Where’s the Winner?
Max-Finding and Sorting with Metric Costs

Anupam Guptaand Amit Kuma?

! Dept. of Computer Science, Carnegie Mellon UniversitytsBiirgh PA 15213.
anupang@s. cnu. edu *
2 Dept. of Computer Science & Engineering, Indian Institut@echnology, Hauz Khas
New Delhi, India - 110016am t k@se.iitd. ernet.in

Abstract. Traditionally, a fundamental assumption in evaluatingaddgormance
of algorithms for sorting and selection has been that coingany two elements
costs one unit (of time, work, etc.); the goal of an algoritisnto minimize the

total cost incurred. However, a body of recent work has gitethto find ways to
weaken this assumption—in particular, new algorithms limaen given for these
basic problems of searching, sorting and selection, whempadsons between
different pairs of elements have different associatedscost

In this paper, we further these investigations, and addtresguestions of max-
finding and sorting when the comparison costs fonmedric i.e., the comparison
costsc,, respect the triangle inequality,, + cvw > cuw for all input elements
u, v andw. We give the first results for these problems—specificallypresent

— An O(log n)-competitive algorithm for max-finding on general metriasd

we improve on this result to obtain @ (1)-competitive algorithm for the
max-finding problem in constant dimensional spaces.

— An O(log? n)-competitive algorithm for sorting in general metric space
Our main technique for max-finding is to run two copies of a@amatural online
algorithm (that costs too much when run by itself) in patalgy judiciously
exchanging information between the two copies, we can bthumdost incurred
by the algorithm; we believe that this technique may havermé#pplications to
online algorithms.

1 Introduction

The questions of optimal searching, sorting, and seledi#oat the very basis of the
field of algorithms, with a vast literature on algorithms these fundamental prob-
lems [1]. Traditionally the fundamental assumption in eatihg the performance of
these algorithms has been thmit-cost comparison modelcomparing any two ele-
ments costs one unit, and one of the goals is to devise dlgmsithat minimize the
total cost of comparisons performed. Recently, Charikal.g§2] posed the following

problem: given a sét” of n elements, where the cost of comparingndv is ¢, how

should we design algorithms for sorting and selection so asitiimize the total cost of

* Research partly supported by NSF CAREER award CCF-044&0®bby an Alfred P. Sloan
Fellowship.

all the comparisons performed? Note that these aggtsire known to the algorithm,
which can use them to decide on the sequence of comparisoasabe where all com-
parison costs are identical is just the unit-cost model. Basuare the performance of
algorithms in this model, Charikar et al. [2] used the frarmmdwnof competitive analy-
sis they compared the cost incurred by the algorithm to theiogstred by an optimal
algorithm toprovethe output correct.

The paper of Charikar et al. [2], and subsequent work by tkieoasi [3] and Kannan
and Khanna [4] considered sorting, searching, and sefefitiospecial cost functions
(which are described in the discussion on related work). él@r there seems to be
no work on the case where the comparison costs fometic spacei.e., where costs
respect the triangle inequality,, + cyw > cuw for all u,v,w € V. Such situations
may arise if the elements reside at different places in a comication network, and the
communication cost of comparing two elements is propoditmthe distance between
them. An equivalent, and perhaps more natural way of enfgritie metric constraint
on the costs is to say that the verticeifie in an ambitent metric spadé, d) (where
V' C X), where the cost;; of comparing two vertices andj is the distancel(s, j)
between them.

Our Results. In this paper, we initiate the study of these problems: irtipalar, we
consider problems of max-finding and sorting with metric pamison costs. For the
max-finding problem, our results show that the lower boun@©f) on the competitive
ratio arises only for arguably pathological scenarios,anbtantially better guarantees
can be given for metric costs.

Theorem 1. Max-finding with metric costs has &(log n)-competitive algorithm.

We improve the result for the special case when the point®aated ind-dimensional
Euclidean space:

Theorem 2. There is arO(d*)-competitive randomized algorithm for max-finding when
the nodes lie on thé-dimensional grid and the distance between points is giwen b
the /., metric; this yields arO(d*(!*1/7))-competitive algorithm fod-dimensiona¥,,
space.

For the problem of sorting elements in a metric, we give @log n)-competitive
algorithm for the case of hierarchically well-separateg & (HSTs). We then use stan-
dard results of Bartal [5], and Fakcharoenphol et al. [6ffrihe theory of metric em-
beddings to extend our results to general metrics. Our ni@arem is the following:

Theorem 3. There is arO(log? n)-competitive randomized algorithm for sorting with
metric costs.

