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Abstract. We study the Steiner Tree problem in the model of two-stage
stochastic optimization with non-uniform inflation factors, and give a
poly-logarithmic approximation factor for this problem. In this problem,
we are given a graph G = (V, E), with each edge having two costs cM

and cT (the costs for Monday and Tuesday, respectively). We are also
given a probability distribution π : 2V → [0, 1] over subsets of V , and
will be given a client set S drawn from this distribution on Tuesday.
The algorithm has to buy a set of edges EM on Monday, and after the
client set S is revealed on Tuesday, it has to buy a (possibly empty) set
of edges ET (S) so that the edges in EM ∪ ET (S) connect all the nodes
in S. The goal is to minimize the cM (EM ) + ES←π[ cT ( ET (S) ) ].
We give the first poly-logarithmic approximation algorithm for this prob-
lem. Our algorithm builds on the recent techniques developed by Chekuri
et al. (FOCS 2006) for multi-commodity Cost-Distance. Previously, the
problem had been studied for the cases when cT = σ × cM for some
constant σ ≥ 1 (i.e., the uniform case), or for the case when the goal was
to find a tree spanning all the vertices but Tuesday’s costs were drawn
from a given distribution bπ (the so-called “stochastic MST case”).
We complement our results by showing that our problem is at least as
hard as the single-sink Cost-Distance problem (which is known to be
Ω(log log n) hard). Moreover, the requirement that Tuesday’s costs are
fixed seems essential: if we allow Tuesday’s costs to dependent on the sce-
nario as in stochastic MST, the problem becomes as hard as Label Cover

(which is Ω(2log1−ε n)-hard). As an aside, we also give an LP-rounding
algorithm for the multi-commodity Cost-Distance problem, matching the
O(log4 n) approximation guarantee given by Chekuri et al. (FOCS 2006).

1 Introduction

This paper studies the Steiner tree problem in the framework of two-stage
stochastic approximation, which is perhaps best (albeit a bit informally) de-



scribed as follows. On Monday, we are given a graph with two cost functions
cM and cT on the edges, and a distribution π predicting future demands; we can
build some edges EM at cost cM . On Tuesday, the actual demand set S arrives
(drawn from the distribution π), and we must complete a Steiner tree on the
set S, but any edges ET bought on Tuesday cost cT . How can we minimize our
expected cost

cM (EM ) + ES←π[ cT ( ET (S) ) ] ?

The Stochastic Steiner tree problem has been studied before in the special case
when Tuesday’s cost function cT is a scaled-up version of Monday’s costs cM (i.e.,
there is an constant inflation factor σ > 1 such that cT (e) = σ× cM (e)); for this
case, constant-factor approximations are known [9, 10, 12]. While these results
can be generalized in some directions (see Section 1.1 for a detailed discussion),
it has been an open question whether we could handle the case when the two
costs cM and cT are unrelated. (We will refer to this case as the non-uniform
inflation case, as opposed to the uniform inflation case when the costs cM and
cT are just scaled versions of each other.)

This gap in our understanding was made more apparent by the fact that many
other problems such as Facility Location, Vertex Cover and Set Cover, were all
shown to admit good approximations in the non-uniform inflation model [22,24]:
in fact, the results for these problems could be obtained even when the edge cost
could depend on the day as well as on the demand set appearing on Tuesday.

Theorem 1 (Main Theorem). There is an
O(log2(min(N,λ)) log4 n log log n)-approximation algorithm for the two-
stage stochastic Steiner tree problem with non-uniform inflation costs with N
scenarios, on a graph with n nodes. Here λ = maxe∈E cT (e)/cM (e), i.e., the
maximum inflation over all edges.

This is the first non-trivial approximation algorithm for this problem. Note that
the cost of an edge can either increase or decrease on Tuesday; however, we
would like to emphasize that our result holds only when Tuesday’s costs cT do
not depend on the materialized demand set S. (Read on for a justification of
this requirement.)

We also show that the two-stage stochastic Steiner tree problem is at least as
hard as the single-source cost-distance problem.

Theorem 2 (Hardness). The two-stage stochastic Steiner tree problem is at
least Ω(log log n)-hard unless NP ⊆ DTIME(nlog log log n).

The hardness result in the above theorem holds even for the special case of
Stochastic Steiner tree when the cost of some edges remain the same between
days, and the cost of the remaining edges increases on Tuesday by some universal
factor.



Finally, we justify the requirement that Tuesday’s costs cT are fixed by showing
that the problem becomes very hard without this requirement. Indeed, we can
show the following theorem whose proof is deferred to the journal paper.

Theorem 3. The two-stage stochastic Steiner tree problem when Tuesday’s
costs are dependent on the materialized demand is at least Ω(2log1−ε n) hard
for every fixed ε > 0.

