
Where’s the Winner?
Max-Finding and Sorting with Metric Costs

Anupam Gupta1 and Amit Kumar2

1 Dept. of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213.
anupamg@cs.cmu.edu ?

2 Dept. of Computer Science & Engineering, Indian Institute of Technology, Hauz Khas
New Delhi, India - 110016.amitk@cse.iitd.ernet.in

Abstract. Traditionally, a fundamental assumption in evaluating theperformance
of algorithms for sorting and selection has been that comparing any two elements
costs one unit (of time, work, etc.); the goal of an algorithmis to minimize the
total cost incurred. However, a body of recent work has attempted to find ways to
weaken this assumption—in particular, new algorithms havebeen given for these
basic problems of searching, sorting and selection, when comparisons between
different pairs of elements have different associated costs.

In this paper, we further these investigations, and addressthe questions of max-
finding and sorting when the comparison costs form ametric; i.e., the comparison
costscuv respect the triangle inequalitycuv + cvw ≥ cuw for all input elements
u, v andw. We give the first results for these problems—specifically, we present

– An O(log n)-competitive algorithm for max-finding on general metrics,and
we improve on this result to obtain anO(1)-competitive algorithm for the
max-finding problem in constant dimensional spaces.

– An O(log2 n)-competitive algorithm for sorting in general metric spaces.
Our main technique for max-finding is to run two copies of a simple natural online
algorithm (that costs too much when run by itself) in parallel. By judiciously
exchanging information between the two copies, we can boundthe cost incurred
by the algorithm; we believe that this technique may have other applications to
online algorithms.

1 Introduction

The questions of optimal searching, sorting, and selectionlie at the very basis of the
field of algorithms, with a vast literature on algorithms forthese fundamental prob-
lems [1]. Traditionally the fundamental assumption in evaluating the performance of
these algorithms has been theunit-cost comparison model—comparing any two ele-
ments costs one unit, and one of the goals is to devise algorithms that minimize the
total cost of comparisons performed. Recently, Charikar etal. [2] posed the following
problem: given a setV of n elements, where the cost of comparingu andv is cuv, how
should we design algorithms for sorting and selection so as to minimize the total cost of

? Research partly supported by NSF CAREER award CCF-0448095,and by an Alfred P. Sloan
Fellowship.

all the comparisons performed? Note that these costscuv are known to the algorithm,
which can use them to decide on the sequence of comparisons. The case where all com-
parison costs are identical is just the unit-cost model. To measure the performance of
algorithms in this model, Charikar et al. [2] used the framework of competitive analy-
sis: they compared the cost incurred by the algorithm to the costincurred by an optimal
algorithm toprovethe output correct.

The paper of Charikar et al. [2], and subsequent work by the authors [3] and Kannan
and Khanna [4] considered sorting, searching, and selection for special cost functions
(which are described in the discussion on related work). However, there seems to be
no work on the case where the comparison costs form ametric space, i.e., where costs
respect the triangle inequalitycuv + cvw ≥ cuw for all u, v, w ∈ V . Such situations
may arise if the elements reside at different places in a communication network, and the
communication cost of comparing two elements is proportional to the distance between
them. An equivalent, and perhaps more natural way of enforcing the metric constraint
on the costs is to say that the vertices inV lie in an ambitent metric space(X, d) (where
V ⊆ X), where the costcij of comparing two verticesi andj is the distanced(i, j)
between them.

Our Results. In this paper, we initiate the study of these problems: in particular, we
consider problems of max-finding and sorting with metric comparison costs. For the
max-finding problem, our results show that the lower bound ofΩ(n) on the competitive
ratio arises only for arguably pathological scenarios, andsubstantially better guarantees
can be given for metric costs.

Theorem 1. Max-finding with metric costs has anO(log n)-competitive algorithm.

We improve the result for the special case when the points arelocated ind-dimensional
Euclidean space:

Theorem 2. There is anO(d3)-competitive randomized algorithm for max-finding when
the nodes lie on thed-dimensional grid and the distance between points is given by
the`∞ metric; this yields anO(d3(1+1/p))-competitive algorithm ford-dimensional̀ p

space.

For the problem of sortingn elements in a metric, we give anO(log n)-competitive
algorithm for the case of hierarchically well-separated trees (HSTs). We then use stan-
dard results of Bartal [5], and Fakcharoenphol et al. [6] from the theory of metric em-
beddings to extend our results to general metrics. Our main theorem is the following:

Theorem 3. There is anO(log2 n)-competitive randomized algorithm for sorting with
metric costs.

It can be seen that any algorithm for sorting with metric costs must beΩ(log n)-
competitive even when the points lie on a star or a line—indeed, one can model unit-cost
sorting and searching sorted lists in these cases. The question of closing the logarithmic
gap between the upper and lower bounds remains an intriguingone.