It can be seen that any algorithm for sorting with metric sasiust bef2(logn)-
competitive even when the points lie on a star or a line—idgere can model unit-cost
sorting and searching sorted lists in these cases. Theigues$tlosing the logarithmic
gap between the upper and lower bounds remains an intriguiag

Our Techniques. For the max-finding algorithm for general metrics, we usenape
algorithm that use®(log n) rounds, eliminating half the elements in each round while

paying at mosOPT. Getting better results turns out to be non-trivial evenviery
simple metrics: an illuminating example is the case wheesdbmparison costs for
elements = {v1,vs,...,v,} are given byc,,,, = |i — j|; i.e., when the metric is
generated by a path. (Note that this path has no relationshige total order orv: it
merely specifies the costs.)

Indeed, arO(1)-competitive algorithm for the path requires some work: oateral
idea is to divide the line into two pieces, recursively find thaximum in each of these
pieces, and then compare the two maxima to compute the bsegimum. However,
a closer look indicates that this algorithm also gives usmaptitive ratio off2(log n).
To fix this problem and reduce the expected cosDt® PT), we make a simple yet
important change: we rutwo copiesof the above algorithm in parallel, transferring a
small amount of information between the two copies afterex@und of comparisons.
Remarkably, this subtle change in the algorithm gives usliienedO(1)-competitive
ratio for the line. In fact, this idea extends to tiielimensional grid to give u®(d)-
competitive algorithms—uwhile the algorithm remains vatly unchanged, the proof
becomes quite non-trivial fai-dimensions.

For the results on sorting, we first develop an algorithmlfier¢ase when the met-
ric is ak-HST (which is a tree where the edges from each vertex to itdreim arek
times shorter than the edge to its parent). For these HSEshaw how to implement
a “bottom-up mergesort” to get an (existentially optim@ljlog n)-competitive algo-
rithm; this is then combined with standard techniques tatged (log® n)-competitiveness
for general metrics.

Previous Work. The study of the arbitrary cost model for sorting and sebectvas
initiated by Charikar et al. [2]. They showed &Xin)-competitive algorithm for finding
the maximum for general metrics. Tighter upper and matchomger bounds (up to
constants) for finding the maximum were shown by Hartlind.¢7hand independently
by the authors [3].

In the latter paper [3], the authors considered the spea&e ofstructured costs
where each element; is assumed to have an inheresize s;, and the cost,,,, of
comparing two elements andv; is of the formf(s;, s;) for some functionf; as ex-
pected, better results could be proved if the funcfiomas “well-behaved”. Indeed, for
monotone functiong, they gaveO(log n)-competitive algorithms for sorting?(1)-
competitive algorithms for max-finding, ani®(1)-competitive algorithms for selection
for the special cases g¢f being addition and multiplication. Subsegently, Kannad an
Khanna [4] gave af®)(log” n)-competitive algorithm for selection with monotone func-
tions f, and anO(1)-competitive algorithm wherf was themin function.

Formal Problem Definition. The input to our problems is eompletegraphG =
(V, E), with |V| = n vertices. These vertices represent the elements of thieaieta
der, and hence each vertexc V' has a distinckey valuedenoted bykey(v). (We use
x < y to denote thakey(z) < key(y).) Each edge = (u,v) has non-negativiength
or coste, = ¢y, Which is the cost of comparing the elementandv. We assume that
these edge lengths satisfy the triangle inequality, andédnérm a metric space.

In this paper, we consider the problems of finding the elermeht with the max-
imum key value, and the problem of sorting the elementg iaccording to their key
values. We work in the framework of competitive analysig] aampare the cost of the

comparisons performed by our algorithm to the cost inculbsethe optimal algorithm
which knows the results of all pairwise comparisons and last toprovethat the so-
lution produced by it is correct. We shall denote the optismution byOPT C E.
Given a set of edgeB’ C E, we will let ¢(E") = 3 . ce, and hence(OPT) is
the optimal cost. Note that a proof for max-finding is a roapenning tree of7 with
the maximum element at the root, and where the key valuesrt€es monotonically
increase when moving from any leaf to the root; for sortingr@of is the Hamilton
path where key values monotonically increase from one etitetother.

