈[T ](Q

(t)
I )2rt ] = E[

∏
t∈[T ](Y

(t)
I )2rt ] ≤

E[
∏

t∈[T ](dI)2rt ] = E[
∏

t∈[T ](Q̂
(t)
I )2rt ].

Assume that for all lt ≥ 0 (t ∈ [T ]),
E[

∏
t∈[T ](Q

(t)
i+1)

2lt ] ≤ E[
∏

t∈[T ](Q̂
(t)
i+1)

2lt ], for i ≥ 0. Fix
some rt ≥ 0 (t ∈ [T ]).

E[
Q

t∈[T ](Q
(t)
i )2rt ](2.4)

= E[
Q

t∈[T ](Q
(t)
i+1 + γ

(t)
i Y

(t)
i )2rt ](2.5)

= E[
P r1,..., rt

l1=0,...,lt=0

Q
t∈[T ]

`2rt
2lt

´
(Q

(t)
i+1)2rt−2lt (Y

(t)
i )2lt ](2.6)

≤ E[
P r1,..., rt

l1=0,...,lt=0

Q
t∈[T ]

`2rt
2lt

´
(Q

(t)
i+1)2rt−2ltd2lt

i ](2.7)

≤ E[
P r1,..., rt

l1=0,...,lt=0

Q
t∈[T ]

`2rt
2lt

´
( bQ(t)

i+1)2rt−2ltd2lt
i ](2.8)

= E[
Q

t∈[T ](
bQ(t)

i )2rt ](2.9)

The equality (2.6) uses the fact that the r.v.’s
γ

(t)
i ’s are independent of all other random variables and

the expectation of an odd power of γ
(t)
i is 0. The

inequality (2.7) follows from the fact that |Y (t)
i | ≤

di. The inequality (2.8) follows from the linearity
of expectation and the induction hypothesis. Finally,
equality (2.9) holds for the same reason as that for (2.6).
This completes the inductive proof. 2

Finally, we are in a position to prove Lemma 2.5:
Proof of Lemma 2.5: From Lemma 2.7, we have
E[exp(hS)] ≤ E[exp(hŜ)], which is at most E[exp(hS)],
by Lemma 2.6. Finally, from a standard calculation [19],
E[exp(hS)] ≤ (1− 2hν2)−T/2, for 0 ≤ hν2 < 1/2.

To prove the second part of the lemma, let hν2 =



ε
2(1+ε) < 1

2 . Then, we have

Pr[S > (1 + ε)Tν2]
= Pr[exp(hS) > exp((1 + ε)Thν2)]
≤ E[exp(hS)] exp(−(1 + ε)Thν2)
≤ (1− 2hν2)−T/2 · exp((1 + ε)Thν2)
= ((1 + ε) exp(−ε))T/2.

which proves the large-deviation inequality. 2

3 A Better Embedding via Uniform Padded
Decompositions

Our basic embedding in the previous section uses a sim-
ple padded decomposition [16], and serves to illustrate
the proof techniques: however, its dependence on dimD

is sub-optimal. In order to improve the dependence of
the distortion on the doubling dimension, we use a more
sophisticated decomposition scheme. We modify the
uniform padded decomposition in [2], by incorporating
the properties of bounded doubling dimension directly
within the construction, to achieve both the padding
property, as well as independence between distant re-
gions.

3.1 Uniform Padded Decompositions

Definition 3.1. (Uniform Functions) Given a
partition P of (V, d), a function η : V → R is uni-
form with respect to the partition P if points in the
same cluster take the same value under η, i.e., if
P (x) = P (y), then η(x) = η(y).

For r > 0 and γ > 1, the “local growth rate”
is denoted by ρ(x, r, γ) := |B(x,rγ|)

|B(x,r/γ)| , and ρ(x, r, γ) :=
minz∈B(x,r) ρ(z, r, γ). All logarithms are based 2 unless
otherwise specified.

We show that if (V, d) has bounded doubling di-
mension, there exists a uniformly padded decomposi-
tion. The following lemma is similar to [2, Lemma 4],
except that it has additional properties about bounded
doubling dimension, and also independence between dis-
tant regions. The proof is given in the full version.

Lemma 3.1. (Uniform Padded Decomposition)
Suppose (V, d) is a metric space with doubling dimen-
sion k, and D > 0. Let Γ ≥ 8. Then, there exists a
D-bounded α-padded decomposition Π on (V, d), where
α = O(k), with the following properties. For each
partition P in the support of Π, there exist uniform
functions ξP : V → {0, 1} and ηP : V → (0, 1)
such that ηP ≥ 1

α . Moreover, if ξP (x) = 1, then
2−7/ log ρ(x,D,Γ) ≤ ηP (x) ≤ 2−7; if ξP (x) = 0, then
ηP (x) = 2−7 and ρ(x,D,Γ) < 2.

Then, for all x ∈ V , the probability of the event
{B(x, ηP (x)D) ⊆ P (x)} is at least 1

2 . Furthermore, the
event {B(x, ηP (x)D) ⊆ P (x)} is independent of all the
events {B(z, ηP (z)D) ⊆ P (z) : z 6∈ B(x, 3D/2)}.