Our Techniques.For the max-finding algorithm for general metrics, we use a simple
algorithm that usesO(log n) rounds, eliminating half the elements in each round while

paying at mostOPT . Getting better results turns out to be non-trivial even forvery
simple metrics: an illuminating example is the case where the comparison costs for
elementsV = {v1, v2, . . . , vn} are given bycvivj

= |i − j|; i.e., when the metric is
generated by a path. (Note that this path has no relationshipto the total order onV : it
merely specifies the costs.)

Indeed, anO(1)-competitive algorithm for the path requires some work: onenatural
idea is to divide the line into two pieces, recursively find the maximum in each of these
pieces, and then compare the two maxima to compute the overall maximum. However,
a closer look indicates that this algorithm also gives us a competitive ratio ofΩ(log n).
To fix this problem and reduce the expected cost toO(OPT), we make a simple yet
important change: we runtwo copiesof the above algorithm in parallel, transferring a
small amount of information between the two copies after every round of comparisons.
Remarkably, this subtle change in the algorithm gives us theclaimedO(1)-competitive
ratio for the line. In fact, this idea extends to thed-dimensional grid to give usO(d)-
competitive algorithms—while the algorithm remains virtually unchanged, the proof
becomes quite non-trivial ford-dimensions.

For the results on sorting, we first develop an algorithm for the case when the met-
ric is ak-HST (which is a tree where the edges from each vertex to its children arek
times shorter than the edge to its parent). For these HST’s, we show how to implement
a “bottom-up mergesort” to get an (existentially optimal)O(log n)-competitive algo-
rithm; this is then combined with standard techniques to gettheO(log2 n)-competitiveness
for general metrics.

Previous Work. The study of the arbitrary cost model for sorting and selection was
initiated by Charikar et al. [2]. They showed anO(n)-competitive algorithm for finding
the maximum for general metrics. Tighter upper and matchinglower bounds (up to
constants) for finding the maximum were shown by Hartline et al. [7] and independently
by the authors [3].

In the latter paper [3], the authors considered the special case ofstructured costs,
where each elementvi is assumed to have an inherentsizesi, and the costcvivj

of
comparing two elementsvi andvj is of the formf(si, sj) for some functionf ; as ex-
pected, better results could be proved if the functionf was “well-behaved”. Indeed, for
monotone functionsf , they gaveO(log n)-competitive algorithms for sorting,O(1)-
competitive algorithms for max-finding, andO(1)-competitive algorithms for selection
for the special cases off being addition and multiplication. Subseqently, Kannan and
Khanna [4] gave anO(log2 n)-competitive algorithm for selection with monotone func-
tionsf , and anO(1)-competitive algorithm whenf was themin function.

Formal Problem Definition. The input to our problems is acompletegraphG =
(V, E), with |V | = n vertices. These vertices represent the elements of the total or-
der, and hence each vertexv ∈ V has a distinctkey valuedenoted bykey(v). (We use
x ≺ y to denote thatkey(x) ≤ key(y).) Each edgee = (u, v) has non-negativelength
or costce = cuv, which is the cost of comparing the elementsu andv. We assume that
these edge lengths satisfy the triangle inequality, and hence form a metric space.

In this paper, we consider the problems of finding the elementin V with the max-
imum key value, and the problem of sorting the elements inV according to their key
values. We work in the framework of competitive analysis, and compare the cost of the

comparisons performed by our algorithm to the cost incurredby the optimal algorithm
which knows the results of all pairwise comparisons and justhas toprovethat the so-
lution produced by it is correct. We shall denote the optimalsolution byOPT ⊆ E.
Given a set of edgesE′ ⊆ E, we will let c(E′) =

∑

e∈E′ ce, and hencec(OPT) is
the optimal cost. Note that a proof for max-finding is a rootedspanning tree ofG with
the maximum element at the root, and where the key values of vertices monotonically
increase when moving from any leaf to the root; for sorting, aproof is the Hamilton
path where key values monotonically increase from one end tothe other.

2 Max-Finding in Arbitrary Metrics

For arbitrary metrics, we give an algorithm for finding the maximum elementvmax of
the nodes inV ; the algorithm incurs cost at mostO(log n) × c(OPT). Our algorithm
proceeds in stages. In stagei, we have a subgraphGi = (Vi, Ei) such thatVi contains
vmax; hereVi ⊆ V , andEi = Vi × Vi with the same costs as inG. We start with
G0 = G; in stagei, if Gi has a single node, then it must bevmax, else we do the
following steps.

1. Find a minimum cost almost-perfect matchingMi in Gi. (I.e., at most one node remains
unmatched.)

2. For every edgee = (u, v) ∈ Mi, compare the end-points ofe. (If u is greater thanv, thenu

“wins” andv “loses”.)
3. Delete nodes which lost in the comparisons above to get thenew setVi+1 from Vi.