2 Max-Finding in Arbitrary Metrics

For arbitrary metrics, we give an algorithm for finding theximaum element,,,, of
the nodes iri/; the algorithm incurs cost at moék(logn) x ¢(OPT'). Our algorithm
proceeds in stages. In stageve have a subgraph; = (V;, E;) such that/; contains
Umax, N€reV; C V ,andE; = V; x V; with the same costs as . We start with
Go = G, in stagei, if G; has a single node, then it must bg.., else we do the
following steps.

1. Find a minimum cost almost-perfect matchii in G;. (l.e., at most one node remains
unmatched.)

2. For every edge = (u,v) € M;, compare the end-points ef (If u is greater tham, thenu
“wins” and v “loses”.)

3. Delete nodes which lost in the comparisons above to getahesetV; ; from V;.

It is clear that the above algorithm correctly fingds.; there areD(log n) rounds
since|V;| = [n/27], and hence the following lemma immediately implies thatdbst
incurred isO(logn) x ¢(OPT), this proving Theorem 1.

Lemma 1. The cost of edges ih/; is at mostc(OPT).

Proof. Given any set ofk vertices in a tre€’, one can find a pairing of these vertices
into k pairs so that the paths ifi between these pairs are edge disjoint (see, e.qg., [8,
Lemma 2.4]). We use this to pair off the verticeslgfin the treeO PT'; the total cost

of the paths between them is an upper bound on a min-cost gjmdgct matching of

V;. Finally, since the paths between the pairs are edge disfbéir total cost is at most
¢(OPT), and hence the cost @f; is at mostc(OPT') as well. O

3 Finding the maximum on a line

To improve on the results of the previous section, let us idenghe case of the line
metric; i.e., where the verticd5 = {1,2,...,n} lie on aline, and the cost of comparing
two elements i/ is just the distance between them in this line. Let us asshatdhe
line is unweighted, and consecutive pointslinare at unit distance from each other,
and hence;; = |i — j|; we will indicate how to remove this simplifying assumptiain
the end of this section. We also assume thét a power of2. For an element € V
which is not the maximum, lej(z) be anearestelement tar which has a key greater
thankey(xz), and letd(x) be the distance betweanandg(x). Observe that iO PT,
the parent of must be at distanaé(z) from z, and hence(OPT) =3_, , d(z).

Let us first look at a naive scheme: we start off with a divisi®; of the line
into two-nodesegmentg[1, 2], [3,4], ..., [n — 1,n]}. In next divisionD,, we pair off
segments oD, to getn/4 segmentg[1,2,3,4],...,[n—3,n—2,n—1,n|}; similarly,

D; hasn/2¢ segments, each with' nodes. We maintain the invariant that we know
the maximum key element in each segmentipf when merging two segments, we
compute the maximum by comparing the maxima of the two setgneowever, this is
just the algorithm of Section 2, and if we halve< 2 < --- < n, thenc(OPT) =n—1
but our scheme cosf3(n logn).

An algorithm which almost works. A natural next attempt is to introduce random-
ization: to form the divisionD, from Dy, we toss an unbiased coin: if the result is
“heads”, we mergél, 2], [3, 4] into one segment (which we denote using the notation
[1-4]), merge[5, 6], 7, 8] into the segmenis — 8], and so on. If the coin comes up
“tails”, we shift over by one[1, 2] forms a segment by itself, and from then on, we
merge every two consecutive segment®gf Hence, with probabilit)é, the segments

in Dy are{[1-4],[5-8],...}, and with probabilitys, they are{[1-2], [3-6], [7-10],... .}.

To get divisionD; ; from D;, we flip an unbiased coin and either merge every pair of
consecutive segments éf; beginning with thefirst segment, or merge every pair of
consecutive segments starting at fiseondone. It is easy to see that all segments in
D;, except perhaps the first and last ones, lPAvedes. Again, the natural randomized
algorithm is to maintain the maximum element in each segmokft;: when combin-
ing segments oD); to form segments ab, ,;, we compare the two maxima to find the
maximum of the newly formed segment. (We stege: to refer to the comparisons
performed whilst formingD;; note that stages begin Btand there are no comparisons
in the first stage.)

The correctness of the procedure is immediate; to calctiatexpected cost in-
curred, we charge the cost of a comparison to the loser—hatesach node except
Umax Pays for exactly one comparison. We would like to show thatdkpected cost
paid byz € V in our algorithm isO(d(x)). Let S;(z) denote the segment @; con-
taining z; thesizeof |S;(x)| < 2¢, and thelengthof S;(z) is |S;(z)| — 1. Note that if
2F < d(z) < 2F*+1, thenz definitely wins (and hence does not pay) in stagéwough
k; the following lemma bounds the probability that it losesaimy staget > & + 1.
(Recall that depending on the coin tossesyay nor may lose tg(z).)