Finally, we also give an LP-rounding algorithm for the multi-commodity Cost-
Distance problem, matching the O(log4 n) approximation guarantee given by
Chekuri et al. [4]; however, we note that the LP we consider is not the standard
LP for the problem.

Our Techniques. Our approach will be to reduce our problem to a more general
problem which we call Group-Cost-Distance:

Definition 4 (Group-Cost-Distance) Consider a (multi)graph G = (V,E)
with each edge having a buying cost be and a renting cost ce. Given a set of
subsets S1, S2, . . . , SN ⊆ V , find for each i a tree Ti that spans Si, so as to
minimize the total cost ∑

e∈∪iTi

be +
N∑

i=1

∑
e∈Ti

ce. (1.1)

Defining F = ∪iTi and xe = number of trees using edge e, we want to minimize∑
e∈F(be + xe ce).

The problem can also be called “multicast” cost-distance, since we are trying
to find multicast trees on each group that give the least cost given the concave
cost functions on each edge. Note that when each Si = {si, ti}, then we get the
(Multicommodity) Cost-Distance problem, for which the first poly-logarithmic
approximation algorithms were given only recently [4]; in fact, we build on the
techniques used to solve that problem to give the approximation algorithm for
the Group-Cost-Distance problem.

1.1 Related Work

Stochastic Problems. For the Stochastic Steiner tree problem in the uniform
inflation case where all the edge-costs increase on Tuesday by the same amount
σ, an O(log n)-approximation was given by Immorlica et al. [16], and constant-
factor approximations were given by [9, 10, 12]. These results were extended to
handle the case when the inflation factors could be random variables, and hence
the probability distribution would be over tuples of the form (demand set S,
inflation factor σ) [11,15].

A related result is known for the Stochastic Minimum Spanning Tree problem,
where one has to connect all the vertices of the graph. In this case, we are



given Monday’s costs cM , and the probability distribution is over possible Tues-
day costs cT . For this problem, Dhamdhere et al. [7] gave an O(log n + log N)
approximation, where N is the number of scenarios. They solve an LP and ran-
domly round the solution; however, their random rounding seems to crucially
require that all nodes need to be connected up, and the idea does not seem to
extend to the Steiner case. (Note that their problem is incomparable to ours:
in this paper, we assume that Monday’s and Tuesday’s costs were deterministic
whereas they do not; on the other hand, in our problem, we get a random set
of terminals on Tuesday, whereas they have to connect all the vertices which
makes their task easier.)

Approximation algorithms for several other problems have been given in the non-
uniform stochastic setting; see [22,24]. For a general overview of some techniques
used in stochastic optimization, see, e.g., [10, 24]. However, nothing has been
known for the Stochastic Steiner tree problem with non-uniform inflation costs.

In many instances of the stochastic optimization problem, it is possible that the
number of possible scenarios on Tuesday (i.e., the support of the distribution π)
is exponentially large. Charikar et al. [2] gave a useful technique by which we
could reduce the problem to a a much smaller number of scenarios (polynomial
in the problem size and inflation factors) by random sampling. We shall use this
tool in our algorithm as well.

Buy-at-Bulk and Cost-Distance Problems. There has been a huge body
of work on so-called buy-at-bulk problems which model natural economies-of-
scale in allocating bandwidth; see, e.g., [3] and the references therein. The
(single-source) Cost-Distance problem was defined by Meyerson, Munagala and
Plotkin [20]: this is the case of Group-Cost-Distance with a root r ∈ V , and
each Si = {ti, r}. They gave a randomized O(log k)-approximation algorithm
where k = |∪iSi|, which was later derandomized by Chekuri, Khanna and
Naor [5]. (An online poly-logarithmic competitive algorithm was given by Mey-
erson [19].) These results use a randomized pairing technique that keeps the
expected demand at each node constant; this idea does not seem to extend
to Group-Cost-Distance. The Multicommodity Cost-Distance problem (i.e., with
arbitrary source-sink pairs) was studied by Charikar and Karagiozova [3] who
gave an exp{

√
log n log log n}-approximation algorithm. Very recently, this was

improved to poly-logarithmic approximation ratio by Chekuri, Hajiaghayi, Ko-
rtsarz, and Salavatipour [4] (see also [13,14]). We will draw on several ideas from
these results.

Embedding Graph Metrics into Subtrees. Improving a result of Alon et
al. [1], Elkin et al. [8] recently showed the following theorem that every graph
metric can be approximated by a distribution over its subtrees with a distortion
of O(log2 n log log n).

Theorem 5 (Subtree Embedding Theorem). Given a graph G = (V,E),
there exists a probability distribution DG over spanning trees of G such that for



every x, y ∈ V (G), the expected distance E T←DG
[dT (x, y)] ≤ βEEST dG(x, y) for

βEEST = O(log2 n log log n).