It is clear that the above algorithm correctly findsvmax; there areO(log n) rounds
since|Vi| =

⌈

n/2i
⌉

, and hence the following lemma immediately implies that thecost
incurred isO(log n) × c(OPT), this proving Theorem 1.

Lemma 1. The cost of edges inMi is at mostc(OPT).

Proof. Given any set of2k vertices in a treeT , one can find a pairing of these vertices
into k pairs so that the paths inT between these pairs are edge disjoint (see, e.g., [8,
Lemma 2.4]). We use this to pair off the vertices ofVi in the treeOPT ; the total cost
of the paths between them is an upper bound on a min-cost almost-perfect matching of
Vi. Finally, since the paths between the pairs are edge disjoint, their total cost is at most
c(OPT), and hence the cost ofMi is at mostc(OPT) as well. ut

3 Finding the maximum on a line

To improve on the results of the previous section, let us consider the case of the line
metric; i.e., where the verticesV = {1, 2, . . . , n} lie on a line, and the cost of comparing
two elements inV is just the distance between them in this line. Let us assume that the
line is unweighted, and consecutive points inV are at unit distance from each other,
and hencecij = |i − j|; we will indicate how to remove this simplifying assumptionat
the end of this section. We also assume thatn is a power of2. For an elementx ∈ V
which is not the maximum, letg(x) be anearestelement tox which has a key greater
thankey(x), and letd(x) be the distance betweenx andg(x). Observe that inOPT ,
the parent ofx must be at distanced(x) from x, and hencec(OPT) =

∑

x 6=vmax
d(x).

Let us first look at a naı̈ve scheme: we start off with a division D1 of the line
into two-nodesegments{[1, 2], [3, 4], . . . , [n − 1, n]}. In next divisionD2, we pair off
segments ofD1 to getn/4 segments{[1, 2, 3, 4], . . . , [n−3, n−2, n−1, n]}; similarly,
Di hasn/2i segments, each with2i nodes. We maintain the invariant that we know
the maximum key element in each segment ofDi; when merging two segments, we
compute the maximum by comparing the maxima of the two segments. However, this is
just the algorithm of Section 2, and if we have1 ≺ 2 ≺ · · · ≺ n, thenc(OPT) = n− 1
but our scheme costsΩ(n log n).

An algorithm which almost works. A natural next attempt is to introduce random-
ization: to form the divisionD2 from D1, we toss an unbiased coin: if the result is
“heads”, we merge[1, 2], [3, 4] into one segment (which we denote using the notation
[1-4]), merge[5, 6], [7, 8] into the segment[5 − 8], and so on. If the coin comes up
“tails”, we shift over by one:[1, 2] forms a segment by itself, and from then on, we
merge every two consecutive segments ofD1. Hence, with probability12 , the segments
in D2 are{[1-4], [5-8], . . .}, and with probability1

2 , they are{[1-2], [3-6], [7-10], . . .}.
To get divisionDi+1 from Di, we flip an unbiased coin and either merge every pair of
consecutive segments ofDi beginning with thefirst segment, or merge every pair of
consecutive segments starting at thesecondone. It is easy to see that all segments in
Di, except perhaps the first and last ones, have2i nodes. Again, the natural randomized
algorithm is to maintain the maximum element in each segmentof Di: when combin-
ing segments ofDi to form segments ofDi+1, we compare the two maxima to find the
maximum of the newly formed segment. (We usestagei to refer to the comparisons
performed whilst formingDi; note that stages begin at1, and there are no comparisons
in the first stage.)

The correctness of the procedure is immediate; to calculatethe expected cost in-
curred, we charge the cost of a comparison to the loser—note that each node except
vmax pays for exactly one comparison. We would like to show that the expected cost
paid byx ∈ V in our algorithm isO(d(x)). Let Si(x) denote the segment ofDi con-
tainingx; thesizeof |Si(x)| ≤ 2i, and thelengthof Si(x) is |Si(x)| − 1. Note that if
2k ≤ d(x) < 2k+1, thenx definitely wins (and hence does not pay) in stages1 through
k; the following lemma bounds the probability that it loses inany staget ≥ k + 1.
(Recall that depending on the coin tosses,x may nor may lose tog(x).)

Lemma 2. Let2k ≤ d(x) < 2k+1. ThenPr[x loses in staget] ≤ 2−(t−k−2).