Lemma 2. Let2* < d(z) < 2¢*1. ThenPr[z loses in stage] < 2~ (t=+=2),

Proof. Note that the lemma is vacuously true for k + 2. Sinced(z) < 2*+1, nodes

x andg(x) must lie in the same or consecutive segments in skagel. Now for x

to lose in stage, it must not have lost in stagd# + 2,k + 3,...,¢t — 1}, and hence
the segments containingandg(xz) must not have merged in these stages. Since we

make independent decisions at each stage, the probaldilihisoevent happening is
(1/2)(E= D= (k241 — 9= (t=k=2) 0

Sincex may have to pay as much 25! if it loses in stage, the expected cost faris
3o ©(2F), which may be as large &2* - (log n—k)). Before we indicate how to fix
the problem, let us note that our analysis is tight: for theneple withl < 2 < --- < n,
the randomized algorithm incurs a cd@2tn log n).

Two Copies Help: The Double-Random Algorithm.Let us modify the above algo-
rithm to maintain two independeobpiesof the line, which we call andL’. The par-
titions in L will be denoted byD,, D>, . . ., while those inZ’ will be called D}, Dy,
These partitions in the two lines are chosen independertaf ether. Again, we main-
tain the maximum element of each segmentinand D}, but also exchange some
information between the lines. Consider the step of mergayments; andS, to get

a segmenft in D; 1, and letx; be the maximum element ;. Before we compare
x1 andz,, we check ifz, has lost to an elemepte S, in some previous stage ify':

in this case, we know that; < y < x5, and hence can avoid comparing and .
Similarly, if z5 has previously lost i’ to some element € S;, we can declare;

to be the maximum element &f. Only if neither of these fortuitous events occur, we
comparer; andxs. (The process fol’ is similar, and uses the information frohis
previous rounds.) The correctness of the algorithm followsediately.

Notice that each elementow loses exactly twice, once in each line, but the second
loss may be implicit (without an actual comparison beindqrened). As before, we say
that a nodex loses in stage of L (or L') if this is the first stage in which loses inL
(or L'). The noder paysin stagei of L (or L') if = loses in stagéof L (or L') andan
actual comparison was made. Whildéoses twice, it may possibly pay only once.

Lemma 3. If z,y € V are at distancel(x, y), then the probability (in either line) that
x andy lie in different segments ib; is at mostd(z, y) /2¢ .

Proof. Let 2~ < d(z,y) < 2F+1: the statement is vacuously true for- 1 < k. In
stagei — 1 > k, the nodes andy must lie in either the same or consecutive segments
in D;_1. Now, if they were in different segments i, _; (which inductively happens
with probability at mosti(x, y)/2¢~2), the chance that these segments do not merge in
stagei is exactlys, giving us the bound of(z, y) /2% x 1. O
Letthe nodgy(x) lie to the left ofz; the other case is symmetric, and proved identically.
Let the distancel(x) = d(x, g(z)) satisfy2* < d(z) < 2k, Leth(x) be the nearest
pointto the right ofr such that: < h(x), and le™ < d(z, h(z)) < 2™*1. Note that if

x paysin staget of L, thent < m+3. Indeed, if the segmerst,, . 3(x) is the leftmost or

the rightmost segment, then it either contaj(s) or h(x), so it must have paid by then.
Else, the length 06, 3(z) = 2™+3 — 1, and sincel(g(z), h(z)) < 2m+! 4 2k+1 =
2m+2 the segment,,; 3(x) must contain one af(z) or h(x), sot < m+3. Moreover,
sinceS; (x) must contain eitheg(z) or h(x), it follows thatt > k. The following key
lemma shows us that the probability of paying in stage [k + 1,m] is small. (An
identical lemma holds fof.’.)

Lemma 4. Fort € [k + 1,m], Pr[z pays in stage of L] < 272(t=k)+5,

Proof (Lemma 4)Note that ifz pays in stage < m of L, thenz must have lost to
some element to its left if, sinced(z, h(x)) > 2™. Depending on whether loses in
L' before stage or not, there are two cases.

Case |: 2 has not lost inD;_,. This implies thatr andg(z) lie in different segments
in L', which by Lemma 3 has probabilitg d(z, g(z))/2t2 < 2=~ =3)_ Now the

chance that loses inL in staget is 2~(*~%=2) (by Lemma 2). Since the partitions are
independently chosen, the two events are independenthywhives the lemma.