3.2 The Better Embedding: Defining the Em-
bedding The new embedding is quite similar to the
basic embedding of Section 2.1. We use the uniform
padded decomposition of Lemma 3.1 to define the new
embedding f : (V, d) → RT . As before, the metric
(V, d) has doubling dimension dimD = k, and suppose
α = O(k) is the padding parameter in Lemma 3.1. Let
Di := Hi, and assume that the distances in (V, d) are
between 1 and HI−1.

Again, the embedding is in the form f :=
⊕t∈[T ]Φ(t), where each Φ(t) : V → R is generated in-
dependently according to some distribution; for ease of
notation, we drop the superscript t in the following.
Also, each Φ is of the form Φ :=

∑
i∈[I] ϕi. We next

describe how each ϕi : V → R is constructed.
For each i ∈ [I], let Pi be a random partition

of (V, d) sampled from the decomposition scheme as
described in Lemma 3.1. Suppose ξPi : V → {0, 1}
and ηPi : V → (0, 1) are the associated uniform
functions with respect to the partition Pi. Let {σi(C) :
C is a cluster of Pi} be uniform {0, 1}-random variables
and γi be a uniform {−1,+1}-random variable. The
random objects Pi’s, σi’s and γi’s are independent of
one another. Then ϕi is defined by the realization of
the various random objects as:

ϕi(x) := γi · κi(x),(3.10)

where κi(x) := σi(Pi(x)) ·min{ξPi(x)ηPi(x)−1/2d(x, V \
Pi(x)), Di√

α
}. Note the similarities and difference

with (2.1).
The proof bounding the distortion will proceed

similarly: we show that with non-zero probability, the
embedding f : V → RT has low distortion.

3.3 The Better Embedding: Bounding Con-
traction for Nearby Net Points Again, we assume
that the γ’s are arbitrarily fixed, and the P ’s and σ’s
are random and independent. For each i ∈ [I], let the
subset Ni be an arbitrary βDi-net of (V, d), for some
0 < β < 1 to be specified later. As in the basic em-
bedding, we first bound the contraction for the pairs
in Ei := {(x, y) ∈ Ni × Ni : 3Di < d(x, y) ≤ 4HDi},
i ∈ [I], and then extend it to all pairs in Section 3.5.
The proof of the following lemma appears in the full
version.

Proposition 3.1. (Contraction for Nearby Net
Points) Suppose T = Ω(k log H

β ). Moreover, the γ’s



are arbitrarily fixed, and the P ’s and σ’s remain random
and independent. Then, there exists some realization of
the P ’s and σ’s such that the embedding f : (V, d) → RT

satisfies for all i ∈ [I], for all (x, y) ∈ Ei, ||f(x) −
f(y)||2 ≥

√
T
4 · Di

4
√

α
.

3.4 The Better Embedding: Bounding the Ex-
pansion Again, we sample the γ’s uniformly and inde-
pendently, and use Proposition 3.1 to show there exists
some realization of the P ’s and σ’s such that the result-
ing mapping f : V → RT has the guaranteed contrac-
tion. Hence, we can focus on analyzing the expansion.

Again, fix x, y ∈ V and let S := ||f(x) −
f(y)||22 =

∑
t∈[T ](Q

(t))2, where Q(t) :=
∑

i∈[I] γ
(t)
i Y

(t)
i ,

and Y
(t)
i := κ

(t)
i (x) − κ

(t)
i (y). Recall that γ

(t)
i

is uniformly picked from {−1,+1}. Denote d :=
max{

√
O(log ρ(x,Di,Γ)),

√
O(log ρ(y, Di,Γ))} ·d(x, y),

and ν2 :=
∑

i∈[I] d
2
i We next bound the magnitudes of

the Yi’s and ν2 in the following Lemma, whose proof
follows the same argument as in [2, Lemma 8].

Lemma 3.2. Consider a particular Yi = κi(x) − κi(y).
Then, |Yi| ≤ di, and ν2 = O(logH Γ log n) · d(x, y)2.

The proof now proceeds in the same fashion as in
Section 2.3; setting H := 16 and Γ := 128, we have
ν2 = O(log n) · d(x, y)2. Hence, applying Lemma 2.5,
and setting ε := 8 ln n

T as before, we have the following
result.

Lemma 3.3. (Bounding Expansion) Suppose T ≤
lnn. Then, for each pair x, y ∈ V , with probability at
least 1− 1

n2 ,||f(x)− f(y)||2 ≤ O(log n) · d(x, y).

3.5 The Better Embedding: Bounding Con-
traction for All Pairs Now that we have proved that
with non-zero probability, the expansion for every pair
of points is at most O(log n), and the contraction for
nearby net points is bounded, we can show that if the
βDi-net Ni for (V, d) is fine enough (i.e., β is small
enough), then the contraction bound can be extended
to all pairs.

Lemma 3.4. (Bounding Contraction for All
Pairs) Suppose the event E holds and the expansion
of the embedding f is bounded in the manner described
in Lemma 3.3. Suppose β > 0 is small enough such
that β−1 = Θ(

√
α log n), where α = O(k). Then, for all

x, y ∈ V , ||f(x)− f(y)||2 ≥ Ω(
√

T/α) · d(x, y).

Putting Lemmas 3.3 and 3.4 together proves Theo-
rem 1.2.
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