Proof. Note that the lemma is vacuously true fort ≤ k + 2. Sinced(x) < 2k+1, nodes
x andg(x) must lie in the same or consecutive segments in stagek + 1. Now for x
to lose in staget, it must not have lost in stages{k + 2, k + 3, . . . , t − 1}, and hence
the segments containingx andg(x) must not have merged in these stages. Since we
make independent decisions at each stage, the probability of this event happening is
(1/2)(t−1)−(k+2)+1 = 2−(t−k−2). ut

Sincex may have to pay as much as2t+1 if it loses in staget, the expected cost forx is
∑

t≥k Θ(2k), which may be as large asΘ(2k ·(log n−k)). Before we indicate how to fix
the problem, let us note that our analysis is tight: for the example with1 ≺ 2 ≺ · · · ≺ n,
the randomized algorithm incurs a costΩ(n log n).

Two Copies Help: The Double-Random Algorithm.Let us modify the above algo-
rithm to maintain two independentcopiesof the line, which we callL andL′. The par-
titions inL will be denoted byD1, D2, . . ., while those inL′ will be calledD′

1, D
′
2,

These partitions in the two lines are chosen independent of each other. Again, we main-
tain the maximum element of each segment inDi andD′

i, but also exchange some
information between the lines. Consider the step of mergingsegmentsS1 andS2 to get
a segmentS in Di+1, and letxi be the maximum element ofSi. Before we compare
x1 andx2, we check ifx1 has lost to an elementy ∈ S2 in some previous stage inL′:
in this case, we know thatx1 ≺ y ≺ x2, and hence can avoid comparingx1 andx2.
Similarly, if x2 has previously lost inL′ to some elementz ∈ S1, we can declarex1

to be the maximum element ofS. Only if neither of these fortuitous events occur, we
comparex1 andx2. (The process forL′ is similar, and uses the information fromL’s
previous rounds.) The correctness of the algorithm followsimmediately.

Notice that each elementx now loses exactly twice, once in each line, but the second
loss may be implicit (without an actual comparison being performed). As before, we say
that a nodex loses in stagei of L (or L′) if this is the first stage in whichx loses inL
(or L′). The nodex paysin stagei of L (or L′) if x loses in stagei of L (or L′) andan
actual comparison was made. Whilex loses twice, it may possibly pay only once.

Lemma 3. If x, y ∈ V are at distanced(x, y), then the probability (in either line) that
x andy lie in different segments inDi is at mostd(x, y)/2i−1.

Proof. Let 2k ≤ d(x, y) < 2k+1; the statement is vacuously true fori − 1 ≤ k. In
stagei − 1 > k, the nodesx andy must lie in either the same or consecutive segments
in Di−1. Now, if they were in different segments inDi−1 (which inductively happens
with probability at mostd(x, y)/2i−2), the chance that these segments do not merge in
stagei is exactly1

2 , giving us the bound ofd(x, y)/2i−2 × 1
2 . ut

Let the nodeg(x) lie to the left ofx; the other case is symmetric, and proved identically.
Let the distanced(x) = d(x, g(x)) satisfy2k ≤ d(x) < 2k+1. Let h(x) be the nearest
point to the right ofx such thatx ≺ h(x), and let2m ≤ d(x, h(x)) < 2m+1. Note that if
x paysin staget of L, thent ≤ m+3. Indeed, if the segmentSm+3(x) is the leftmost or
the rightmost segment, then it either containsg(x) or h(x), so it must have paid by then.
Else, the length ofSm+3(x) = 2m+3 − 1, and sinced(g(x), h(x)) < 2m+1 + 2k+1 =
2m+2, the segmentSm+3(x) must contain one ofg(x) orh(x), sot ≤ m+3. Moreover,
sinceSt(x) must contain eitherg(x) or h(x), it follows thatt > k. The following key
lemma shows us that the probability of paying in staget ∈ [k + 1, m] is small. (An
identical lemma holds forL′.)

Lemma 4. For t ∈ [k + 1, m], Pr[x pays in staget of L] ≤ 2−2(t−k)+5.

Proof (Lemma 4).Note that ifx pays in staget ≤ m of L, thenx must have lost to
some element to its left inL, sinced(x, h(x)) ≥ 2m. Depending on whetherx loses in
L′ before staget or not, there are two cases.

Case I: x has not lost inD′
t−1. This implies thatx andg(x) lie in different segments

in L′, which by Lemma 3 has probability≤ d(x, g(x))/2t−2 ≤ 2−(t−k−3). Now the

chance thatx loses inL in staget is 2−(t−k−2) (by Lemma 2). Since the partitions are
independently chosen, the two events are independent, which proves the lemma.