Case II: z has lost in stagé < ¢ — 1 in L'. Sincel < m, x must have lost to some
elementy to its left in L’; this y is eitherg(x), or lies to the left ofg(x). Consider
staget — 1 in L: since the distancé(y, z) < 2! < 2!~1, the three elements, g(x)
andy lie in the union of two adjacent segmentsiih. Furthermoreg must lie in a
different segment frony andg(«), otherwiser would have already lost it in stage

t — 1. Recall that ifx loses in stage in L, it must lose to a node to its left—since
t < m, h(z) is too far to the right. But this implies th&}_; (x) must merge in_ with
Si—1(y) = Si—1(g(z)); in this case, no comparisons would be performed sinbad
already lost tqy in L. O

Note that this lemma implies that the expected paymeantfof stages:+ 1 through
misatmosfy ;" , ., 272(1=F)F5 x 2t = O(2*). The expected payment in stages- 1
tom + 3 is at most3 - O(2™) = O(2*) by Lemma 2, which proves:

Theorem 4. The Double-Random algorithm is &n(1)-competitive algorithm for max-
finding on the line.

To end, note that the assumption of unit length edges canrbeved: by scaling and
translation, all distances can be made integers. We canwadchg vertices at all inte-
gersi that do not correspond to a vertexlif) where all these vertices have key values
less than those of all the non-dummy vertices. Running De&andom on this aug-
mented line allows us to run the algorithm without incregdime cost. (We can even
space and time overhead by maintaining only segments cdmgaat least one non-
dummy node.)

4 Max-Finding for Euclidean metrics

In this section, we extend our algorithm for the line metdatbirary Euclidean met-
rics: the basic idea of running two copies of the algorithrd prdiciously exchanging
information will be used again, but the proof becomes sunistidy more involved. We
give the proof for the2-d case; the proof for the general case is deferred to the final
version of the paper.

The General Double-Random Algorithm.As in the case of the line, we begin with the
simplifying assumption that the nodeslinform a subset of the unit-weightx n grid;
we refer to this underlying grid @4 = {1,2,...,n} x{1,2,...,n}. (This assumption
can be easily discharged, as for the case of the line; we bmitiétails here.) Hence
each pointy € V' corresponds to a poirt,,, v,) € M, with 1 < v,,v, < n. In fact, if
P? denotes the path along theaxis from 1 ton, and P¥ denotes a similar path along
the y-axis, then we can identify the gridl with the cartesian produd®* x PY. To
construct partitions;, D, . .. of the grid, we build stagé-partitionsD? and D! for
the pathsP® and PV: the rectangles itVI's partition correspond to the products of the
segments iD? andDy, and hence a square i, is formed by merging at most four
squares inD;.2 The random partitioning schemes fBF and P evolve independently
of each other.

3 We abuse notation and say “squares” even though the piegebamnactangles.

Again, we maintain the invariant that we know the maximunmedat in each square
of the partitionD;, and as in the case of the line, we do not want to perform thoee ¢
parisons when merging squaredmto getD, ;. Hence we maintain two independent
copiesM andM’ of the grid, withD; and D} being the partitions in the two grids at
stagei. Suppose€ 1, 22, x3, 24 + are the four maxima of four squarSsbeing merged
into a new squaré in M: for eachi € [1, 4], we check ifx; has lost to somg € S in
a previous stage ik, and if so, we remove; from consideration; we finally compare
thex;’s that remain. The correctness of the algorithm is immediahd we just have to
bound the costs incurred.

4.1 Cost of the Double-Random Algorithm in Two Dimensions

We charge the cost of each comparison to the node that logkaticomparison, and
wish to upper bound the cost charged to any nedeM. Let G(p) = {q | p < ¢} be
the set of nodes with keys greater thardix a vertexg(p) € G(p) closesto p, and let
d(p) be the distance betwegrandg(p), with 2¢ < d(p) < 2°*!. Since we focus on the
nodep for the entire argument, we shift our coordinate system todrgered ap: we
renumber the vertices on the path% and P¥ so that the vertex lies at the “origin” of
the 2-d grid. Formally, we label the nodes € P* andp, € PY as0; the other vertices
on the paths are labeled accordingly. This naturally defioessquadrants as well. Let
D? be the projection of the partitioP; on the lineP*, andD/! be its projection of??.
(D¥’ andDg" are defined similarly for the gribil’.)

Let us note an easy lemma, bounding the chancepthatlg(p) are separated in the
partition D; in M. (Such a lemma holds for partitiai; of M, of course.)