Note that spanning trees T trivially ensure that dG ≤ dT . The parameter βEEST

will appear in all of our approximation guarantees.

2 Reduction to Group Cost-Distance

Note that the distribution π may be given as a black-box, and may be very
complicated. However, using a theorem of Charikar, Chekuri, and Pál on us-
ing sample averages [2, Theorem 2], we can focus our attention on the case
when the probability distribution π is the uniform distribution over some N
sets S1, S2, . . . , SN ⊆ V , and hence the goal is to compute edge sets E0

.= EM ,
and E1, E2, . . . , EN (one for each scenario) such that E0 ∪Ei contains a Steiner
tree on Si. Scaling the objective function by a factor of N , we now want to
minimize

N · cM (E0) +
N∑

i=1

cT (Ei) (2.2)

Basically, the N sets will just be N independent draws from the distribution
π. We set the value N = Θ(λ2ε−5m), where λ is a parameter that measures
the “relative cost of information” and can be set to maxe cT (e)/cM (e) for the
purposes of this paper, m is the number of edges in G, and ε is a suitably small
constant. Let ρST be the best known approximation ratio for the Steiner tree
problem [23]. The following reduction can be inferred from [2, Theorem 3] (see
also [25]):

Lemma 1 (Scenario Reduction). Given an α-approximation algorithm for
the above instance of the stochastic Steiner tree problem with N scenarios, run it
independently Θ(1/ε) times and take the best solution. With constant probability,
this gives an O((1 + ε)α)-approximation to the original stochastic Steiner tree
problem on the distribution π.

Before we go on, note that E0 and each of the E0 ∪ Ei are acyclic in an opti-
mal solution. We now give the reduction to Group-Cost-Distance. Create a new
(multi)graph, whose vertex set is still V . For each edge e ∈ E in the original
graph, we add two parallel edges e1 (with buying cost be1 = N ·cM (e) and renting
cost ce1 = 0) and e2 (with buying cost be2 = 0 and renting cost ce2 = cT (e)).
The goal is to find a set of N trees T1, . . . , TN , with Ti spanning the set Si, so
as to minimize ∑

e∈∪iTi
be +

∑N
i=1 c(Ti). (2.3)

It is easily verified that the optimal solution to the two objective functions (2.2)
and (2.3) are the same when we define the buying and renting costs as described
above. Using Lemma 1, we get the following reduction.



Lemma 2. An α-approximation for the Group-Cost-Distance problem implies an
O(α)-approximation for the non-uniform Stochastic Steiner tree problem.

(As an aside, if the distribution π consists of N scenarios listed explicitly, we
can do an identical reduction to Group-Cost-Distance, but now the value of N
need not have any relationship to λ.)

3 Observations and Reductions

Recall that a solution to the Group-Cost-Distance problem is a collection of trees
Ti spanning Si; their union is F = ∪iTi, and xe is the number of trees that use
edge e. Note that if we were just given the set F ⊆ E of edges, we could use
the ρST -approximation algorithm for finding the minimum cost Steiner tree to
find trees T ′i such that c(T ′i ) ≤ ρST c(Ti) for any tree Ti ⊆ F spanning Si. Let
us define

cost(F) .= b(F) +
∑

i c(Ti); (3.4)

where Ti ⊆ F is the minimum cost Steiner tree spanning Si. We use OPT = F∗ to
denote the set of edges used in an optimal solution for the Group-Cost-Distance
instance, and hence cost(OPT) is the total optimal cost. Henceforth, we may
specify a solution to an instance of the Group-Cost-Distance problem by just
specifying the set of edges F = ∪iTi, where Ti is the tree spanning Si in this
solution.

As an aside, note that cost(F) is the optimal cost of any solution using the edges
from F ⊆ E; computing cost(F) is hard given the set F, but that is not a problem
since it will be used only as an accounting tool. Of course, given F, we can build
a solution to the Group-Cost-Distance problem of cost within a ρST factor of
cost(F).

We will refer to the sets Si as demand groups, and a vertex in one of these groups
as a demand vertex. For simplicity, we assume that for all i, |Si| is a power of 2;
this can be achieved by replicating some vertices.

3.1 The Pairing Cost-Distance Problem: A Useful Subroutine

A pairing of any set A is a perfect matching on the graph (A,
(
A
2

)
). The following

tree-pairing lemma has become an indispensable tool in network design problems
(see [21] for a survey):

Lemma 3 ( [18]). Let T ′ be an arbitrary tree and let v1, v2, . . . , v2q be an even
number of vertices in T ′. There exists a pairing of the vi into q pairs so that the
unique paths joining the respective pairs are edge-disjoint.



Let us define another problem, whose input is the same as that for Group-Cost-
Distance.