Case II: x has lost in stagel ≤ t − 1 in L′. Sincel ≤ m, x must have lost to some
elementy to its left in L′; this y is eitherg(x), or lies to the left ofg(x). Consider
staget − 1 in L: since the distanced(y, x) < 2l ≤ 2t−1, the three elementsx, g(x)
andy lie in the union of two adjacent segments inDt. Furthermore,x must lie in a
different segment fromy andg(x), otherwisex would have already lost inL in stage
t − 1. Recall that ifx loses in staget in L, it must lose to a node to its left—since
t ≤ m, h(x) is too far to the right. But this implies thatSt−1(x) must merge inL with
St−1(y) = St−1(g(x)); in this case, no comparisons would be performed sincex had
already lost toy in L′. ut

Note that this lemma implies that the expected payment ofx for stagesk+1 through
m is at most

∑m
t=k+1 2−2(t−k)+5×2t = O(2k). The expected payment in stagesm+1

to m + 3 is at most3 · O(2m) = O(2k) by Lemma 2, which proves:

Theorem 4. The Double-Random algorithm is anO(1)-competitive algorithm for max-
finding on the line.

To end, note that the assumption of unit length edges can be removed: by scaling and
translation, all distances can be made integers. We can add dummy vertices at all inte-
gersi that do not correspond to a vertex inV , where all these vertices have key values
less than those of all the non-dummy vertices. Running Double-Random on this aug-
mented line allows us to run the algorithm without increasing the cost. (We can even
space and time overhead by maintaining only segments containing at least one non-
dummy node.)

4 Max-Finding for Euclidean metrics
In this section, we extend our algorithm for the line metric to arbirary Euclidean met-
rics: the basic idea of running two copies of the algorithm and judiciously exchanging
information will be used again, but the proof becomes substantially more involved. We
give the proof for the2-d case; the proof for the general case is deferred to the final
version of the paper.

The General Double-Random Algorithm.As in the case of the line, we begin with the
simplifying assumption that the nodes inV form a subset of the unit-weightn×n grid;
we refer to this underlying grid asM = {1, 2, . . . , n}×{1, 2, . . . , n}. (This assumption
can be easily discharged, as for the case of the line; we omit the details here.) Hence
each pointv ∈ V corresponds to a point(vx, vy) ∈ M, with 1 ≤ vx, vy ≤ n. In fact, if
P x denotes the path along thex-axis from 1 ton, andP y denotes a similar path along
the y-axis, then we can identify the gridM with the cartesian productP x × P y. To
construct partitionsD1, D2, . . . of the grid, we build stage-i partitionsDx

i andDy
i for

the pathsP x andP y: the rectangles inM’s partition correspond to the products of the
segments inDx

i andDy
i , and hence a square inDi+1 is formed by merging at most four

squares inDi.3 The random partitioning schemes forP x andP y evolve independently
of each other.

3 We abuse notation and say “squares” even though the pieces may be rectangles.

Again, we maintain the invariant that we know the maximum element in each square
of the partitionDi, and as in the case of the line, we do not want to perform three com-
parisons when merging squares inDi to getDi+1. Hence we maintain two independent
copiesM andM

′ of the grid, withDi andD′
i being the partitions in the two grids at

stagei. Suppose{x1, x2, x3, x4} are the four maxima of four squaresSi being merged
into a new squareS in M: for eachi ∈ [1, 4], we check ifxi has lost to somey ∈ S in
a previous stage inM′, and if so, we removexi from consideration; we finally compare
thexi’s that remain. The correctness of the algorithm is immediate, and we just have to
bound the costs incurred.

4.1 Cost of the Double-Random Algorithm in Two Dimensions

We charge the cost of each comparison to the node that loses inthat comparison, and
wish to upper bound the cost charged to any nodep ∈ M. Let G(p) = {q | p ≺ q} be
the set of nodes with keys greater thanp; fix a vertexg(p) ∈ G(p) closestto p, and let
d(p) be the distance betweenp andg(p), with 2` ≤ d(p) < 2`+1. Since we focus on the
nodep for the entire argument, we shift our coordinate system to becentered atp: we
renumber the vertices on the pathsP x andP y so that the vertexp lies at the “origin” of
the 2-d grid. Formally, we label the nodespx ∈ P x andpy ∈ P y as0; the other vertices
on the paths are labeled accordingly. This naturally definesfour quadrants as well. Let
Dx

i be the projection of the partitionDi on the lineP x, andDy
i be its projection ofP y.

(Dx
i
′ andDy

i
′ are defined similarly for the gridM′.)

Let us note an easy lemma, bounding the chance thatp andg(p) are separated in the
partitionDi in M. (Such a lemma holds for partitionD′

i of M
′, of course.)

Lemma 5. Pr[p andg(p) lie in different squares ofDi] ≤ 2−(i−`−3).