Lemma 5. Prp andg(p) lie in different squares ob;] < 27(—¢=3),

Proof. Let the distance fromp to g(p) along the two axes bé, = d(p., g(p).) and
dy = d(py,g9(p)y) with max{d,,d,} = d(p). By Lemma 3, the projections, and
g(p). do not lie in the same stageinterval of P* with probability at most,, /2¢1.
Similarly, p, andg(p), do not lie in the same stagdnterval of P¥ with probability

at mostd, /2'~1; a trivial union bound implies that the probability that(p) /2~ <
9=(—t-3), o

We now prove that the expected charge to a npdeO(2¢), where the distance
betweenp and a closest poinj(p) in the setG(p) = {¢ € V | p < ¢} liesin the
interval[2¢,2¢+1). Let H(p) = G(p) — {g(p)}. Let S;(p) and S’(p) be the squares in
D, and D] respectively that contain We will consider two events of interest:

1. Let.A; be the event that pays inM in stagei, and the squaré;(p) contains at
least one point fron# (p), but does not contaig(p).
2. LetB; be the event thai pays inM in stagei, and.S; containsg(p).

Note thatA; N B; = 0; also, ifp pays in stage in M, then eitherd; or B; must occur.
Also, Pr[A; U B;] > 0 only whenp and some element @ (p) lie in the same square
in stagei in M: since any two points in such a square aré.adistance< 2¢ — 1 from
each other, and each element®fp) has/,, distance at least’ from p, it suffices to

consider the case> ¢. Theorems 5 and 6 will show that, Pr[A;] x 2°+ ", Pr(B;] x

2t = O(2%). This shows thap pays onlyO(2¢) in M; a similar bound holds foh’,
which proves the claim that Double-RandonTi$l1)-competitive in the case of two-
dimensional grids.

Theorem 5. Y, Pr[A4;] x 2! = O(2°).

Proof. Let us define two event§, and€,. Let&, be the event that, andg(p). lie in
different segments i®7, and&, be the event that, andg(p), lie in different segments
in DY. Note that4; \ (£, U¢&,) = 0, and hence

PriA;] < Prid; N &) + Pri4; N &,] (4.1)

Let us now estimat®r|A; N &,], the argument for the other term is similar. Assume
(w.l.o.g.) thatg(p).. lies to the left ofp,, and let the points betwees(p). and p.
(includingp,, but not including(p)..) in P* be labeled}, p?, ..., pk = p, from left

to right. DefineF; as the event that the segméiit(p) in D? containingp,. hasp’, as its
left end-point. Note that the event§ are disjoint, and, = U5_, 7. Thus it follows
that

PI’[.Al N gz] = Z] PI’[AZ N ./Tj] = Z] PI’[AZ | .7:]] PI’[]‘—J] (42)

If F; occurs then the end-points of the edge connegtingndp’~! (wherep? =
9(p)s) lie in different segments oD?. Lemma 3 implies that this can happen with
probability at mostz%. Thus, we get

Prid; N &) <2700 5 3 PriA; | 7. (4.3)

Define]ij as the segment of leng#t in P* containingp,, and having’, as its left end-
point. Letq(i, j) € H(p) be such that(i, j), € I-] and|q(i, j)y — py| is Minimum; in
other words, the point closest to theaxis whose projection lies Lﬁf If no such point
exists, then we say tha(i, j) is undefined. Lebt (i, j) = |q(i,7)y — vyl if ¢(i,7) is
defined, ando otherwise. Notice that for a fixef (s, j) is a decreasing function of
AssumeF; occurs for some fixed: for A; # 0, S;(p) must contain a point in
H(p), and hencé(i, j) < 2¢; leti(j) be the smallest value éffor which§(i, j) < 2°.
Due toé(i, j) being a decreasing function ind(i, j) > 2° for all i < (), and for all
i >i(j), 6(i,7) < 2°. Now suppose > i(j); note the strict inequality, which ensures
thatq(i — 1,7) exists. Again assume tha; occurs: now forA4, to occur, the square
S;—1(p) cannot contain any point df (p). In particular, it cannot contaip(i — 1, j).

Lemma 6. If F; occurs and > ¢+ 1, thenp, andq(i — 1, j), lie in the same segment
of D¥ ;.