Definition 6 (Pairing Cost-Distance) Given a graph G = (V,E) with buy and
rent costs be and ce on the edges, and a set of demand groups {Si}i, the Pairing
Cost-Distance problem seeks to find a pairing Pi of the nodes in Si, along with
a path connecting each pair of nodes (x, y) ∈ Pi.

Let F′ be the set of edges used by these paths, and let x′e be the number of pairs
using the edge e ∈ F′, then the cost of a solution is

∑
e∈F′(be +x′e ce). As before,

given the set F′, we can infer the best pairing that only uses edges in F′ by
solving a min-cost matching problem: we let cost′(F′) denote this cost, and let
OPT′ be the optimal solution to the Pairing Cost-Distance instance. 4 So, again,
we can specify a solution to the Pairing Cost-Distance problem by specifying this
set F′. The following lemma relates the costs of the two closely related problems:

Lemma 4. For any instance, the optimal cost cost′(OPT′) for Pairing Cost-
Distance is at most the optimal cost cost(OPT) for Group-Cost-Distance.

Proof. Let F be the set of edges bought by OPT for the Group-Cost-Distance
problem. We construct a solution for the Pairing Cost-Distance problem. Recall
that OPT builds a Steiner tree Ti spanning Si using the edges in F. By Lemma 3,
we can pair up the demands in Si such that the unique paths between the pairs
in Ti are pair-wise edge-disjoint. This gives us a solution to Pairing Cost-Distance,
which only uses edges in F, and moreover, the number of times an edge is used
is at most xe, ensuring a solution of cost at most cost(OPT).

Lemma 5 (Reducing Group-Cost-Distance to Pairing Cost-Distance). If
there is an algorithm A for Pairing Cost-Distance that returns a solution F′ with
cost′(F′) ≤ α cost(OPT), we get an O(α log n)-approximation for the Group-
Cost-Distance problem.

Note that A is not a true approximation algorithm for Pairing Cost-Distance,
since we compare its performance to the optimal cost for Group-Cost-Distance;
hence we will call it an α-pseudo-approximation algorithm.

Proof. In each iteration, when we connect up pairs of nodes in Si, we think of
taking the traffic from one of the nodes and moving it to the other node; hence
the number of “active” nodes in Si decreases by a factor of 2. This can only go
on for O(log n) iterations before all the traffic reaches one node in the group,

4 An important but subtle point: note that x′e counts the number of paths that pass
over an edge. It may happen that all of these paths may connect pairs that belong
to the same set Si, and cost might have to pay for this edge only once: regardless,
we pay multiple times in cost′.



ensuring that the group is connected using these pairing paths. Since we pay at
most α cost(OPT) in each iteration, this results in an O(α log n) approximation
for Group-Cost-Distance.

4 An Algorithm for Pairing Cost-Distance

In this section, we give an LP-based algorithm for Pairing Cost-Distance; by
Lemma 5 this will imply an algorithm for Group-Cost-Distance, and hence for
Stochastic Steiner Tree.

We will prove the following result for Pairing Cost-Distance (PCD):

Theorem 7 (Main Result for Pairing Cost-Distance). There is an α =
O(βEEST log2 H · log n) pseudo-approximation algorithm for the Pairing Cost-
Distance problem, where H = max{

∑
i |Si|, n}.

Since H = O(Nn) and we think of N ≥ n, this gives us an
O(log2 N log3 n log log n) pseudo-approximation. Before we present the proof,
let us give a high-level sketch. The algorithm for Pairing Cost-Distance follows
the general structure of the proofs of Chekuri et al. [4]; the main difference is
that the problem in [4] already comes equipped with {s, t}-pairs that need to
be connected, whereas our problem also requires us to figure out which pairs to
connect—and this requires a couple of new ingredients.

Loosely, we first show the existence of a “good” low density pairing solution—
this is a solution that only connects up some pairs of nodes in some of the sets
Si (instead of pairing up all the nodes in all the Si’s), but whose “density”
(i.e., ratio of cost to pairs-connected) is at most a βEEST factor of the density
of OPT. Moreover, the “good” part of this solution will be that all the paths
connecting the pairs will pass through a single “junction” node. The existence
of this single junction node (which can now be thought of as a sink) makes
this problem look somewhat like a low-density “pairing” version of single-sink
cost-distance. We show how to solve this final subproblem within an O(log H ·
log n) factor of the best possible such solution, which is at most βEEST times
OPT’s density. Finally, finding these low-density solutions iteratively and using
standard set-cover arguments gives us a Pairing Cost-Distance solution with cost
O(βEEST log2 H · log n) cost(OPT), which gives us the claimed theorem.