Proof. Let the distance fromp to g(p) along the two axes bedx = d(px, g(p)x) and
dy = d(py, g(p)y) with max{dx, dy} = d(p). By Lemma 3, the projectionspx and
g(p)x do not lie in the same stage-i interval ofP x with probability at mostdx/2i−1.
Similarly, py andg(p)y do not lie in the same stage-i interval ofP y with probability
at mostdy/2i−1; a trivial union bound implies that the probability that2d(p)/2i−1 <
2−(i−`−3). ut

We now prove that the expected charge to a nodep is O(2`), where the distance
betweenp and a closest pointg(p) in the setG(p) = {q ∈ V | p ≺ q} lies in the
interval[2`, 2`+1). Let H(p) = G(p) − {g(p)}. Let Si(p) andS′

i(p) be the squares in
Di andD′

i respectively that containp. We will consider two events of interest:

1. LetAi be the event thatp pays inM in stagei, and the squareSi(p) contains at
least one point fromH(p), but does not containg(p).

2. LetBi be the event thatp pays inM in stagei, andSi containsg(p).

Note thatAi ∩ Bi = ∅; also, ifp pays in stagei in M, then eitherAi orBi must occur.
Also, Pr[Ai ∪ Bi] > 0 only whenp and some element ofG(p) lie in the same square
in stagei in M: since any two points in such a square are at`∞ distance≤ 2` − 1 from
each other, and each element ofG(p) has`∞ distance at least2` from p, it suffices to

consider the casei > `. Theorems 5 and 6 will show that
∑

i Pr[Ai]×2i+
∑

i Pr[Bi]×
2i = O(2`). This shows thatp pays onlyO(2`) in M; a similar bound holds forM′,
which proves the claim that Double-Random isO(1)-competitive in the case of two-
dimensional grids.

Theorem 5.
∑

i Pr[Ai] × 2i = O(2`).

Proof. Let us define two eventsEx andEy. Let Ex be the event thatpx andg(p)x lie in
different segments inDx

i , andEy be the event thatpy andg(p)y lie in different segments
in Dy

i . Note thatAi \ (Ex ∪ Ey) = ∅, and hence

Pr[Ai] ≤ Pr[Ai ∩ Ex] + Pr[Ai ∩ Ey] (4.1)

Let us now estimatePr[Ai ∩ Ex], the argument for the other term is similar. Assume
(w.l.o.g.) thatg(p)x lies to the left ofpx, and let the points betweeng(p)x and px

(includingpx, but not includingg(p)x) in P x be labeledp1
x, p2

x, . . . , pk
x = px from left

to right. DefineFj as the event that the segmentSx
i (p) in Dx

i containingpx haspj
x as its

left end-point. Note that the eventsFj are disjoint, andEx = ∪k
j=1Fj. Thus it follows

that
Pr[Ai ∩ Ex] =

∑

j Pr[Ai ∩ Fj] =
∑

j Pr[Ai | Fj] Pr[Fj]. (4.2)

If Fj occurs then the end-points of the edge connectingpj
x andpj−1

x (wherep0
x =

g(p)x) lie in different segments ofDx
i . Lemma 3 implies that this can happen with

probability at most 1
2i−1 . Thus, we get

Pr[Ai ∩ Ex] ≤ 2−(i−1) ×
∑

j Pr[Ai | Fj]. (4.3)

DefineIj
i as the segment of length2i in P x containingpx and havingpj

x as its left end-
point. Letq(i, j) ∈ H(p) be such thatq(i, j)x ∈ Ij

i and|q(i, j)y − py| is minimum; in
other words, the point closest to thex-axis whose projection lies inIj

i . If no such point
exists, then we say thatq(i, j) is undefined. Letδ(i, j) = |q(i, j)y − py| if q(i, j) is
defined, and∞ otherwise. Notice that for a fixedj, δ(i, j) is a decreasing function ofi.

AssumeFj occurs for some fixedj: for Ai 6= ∅, Si(p) must contain a point in
H(p), and henceδ(i, j) ≤ 2i; let i(j) be the smallest value ofi for whichδ(i, j) ≤ 2i.
Due toδ(i, j) being a decreasing function ini, δ(i, j) > 2i for all i < i(j), and for all
i ≥ i(j), δ(i, j) ≤ 2i. Now supposei > i(j); note the strict inequality, which ensures
that q(i − 1, j) exists. Again assume thatFj occurs: now forAi to occur, the square
Si−1(p) cannot contain any point ofH(p). In particular, it cannot containq(i − 1, j).

Lemma 6. If Fj occurs andi > `+1, thenpx andq(i−1, j)x lie in the same segment
of Dx

i−1.

Proof. It will suffice to show the claim that segment containingpx in Dx
i−1 also has

pj
x as the left end-point; sinceq(i − 1, j)x also lies in this segment, the lemma follows.