Proof. It will suffice to show the claim that segment containingin D7 ; also has

p’. as the left end-point; sinagi — 1, j). also lies in this segment, the lemma follows.
To prove the claim, note that the distarlpé — p..| < |g(p)e — pa| — 1 < (2°F1 —

1) — 1 = 241 — 2. Sincei > ¢, it follows thatp, andp’ must lie in the same or

in adjacent segments @ _,; we claim that the former is true. Indeed, suppose they
were in different segments: since the segmenbf, containingp’ must have width
2i=1 — 1> 21 _ 1 which is greater thatp’, — p,|, it must happen that’ lies in the

interior of this segment, and hengé could not occur. 0

Note that since the projections pfandq(i — 1, j) on thez-axis lie in the same
segmentimplies that the projectiomsandg(i—1, 7), on they-axis must lie in different
segments oD?_,. Since this eventis independent®f, we can use Lemma 3 to bound
the probability: indeed, we get that for> i(j),

Prid; | F;] < 2L, (4.4)

We are now ready to prove the theorem.

22 PriAiNg] <2 30,3, Pridi | 7] (from (4.3))
=232 2 isi PriA: | 7]
<23 (14 Yo “52) (from (4.4))

<233 <6-2°

where penultimate inequality follows from the fact tl4ét, ;) is a decreasing function

of i, and hence_,_; (—LJ) is a dominated by a geometric sum. A similar calcu-
lation proves thad _, 21 Pr[Ai N &,] is O(2%), which in turn completes the proof of
Theorem 5. O

Now that we have bounded the chargetdue to the eventsl; by O(2¢), we turn
our attention to the events;, and claim a similar result for this case.

Theorem 6. Y, 2° - Pr[B;] < O(2).

Proof (Theorem 6)Recall that ifp loses in stage, theni > ¢: hence we define a set
of events&,1, ..., &3, where€; occurs ifp loses in stagg of M'. Also, define the
event&, occur if p does not lose i’ till stage: — 3. Note that exactly one of these
events can occur, and hence

Pr(B;] = Pr[B: | &lPr[&] + 32125, Pr(Bi | &]Pr(€;). (4.5)

The next two lemmas give us bounds on the probability of eddheterms in the
summation.

Lemma 7. If i > ¢ + 1, thenPr[B; | &|Pr[&y) < 27 (2i-26-10),

Proof. Lemma 5 implies thaPr[&,] < 2~ ((i=3)=¢=3) Now given&,, p must not lose
till stage: — 1 in M for B; to occur. But this event is independent&f, and hence
Lemma 5 implies thaPr[B; | & is at most2~((=1)=¢=3) Multiplying the two com-
pletes the proof. a

Lemma 8. Pr(B; | &;]Pr[&;] < 2~ (2i=26=9),

Proof. For the event; to occur,p does not lose till stagg — 1 in M’; now applying
Lemma 5 gives us th&tr[;] <27 (G=D=£=3) Also, note that < j < i — 3 for us to
be in this case.

Now let us condition o&; occurring: letp lose to some in stagej of M’, and hence
[pe = Gzl, IPy —ay| < 27. Now consider stage— 1 of M. We claim thap,, ¢, andg(p).

do not all lie in the same segment bf’_,. Indeed, since the distange, — g(p),| <
2t+1 < 26=2 the triangle inequality ensures tHay — g(p)y| < [py — 9(p)y| + Iy —
qy| < 2771, and hence the distance between any two points in thémset,, g(p), }

is at most2:~!. Thus two of these points must lie in the same segmentiin, in M.

If all three lay in the same segment Bf_,, two of these points would lie in the same
square inD;_;. Now if p was one of these points, themwould lose before stageand
B; would not occur. lfg(p) andq would lie in the same square &};_1, thenp andq
would be in the same square I»;, and therp would not pay. Therefore, all three of
Dz, ¢z andg(p), cannot lie in the same segmentBf_,; similarly, p,, ¢, andg(p),
can not lie in the same segmentof .

Hence one of the following two events must happen: eithep{1j(p).. lie in dif-
ferent segments dP?_, andp,, ¢, lie in different segments ab?_,, or (2)p,, ¢, liein
different segments ab?_, andp,, g(p), lie in different segments ab? ;. Lemma 3
implies that the probability of either of these events is asta—(*—¢~2).2-(=1=2) ‘and
hencePr[B; | £;] < 2~ 2=¢=3=5)_Finally, multiplying this withPr[€;] < 2~((G=1)—=¢=3)
completes the proof.