4.1 Defining the Density

Consider an instance of the Pairing Cost-Distance (PCD) problem in which the
current demand sets are Ŝi. Look at a partial PCD solution that finds for each
set Ŝi some set Pi of ti ≥ 0 mutually disjoint pairs {xi

j , y
i
j}

ti
j=1 along with

paths P i
j connecting these pairs. Let P = ∪iPi be the (multi)set of all these



t =
∑

i ti paths. We shall use P to denote both the pairs in it and the paths
used to connect them. Denote the cost of this partial solution by cost′(P) =
b(∪P∈PP ) +

∑
P∈P c(P ). Let |P| be the number of pairs being connected in

the partial solution. The density of the partial solution P is defined as cost′(P)
|P| .

Recall that H = max{
∑

i |Si|, n} is the total number of terminals in the Pairing
Cost-Distance instance.

Definition 8 (f-dense Partial PCD solution) Consider an instance I of the
Pairing Cost-Distance problem: a Partial PCD solution P is called f -dense if

cost′(P)
|P|

≤ f · cost(OPT)
H(I)

,

where H(I) is the total number of terminals in the instance I.

Theorem 9. Given an algorithm to find f-dense Partial PCD solutions, we can
find an O(f log H)-pseudo-approximation to Pairing Cost-Distance.

To prove this result, we will use the following theorem which can be proved by
standard techniques (see e.g., [17]), and whose proof we omit.

Theorem 10 (Set Covering Lemma). Consider an algorithm working in it-
erations: in iteration ` it finds a subset P` of paths connecting up |P`| pairs. Let
H` be the number of terminals remaining before iteration `. If for every `, the so-
lution P` is an f-dense solution with cost′(P`)/|P`| ≤ f · cost(OPT)

H`
, then the total

cost of the solution output by the algorithm is at most f · (1 + lnH) · cost(OPT).

In the next section, we will show how to find a Partial PCD solution which is
f = O(βEEST log H · log n)-dense.

4.2 Finding a Low-Density Partial PCD Solution

We now show the existence of a partial pairing P of demand points which is
βEEST -dense, and where all the pairs in P will be routed on paths that pass
through a common junction point. The theorems of this section are essentially
identical to corresponding theorems in [4].

Theorem 11. Given an instance of Pairing Cost-Distance on G = (V,E), there
exists a solution F′ to this instance such that (a) the edges in F′ induce a forest,
(b) F′ is a subset of OPT′ and hence the buying part of cost′(F′) ≤ b(OPT′),
and (c) the renting part of cost′(F′) is at most O(βEEST ) times the renting part
of cost′(OPT′).

Proof Sketch. The above theorem can be proved by dropping all edges in E \
OPT′ and approximating the metric generated by rental costs ce in each resulting



component by a random subtree drawn from the distribution guaranteed by
Theorem 5. We chose a subset of OPT′, and hence the buying costs cannot be
any larger. Since the expected distances increase by at most βEEST , the expected
renting cost increases by at most this factor. And since this holds for a random
forest, by the probabilistic method, there must exist one such forest with these
properties. 2

Definition 12 (Junction Tree) Consider a solution to the Partial PCD prob-
lem with paths P, and which uses the edge set F′. The solution is called a junction
tree if the subgraph induced by F′ is a tree and there is a special root vertex r
such that all the paths in P contain the root r.

As before, the density of a solution P is the ratio of its cost to the number of
pairs connected by it. We can now prove the existence of a low-density junction
tree for the Partial PCD problem. The proof of this lemma is deferred to the
journal paper.

Lemma 6 (Low-Density Existence Lemma). Given an instance of Pairing
Cost-Distance problem, there exists a solution to the Partial PCD solution which
is a junction tree and whose density is 2βEEST · cost′(OPT′)

H ≤ 2βEEST · cost(OPT)
H .

In the following section, we give an O(log H · log n)-approximation algorithm
for finding a junction tree with minimum density. Since we know that there
is a “good” junction tree (by Lemma 6), we can combine that algorithm with
Lemma 6 to get a Partial PCD solution which is f = O(βEEST log H ·log n)-dense.

4.3 Finding a Low-Density Junction Tree

In this section, we give an LP-rounding based algorithm for finding a junction
tree with density at most O(log H · log n) times that of the min-density junction
tree. Our techniques continue to be inspired by [4]; however, in their paper, they
were given a fixed pairing by the problem, and had to figure out which ones to
connect up in the junction tree. In our problem, we have to both figure out the
pairing, and then choose which pairs from this pairing to connect up; we have
to develop some new ideas to handle this issue.

The Linear-Programming Relaxation. Recall the problem: we are given sets Si,
and want to find some partial pairings for each of the sets, and then want to
route them to some root vertex r so as to minimize the density of the resulting
solution. We will assume that we know r (there are only n possibilities), and
that the sets Si are disjoint (by duplicating nodes as necessary).