To prove the claim, note that the distance|pj
x − px| ≤ |g(p)x − px| − 1 ≤ (2`+1 −

1) − 1 = 2`+1 − 2. Sincei > `, it follows that px andpj
x must lie in the same or

in adjacent segments ofDx
i−1; we claim that the former is true. Indeed, suppose they

were in different segments: since the segment ofDx
i−1 containingpj

x must have width
2i−1 − 1 ≥ 2`+1 − 1 which is greater than|pj

x − px|, it must happen thatpj
x lies in the

interior of this segment, and henceFj could not occur. ut

Note that since the projections ofp andq(i − 1, j) on thex-axis lie in the same
segment implies that the projectionspy andq(i−1, j)y on they-axis must lie in different
segments ofDy

i−1. Since this event is independent ofFj , we can use Lemma 3 to bound
the probability: indeed, we get that fori > i(j),

Pr[Ai | Fj] ≤
δ(i−1,j)

2i−1 . (4.4)

We are now ready to prove the theorem.
∑

i 2i · Pr[Ai ∩ Ex] ≤ 2
∑

i

∑

j Pr[Ai | Fj] (from (4.3))

= 2
∑

j

∑

i≥i(j) Pr[Ai | Fj]

≤ 2
∑

j

(

1 +
∑

i>i(j)
δ(i−1,j)

2i−1

)

(from (4.4))

≤ 2
∑

j 3 ≤ 6 · 2`.

where penultimate inequality follows from the fact thatδ(i, j) is a decreasing function
of i, and hence

∑

i>i(j)
δ(i−1,j)

2i−1 is a dominated by a geometric sum. A similar calcu-

lation proves that
∑

i 2i · Pr[Ai ∩ Ey] is O(2`), which in turn completes the proof of
Theorem 5. ut

Now that we have bounded the charge top due to the eventsAi by O(2`), we turn
our attention to the eventsBi, and claim a similar result for this case.

Theorem 6.
∑

i 2i · Pr[Bi] ≤ O(2`).

Proof (Theorem 6).Recall that ifp loses in stagei, theni > `: hence we define a set
of eventsE`+1, . . . , Ei−3, whereEj occurs ifp loses in stagej of M

′. Also, define the
eventE0 occur if p does not lose inM′ till stagei − 3. Note that exactly one of these
events can occur, and hence

Pr[Bi] = Pr[Bi | E0]Pr[E0] +
∑i−3

j=`+1 Pr[Bi | Ej]Pr[Ej]. (4.5)

The next two lemmas give us bounds on the probability of each of the terms in the
summation.

Lemma 7. If i > ` + 1, thenPr[Bi | E0]Pr[E0] ≤ 2−(2i−2`−10).

Proof. Lemma 5 implies thatPr[E0] ≤ 2−((i−3)−`−3). Now givenE0, p must not lose
till stage i − 1 in M for Bi to occur. But this event is independent ofE0, and hence
Lemma 5 implies thatPr[Bi | E0] is at most2−((i−1)−`−3). Multiplying the two com-
pletes the proof. ut

Lemma 8. Pr[Bi | Ej]Pr[Ej] ≤ 2−(2i−2`−9).

Proof. For the eventEj to occur,p does not lose till stagej − 1 in M
′; now applying

Lemma 5 gives us thatPr[Ej] ≤ 2−((j−1)−`−3). Also, note that̀ < j ≤ i − 3 for us to
be in this case.

Now let us condition onEj occurring: letp lose to someq in stagej of M
′, and hence

|px−qx|, |py−qy| < 2j. Now consider stagei−1 of M. We claim thatpx, qx andg(p)x

do not all lie in the same segment ofDx
i−1. Indeed, since the distance|py − g(p)y| <

2`+1 ≤ 2i−2, the triangle inequality ensures that|qy − g(p)y| ≤ |py − g(p)y| + |py −
qy| ≤ 2i−1, and hence the distance between any two points in the set{py, qy, g(p)y}
is at most2i−1. Thus two of these points must lie in the same segment inDy

i−1 in M.
If all three lay in the same segment ofDx

i−1, two of these points would lie in the same
square inDi−1. Now if p was one of these points, thenp would lose before stagei and
Bi would not occur. Ifg(p) andq would lie in the same square ofDi−1, thenp andq
would be in the same square inDi, and thenp would not pay. Therefore, all three of
px, qx andg(p)x cannot lie in the same segment ofDx

i−1; similarly, py, qy andg(p)y

can not lie in the same segment ofDy
i−1.

Hence one of the following two events must happen: either (1)px, g(p)x lie in dif-
ferent segments ofDx

i−1 andpy, qy lie in different segments ofDy
i−1, or (2)px, qx lie in

different segments ofDx
i−1 andpy, g(p)y lie in different segments ofDy

i−1. Lemma 3
implies that the probability of either of these events is at most2−(i−`−2) ·2−(i−j−2), and
hencePr[Bi | Ej] ≤ 2−(2i−`−j−5). Finally, multiplying this withPr[Ej] ≤ 2−((j−1)−`−3)

completes the proof.