Now combining (4.5) with Lemmas 7 and 8, we see thatif ¢ + 1, thenPr[B;] <
O(5%=%7). Thus,

22

Zizé 2 Pr[B;] < O(QZ ’ Zz‘>e (zi;ll)) =0(2%. (4.6)

This completes the proof of Theorem 6.

5 Sorting with Metric Comparison Costs

We now consider the problem of sorting the pointd/irmccording to their key values.
Let OPT be the set oh — 1 edges going between consecutive nodes in sorted order.
A rooted treeT is called a2-HST if the lengths of all edges at any levelBfare the
same, and the lengths of consecutive edges on any rootd#afiecrease by a factor

of exactly2. We assume that each internal nodelbhas at least 2 children. Indeed,

if a node has exactly one child, we can contract this edges-vilii change distances
between leaves up to a constant factor only. Let us denotetiaf leaves of the-HST
treeT by V, and let|V| = n. The following theorem is the main technical result of this
section.

Theorem 7. Givenn elements, and the metric generated by the leavegd&T, there
is an algorithm to sort the elements with a cosdtog n) x ¢(OPT).

Using standard results on approximating arbitrary metricprobability distributions
on metrics generated by HSTs [5,6], the above theorem imatelgiimplies Theo-
rem 3.

Proof (Theorem 7)For any rooted subtreH of T', let OPT'(H) denote the optimal
set of comparisons to sort the leavedinand letc(OPT (H)) be their cost. Let be

the root ofH, andh’s children behq, ..., h,; let the subtree rooted &t be H;. Con-
siderOPT'(H), and let asegmenbf OPT(H) be a maximal sequence of consecutive
vertices inOPT(H) belonging to the same sub-trég for some:. Clearly, we can
divide OPT(H) uniquely into node-disjoint segments—kegs(H) denote the num-
ber of these disjoint segments. L&tH) denote the cost of an edge joinihgo one

of its children; recall that all these edges have the samte \d@somit the proof of the
following simple lemma.

Lemma9. ¢(OPT(H)) > >"'_, «(OPT(H;)) + (segs(H) — 1) - d(H).

Our algorithm sorts the leaves @fin a bottom-up manner, by sorting the leaves of
various subtrees, and then merging the results. For sghireieh just consist of a leaf,
there is nothing to do. Now e, h, H;, h; be as above, and assume we have sorted the
leaves ofH; for all i: we want to merge these sorted lists to get the sorted lighfor
leaves ofH. The following lemma, whose proof we omit, shows that we carthis
without paying too much.

Lemma 10. There is an algorithm to merge the sorted lists féy while incurring a
cost ofO(segs(H) - logn - d(H)).

We now complete the proof of Theorem 7.cist(H) is the cost incurred to sort the
subtreeH, we claimcost(H) < « - logn - ¢(OPT(H)) for some constant. The
proof is by induction on the height of the tree: the base casehenH is a leaf, and
cost(H) = ¢(OPT(H)) = 0. If H, H; are as above, and if our claim is true f&f,
then Lemma 10 implies that

cost(H) < >, cost(H;) + O(segs(H) - logn - d(H))
<Y ,a-logn-c¢(OPT(H;)) + O(segs(H) - logn - d(H)
< a-logn[>, c(OPT(H;)) + (segs(H) — 1)] (5.7)

provideda is large enough. (The last inequality used the fact thatessags(H) >
2,segs(H) = O(segs(H)—1).But (5.7)isat mostc-log n-c(OPT(H)), by Lemma 9,
which proves Theorem 7. a

References

1. Knuth, D.E.: The art of computer programming. Volume 3itiBg and searching. Addison-
Wesley Publishing Co., Reading, Mass. (1973)

2. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.gRavan, P., Sahai, A.: Query strate-
gies for priced information. In: Proc. 32nd ACM STOC. (2068p-591

3. Gupta, A., Kumar, A.: Sorting and selection with struetlicosts. In: Proc. 42nd IEEE FOCS
(2001) 416-425

4. Kannan, S., Khanna, S.: Selection with monotone compariests. In: Proc. 14th ACM-
SIAM SODA (2003) 10-17

5. Bartal, Y.: Probabilistic approximations of metric spa@nd its algorithmic applications. In:
Proc. 37th IEEE FOCS. (1996) 184-193

6. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound gpreximating arbitrary metrics by

tree metrics. In: Proc. 35th ACM STOC (2003) 448—-455
. (Hartline, J., Hong, E., Mohr, A., Rocke, E., Yasuharg,AS reported in [3].
Kleinberg, J.: Detecting a network failure. Internet Mdt (2003) 37-55

© ~