Our LP relaxation is an extension of that for the Cost-Distance problem given by
Chekuri, Khanna, and Naor [5]. The intuition is based on the following: given a
junction-tree solution F′, let P ′ denote the set of pairs connected via the root r.



Now F′ can also be thought of as a solution to the Cost-Distance problem with
root r and the terminal set ∪(u,v)∈P′{u, v}. Furthermore, the cost cost′(E′) is
the same as the optimum of the Cost-Distance problem. (This is the place when
the definition of cost′ becomes crucial—we can use the fact that the cost measure
cost′ is paying for the number of paths using an edge, not the number of groups
using it.)

Let us write an IP formulation: let S = ∪iSi denote the set of all terminals.
For each demand group Si and each pair of vertices u, v ∈ Si, the variable zuv

indicates whether we match vertices u and v in the junction tree solution or
not. To enforce a matching, we ask that

∑
u zuv =

∑
v zuv ≤ 1. For each e ∈ E,

the variable ye denotes whether the edge e is used; for each path from some
vertex u to the root r, we let fP denote whether P is the path used to connect
u to the root. Let Pu be the set of paths from u to the root r. Clearly, we want∑

P∈Pu
fP ≤ xe for all e ∈ P . Moreover,

∑
P∈Pu

fP ≥
∑

v∈Si
zuv for each u ∈ Si,

since if the node u is paired up to someone, it must be routed to the root. Subject
to these constraints (and integrality), we want to minimize

min

∑
e∈E bexe +

∑
u∈S

∑
P∈Pu

c(P ) fP∑N
i=1

∑
u,v∈Si

zuv

(4.5)

It is not hard to check that this is indeed an ILP formulation of the min-density
junction tree problem rooted at r. As is usual, we relax the integrality con-
straints, guess the value M ≥ 1 of the denominator in the optimal solution, and
get:

min
∑

e∈E be xe +
∑

u∈S
∑

P∈Pu
c(P ) fP (LP1)

s.t.
∑N

i=1

∑
u,v∈Si

zuv = M∑
P∈Pu:P3e fP ≤ xe for all u ∈ S∑

P∈Pu
fP ≥

∑
v∈Si

zuv for all u ∈ Si, i ∈ [1..N ]∑
v∈Si

zuv ≤ 1 for all u ∈ Si, i ∈ [1..N ]

xe, fP , zuv = zvu ≥ 0

We now show that the integrality gap of the above LP is small.

Theorem 13. The integrality gap of (LP1) is O(log H · log n). Hence there is
an O(log H · log n)-approximation algorithm for finding the minimum density
junction tree solution for a given Partial PCD instance.

Proof. Consider an optimal fractional solution given by (x∗, f∗, z∗) with value
LP ∗. We start off with z = z∗, and will alter the values in the following proof.
Consider each set Si, and let wi =

∑
u,v∈Si

z∗uv be the total size of the fractional
matching within Si. We find an approximate maximum weight cut in the com-
plete graph on the nodes Si with edge weights zuv—this gives us a bipartite graph
which we denote by Bi; we zero out the zuv values for all edges (u, v) ∈ Si × Si



that do not belong to the cut Bi. How does this affect the LP solution? Since
the weight of the max cut we find is at least wi/2, we are left with a solution
where

∑N
i=1

∑
u,v∈Si

zuv ≥ M/2 (and hence that constraint is almost satisfied).

Now consider the edges in the bipartite graph Bi, with edge weights zuv—if
this graph has a cycle, by alternatively increasing and decreasing the values of z
variables along this even cycle by ε in one of the two directions, we can make zu′v′

zero for at least one edge (u′, v′) of this cycle without increasing the objective
function. (Note that this operation maintains all the LP constraints.) We then
delete the edge (u′, v′) from Bi, and repeat this operation until Bi is a forest.

Let us now partition the edges of the various such forests {Bi}N
i=1 into O(log H)

classes based on their current z values. Let Zmax = maxu,v zuv, and define p =
1+2 dlog He = O(log H). For each a ∈ [0..p], define the set Ca to contain all edges
(u, v) with Zmax/2a+1 < zuv ≤ Zmax/2a; note that the pairs (u, v) 6∈ ∪p

a=1Ca

have a cumulative zuv value of less than (say) Zmax/4 ≤ M/4. Hence, by an easy
averaging argument, there must be a class Ca with

∑
(u,v)∈Ca

zuv ≥ Ω(M/ log H).
Define Za = Zmax/2a; hence |Ca|Za = Ω(M/ log H).

Since we have restricted our attention to pairs in Ca, we can define Bia = Bi∩Ca,
which still remains a forest. For any tree T in this forest, we apply the tree-
pairing lemma on the nodes of the tree T , and obtain a matching C′ia on Si of
size d|V (T )|/2e. Defining C′a = ∪iC′ia, we get that |C′a|Za = Ω(M/ log H) as well.