Now combining (4.5) with Lemmas 7 and 8, we see that ifi > ` +1, thenPr[Bi] ≤
O

(

i−l
22i−2`

)

. Thus,

∑

i≥` 2i · Pr[Bi] ≤ O
(

2` ·
∑

i>`

(

i−l
2i−l

))

= O(2`). (4.6)

This completes the proof of Theorem 6.
ut

5 Sorting with Metric Comparison Costs

We now consider the problem of sorting the points inV according to their key values.
Let OPT be the set ofn − 1 edges going between consecutive nodes in sorted order.
A rooted treeT is called a2-HST if the lengths of all edges at any level ofT are the
same, and the lengths of consecutive edges on any root-leaf path decrease by a factor
of exactly2. We assume that each internal node ofT has at least 2 children. Indeed,
if a node has exactly one child, we can contract this edge – this will change distances
between leaves up to a constant factor only. Let us denote theset of leaves of the2-HST
treeT by V , and let|V | = n. The following theorem is the main technical result of this
section.

Theorem 7. Givenn elements, and the metric generated by the leaves of a2-HST, there
is an algorithm to sort the elements with a cost ofO(log n) × c(OPT).

Using standard results on approximating arbitrary metricsby probability distributions
on metrics generated by HSTs [5,6], the above theorem immediately implies Theo-
rem 3.

Proof (Theorem 7).For any rooted subtreeH of T , let OPT (H) denote the optimal
set of comparisons to sort the leaves inH , and letc(OPT (H)) be their cost. Leth be

the root ofH , andh’s children beh1, . . . , hr; let the subtree rooted athi beHi. Con-
siderOPT (H), and let asegmentof OPT (H) be a maximal sequence of consecutive
vertices inOPT (H) belonging to the same sub-treeHi for somei. Clearly, we can
divide OPT (H) uniquely into node-disjoint segments—letsegs(H) denote the num-
ber of these disjoint segments. Letd(H) denote the cost of an edge joiningh to one
of its children; recall that all these edges have the same cost. We omit the proof of the
following simple lemma.

Lemma 9. c(OPT (H)) ≥
∑r

i=1 c(OPT (Hi)) + (segs(H) − 1) · d(H).

Our algorithm sorts the leaves ofT in a bottom-up manner, by sorting the leaves of
various subtrees, and then merging the results. For subtrees which just consist of a leaf,
there is nothing to do. Now letH, h, Hi, hi be as above, and assume we have sorted the
leaves ofHi for all i: we want to merge these sorted lists to get the sorted list forthe
leaves ofH . The following lemma, whose proof we omit, shows that we can do this
without paying too much.

Lemma 10. There is an algorithm to merge the sorted lists forHi while incurring a
cost ofO(segs(H) · log n · d(H)).

We now complete the proof of Theorem 7. Ifcost(H) is the cost incurred to sort the
subtreeH , we claimcost(H) ≤ α · log n · c(OPT (H)) for some constantα. The
proof is by induction on the height of the tree: the base case is whenH is a leaf, and
cost(H) = c(OPT (H)) = 0. If H, Hi are as above, and if our claim is true forHi,
then Lemma 10 implies that

cost(H) ≤
∑

i cost(Hi) + O(segs(H) · log n · d(H))

≤
∑

i α · log n · c(OPT (Hi)) + O(segs(H) · log n · d(H)

≤ α · log n[
∑

i c(OPT (Hi)) + (segs(H) − 1)] (5.7)

providedα is large enough. (The last inequality used the fact that since segs(H) ≥
2, segs(H) = O(segs(H)−1). But (5.7) is at mostα ·log n ·c(OPT (H)), by Lemma 9,
which proves Theorem 7. ut

References

1. Knuth, D.E.: The art of computer programming. Volume 3: Sorting and searching. Addison-
Wesley Publishing Co., Reading, Mass. (1973)

2. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J., Raghavan, P., Sahai, A.: Query strate-
gies for priced information. In: Proc. 32nd ACM STOC. (2000)582–591

3. Gupta, A., Kumar, A.: Sorting and selection with structured costs. In: Proc. 42nd IEEE FOCS
(2001) 416–425

4. Kannan, S., Khanna, S.: Selection with monotone comparison costs. In: Proc. 14th ACM-
SIAM SODA (2003) 10–17

5. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In:
Proc. 37th IEEE FOCS. (1996) 184–193

6. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by
tree metrics. In: Proc. 35th ACM STOC (2003) 448–455

7. (Hartline, J., Hong, E., Mohr, A., Rocke, E., Yasuhara, K.) As reported in [3].
8. Kleinberg, J.: Detecting a network failure. Internet Math. 1 (2003) 37–55