Finally, we create the following instance of the Cost-Distance problem. The ter-
minal set contains all the terminals that are matched in C′a, and the goal is
to connect them to the root. Set the values of the variables f̃P = f∗P /Za and
x̃e = xe/Za. These settings of variables satisfy the LP defined by [5] for the
instance defined above. The integrality gap for this LP is O(log n) and so we
get a solution with cost′ at most O(log n) · LP ∗/Za. However, this connects up
|C′a| = Ω( M

Za log H ) pairs, and hence the density is O(log H · log n)LP∗

M , hence
proving the theorem.

5 Reduction from Single-Sink Cost-Distance

Theorem 14. If there is a polynomial time α-approximation algorithm for the
two-stage stochastic Steiner tree problem, then there is a polynomial time α-
approximation algorithm for the single-source cost-distance problem.

The hardness result of Theorem 2 follows by combining the above reduction with
a result of Chuzhoy et al. [6] that the single-source cost-distance problem can-
not be approximated to better than Ω(log log n) ratio under complexity theory
assumptions.

Proof of Theorem 14. Consider an instance of the Cost-Distance problem: we
are given a graph G = (V,E), a root vertex r, and a set S of terminals. Each
edge e has buying cost be and rental cost ce. A solution specifies a set of edges E′



which spans the root and all the nodes in S: if the shortest path in (V,E′) from
u ∈ S to r is Pu, then the cost of the solution is b(E′) +

∑
u∈S c(Pu). We take

any edge with buying cost be and rental cost ce, and subdivide this edge into
two edges, giving the first of these edges a buying cost of be and rental cost ∞,
and the other edge gets buying cost ∞ and rental cost ce.

We reduce this instance to the two-stage stochastic Steiner tree problem where
the scenarios are explicitly specified. The instance of the stochastic Steiner tree
problem has the same graph. There are |S| scenarios (each with probability
1/|S|), where each scenario has exactly one unique demand from S. For an edge
e which can only be bought, we set cM (e) = be and cT (e) = ∞; hence any such
edge must necessarily be bought on Monday, if at all. For an e which can only
be rented, we set cM (e) = cT (e) = |S| · ce; note that there is no advantage to
buying such an edge on Monday, since we can buy it on Tuesday for the same
cost if needed — in the rest, we will assume that any optimal solution is lazy in
this way.

It can now be verified that there is an optimal solution to the Stochastic Steiner
Tree problem where the subset F ′ of edges bought in the first stage are only of
the former type, and we have to then buy the “other half” of these first-stage
edges to connect to the root in the second stage, hence resulting in isomorphic
optimal solutions. 2

6 Summary and Open Problems

In this paper, we gave a poly-logarithmic approximation algorithm for the
stochastic Steiner tree problem in the non-uniform inflation model. Several inter-
esting questions remain open. When working in the black-box model, we apply
the scenario reduction method of Charikar et al. [2], causing the resulting num-
ber of scenarios N to be a polynomial function of the parameter λ, which is
bounded by the maximum inflation factor on any edge. Hence our running time
now depends on λ, and the approximation ratio depends on log λ. Can we get
results where these measures depend only on the number of nodes n, and not
the number of scenarios N?

In another direction, getting an approximation algorithm with similar guarantees
for (a) the stochastic Steiner Forest problem, i.e., where each scenario is an
instance of the Steiner forest problem, or (b) the k-stage stochastic Steiner tree
problem, remain open.
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A An LP-based Algorithm for Multicommodity
Cost-Distance

In their paper, Chekuri et al. [4] give an approximation algorithm for the Mul-
ticommodity Cost-Distance problem using a combination of combinatorial and
LP-based techniques. We now give an LP-based algorithm for the Multicommod-
ity Cost-Distance problem with an approximation guarantee of O(log4 n), thus
matching the result of [4] using a different approach. (Note that this is not the
standard LP for the Multicommodity Cost-Distance problem, which we do not
currently know how to round.)

Take an instance of Multicommodity Cost-Distance: let Si = {si, ti} be each
terminal pair we want to connect, and S = ∪iSi. Consider the following linear
program:

Z∗MCD = min
∑

e∈E be ze(p) +
∑

u∈S
∑

P∈Pu∗
c(P ) fP (LP-MCD)

s.t.
∑

p∈V x(u, p) ≥ 1 for all u ∈ S∑
P∈Pu,p

fP ≥ x(u, p) for all u ∈ S, p ∈ V∑
P∈Pu,p:P3e fP ≤ ze(p) for all u ∈ S, p ∈ V

x(si, p) = x(ti, p) for all i, p ∈ V

x(u, p), fP , ze(p) ≥ 0

To understand this, consider the ILP obtained by adding the constraints that
the variables are all {0, 1}. Each solution assigns each terminal u to one junction
node p (specified by x(u, p)) such that each si-ti pair is assigned to the same
junction (since x(si, p) = x(ti, p)). It then sends the unit flow at the terminal
using flow fP to this junction p, ensuring that if an edge e is used, it has been
purchased (i.e., ze(p) = 1). The unusual part of this ILP is that the buying costs
of the edge are paid not just once, but once for each junction that uses this edge.
(If all the variables ze(p) would be replaced by a single variable ze, we would get
back the standard ILP formulation of Multicommodity Cost-Distance.)

Lemma 7. Each integer solution to (LP-MCD) is an solution to the Multicom-
modity Cost-Distance problem with the same cost. Moreover, any solution to the
Multicommodity Cost-Distance problem with cost OPT can be converted into a
solution for (LP-MCD) with cost at most O(log n)× OPT.

While we defer the proof of this theorem to the final version of the paper, we note
that the former statement is trivial from the discussion above, and the second



statement follows from the paper of Chekuri et al. [4, Theorem 6.1]. Hence, it
suffices to show how to round (LP-MCD).

A.1 Rounding the LP for Multicommodity Cost-Distance

In this section, we show how to round (LP-MCD) to get an integer solution with
cost O(log3 n)× Z∗MCD. The basic idea is simple:

– Given a fractional solution, we first construct a (feasible) partial solution
with x̂(u, p) ∈ {0, 1} but with fractional fP and ze(p) values. The expected
cost of this partial solution is O(log2 n)× Z∗MCD.

– Since the x̂ values are integral in this partial solution, each terminal u sends
unit flow to some set of junctions p (chosen by x̂(u, p)), such that each
pair si, ti sends flow to the same set of junctions. We can choose one of
these junctions arbitrarily, and hence each terminal pair is assigned to some
junction.

– Finally, note that all the flows to any junction p can be supported by frac-
tional ze(p) capacities; these capacities are entirely separate from the ca-
pacities ze(p′) for any other terminal p′ in the graph. Hence the problem
decomposes into several single-sink problems (one for each junction), and we
can use the rounding algorithm of Chekuri et al. [5] to round the solutions for
each of the junctions p independently to obtain integer flows fP and integer
capacities ze(p) while losing only another O(log n) in the approximation.

The last two steps are not difficult to see, so we will focus on the first rounding
step (to make the x(u, p) variables integral). The rounding we use is a fairly
natural one, though not the obvious one.

1. Modify the LP solution to obtain a feasible solution where all x(u, p) values
lie between 1/n3 and 1, and each x(u, p) = 2η(u,p) for η(u, p) ∈ Z≥0. This
can be done losing at most O(1) times the LP cost.

2. For each junction p, pick a random threshold Tp ∈R [1/n3, 1] independently
and uniformly at random. Then round up fP for all P ∈ P∗p, and all ze(p)
by a factor of 1/T . Note that if x(u, p) ≥ T , then we can send at least 1 unit
of (fractional) flow from u to p using these scaled-up capacities ze(p). We set
x̂(u, p) = 1, and call the terminal u satisfied by the junction p. (Note that
since x(si, p) = x(ti, p), if si is satisfied by u then so is ti.)

3. We repeat the threshold rounding scheme in the previous step O(log n) times.
We return a solution {x̂, f̂ , ẑ}, where x̂(u, p) is as described above, and f̂ , ẑ
are obtained by summing up all the scaled-up values of f and z over all the
O(log n) steps.

We now show that each terminal has been satisfied with high probability, and
that the expected cost of each solution produced in the second step above is
O(log n)× Z∗MCD.



Lemma 8. The expected cost of the second step above is O(log n)× Z∗MCD.

Proof. The variable ze(p) gets scaled up to ze(p)/T , whose expected value is∫ 1

T=1/n3 ze(p)/TdT = ze(p)×O(log N). The same holds for the fP variables.

Lemma 9. Each terminal u is satisfied by a single round of threshold rounding
with constant probability, and hence will be satisfied in at least one of O(log n)
rounds with probability 1− 1/ poly(n).

Lemma 10. The above scheme gives a feasible solution {x̂, f̂ , ẑ} to (LP-MCD)
with x̂ ∈ {0, 1} and cost at most O(log2 n)× Z∗MCD.

Finally, looking at this solution, decomposing it for each junction p, and using
the [5] rounding scheme converts the flows f̂ and the capacities ẑ to integers
as well. Combining this with Lemma 7 gives us another proof for the following
result.

Theorem 15. There is an O(log4 n) approximation algorithm for the Multicom-
modity Cost-Distance problem based on LP rounding.
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