
Cost-Sharing Mechanisms for Network Design∗

Anupam Gupta† Aravind Srinivasan‡ Éva Tardos§

Abstract

We consider a single-source network design problem from a game-theoretic perspective. Gupta, Kumar
and Roughgarden (Proc. 35th Annual ACM STOC, pages 365–372, 2003) developed a simple method for a
single-source rent-or-buy problem that also yields the best-known approximation ratio for the problem. We
show how to use a variant of this method to develop an approximately budget-balanced and group strate-
gyproof cost-sharing method for the problem.

The novelty of our approach stems from our obtaining the cost-sharing methods for the rent-or-buy prob-
lem by carefully combining cost-shares for the simpler Steiner tree problem. Our algorithm is conceptually
simpler than the previous such cost-sharing method due to Pál and Tardos (Proc. 44th Annual FOCS, pages
584–593, 2003), and improves the previously-known approximation factor of15 to 4.6.

1 Introduction

This paper studies the problem of giving goodcost-sharing mechanismsfor a single-source network design
problem. Imagine a general network design problem, where the participants (oragents) want to build a network
connecting them to a common source (a server); however, they are autonomous and behave in a selfish (but
non-malicious) fashion. Informally, a cost-sharing mechanism builds a network, and allocates the cost incurred
among the agents, so that no group of agents is charged too much, thus precluding the possibility of their being
unhappy and trying to secede from the system.

The type of problem we consider is where we are given an undirected graphG = (V,E), and a set ofdemands
D ⊆ V that want to connect to a common sourcer. We want to devise an algorithm that builds a cheap network
on the demandsD, and also specify what portion of its cost is paid by which of the participants in the network;
moreover, this should be done in a manner that ensures that the cost paid by any subset of the participants is
“fair”.

To make all this precise, let us consider a network design game on a graphG = (V,E). The cost-shares will be
specified by a functionξ : 2V × V → R≥0, whereξ(D, i) will specify the cost share paid by the playeri ∈ V
when the actual set of demands isD ⊆ V . To ensure that players are not penalized when they do not participate

∗A preliminary version of this work appears in theProc. International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, 2004. This research was done in part during the IMA Workshop onNetwork Management and Designat the
University of Minnesota, April 2003.

†Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232. Email:anupamg@cs.cmu.edu .
‡Department of Computer Science and University of Maryland Institute for Advanced Computer Studies, University of Maryland at

College Park, College Park, MD 20742. This material is based upon work supported in part by the National Science Foundation under
Grant No. 0208005 and ITR Award CNS-0426683.srin@cs.umd.edu

§Department of Computer Science, Cornell University, Ithaca, NY 14853.eva@cs.cornell.edu . Research supported in part
by ONR grant N00014-98-1-0589, and NSF grants CCR-0311333 and CCR-0325453.

1

in the game, we require thatξ(D, i) = 0 for i 6∈ D. For a particular setD of demands, we useOPT(D) to
denote the minimum cost network serving the users in the setD, and useAlg(D) to denote the cost (or expected
cost, in the case of randomized algorithms) of the network computed by our algorithm. We will be concerned
with designing algorithms and cost-sharing functionsξ that satisfy the following properties:

1. (β-approximate budget-balance)For any set of demandsD, we require that

OPT(D) ≥
∑
i∈D

ξ(D, i) ≥ Alg(D)/β

for some given parameterβ ≥ 1. Equivalently, by multiplying the shares byβ, we could require that the
cost-shares are at least the total cost of the solution found by the algorithm, but do not exceedβ OPT(D).
If β = 1, we say that the cost-sharing functionξ is budget-balanced.

2. (cross-monotonicity)For anyA ⊆ D and anyi ∈ A, ξ(D, i) ≤ ξ(A, i). I.e., the cost-share of any fixed
demand pointi should not increase due to other demands entering the system. This property is also known
under the name of population-monotone.

It is well-known that the two properties above immediately imply the following desirable property (see, e.g., [8]
or Lemma 3.1, for a proof):

3. (fairness)For anyA ⊆ D,
∑

i∈A ξ(D, i) ≤ OPT(A). I.e., the cost paid by any subset of people should
not exceed the optimal cost of connecting them alone and hence they have no incentive to secede. This
property is often referred to ascompetitiveness.

Cross-monotonicity is a key ingredient used in solving the following type of mechanism design problems/games:
consider the network design problem with a set of demand nodesD, with each user (or demand)d having an
associated utilityud. Since the users have limited utilities, the service provider has to now decide which subset
of customers it must serve, in addition to designing the network and deciding how to share the cost between
the served customers. A mechanism for solving this problem is calledgroup strategyproofif no subset of users
has an incentive to deviate from the protocol (e.g., by misreporting their utility) in the hope of improving the
outcome for themselves (e.g., receiving the service at a cheaper cost). Moulin and Shenker [8] show that having
a cross-monotone cost-sharing method for a problem naturally gives rise to a group strategyproof mechanism
for the problem in the following way. We start with all the customers; if there is some customer whose cost
share (computed w.r.t. the current set of customers) exceeds its utility, we drop it from the set, recompute cost
shares and repeat. At the end, we are left with the desired set of customers and their cost-shares.

As an example of cross-monotonicity, let us consider the MINIMUM SPANNING TREE game on the complete
graphG = (V,E) with edge weights, given by a set of playersD and aroot r /∈ D; the objective is to find the
cheapest treeMST(D) spanningD andr. It must be emphasized that this game does not allow the use of Steiner
vertices inMST(D), andr is not a player, and hence should have no cost-share. It is not difficult to verify that a
budget-balanced and fair cost-sharing scheme for this game can be found thus: find an MST, root it atr, and set
the cost-share for vertexi ∈ D to be the cost of the edge fromi to its parent. However, this scheme is not cross-
monotone, and getting a cross-monotone cost-sharing scheme for the minimum spanning tree problem takes
more work. Kent and Skorin-Kapov [6] and Jain and Vazirani [9] developed such budget-balanced and cross-
monotone cost-sharing schemes for the spanning tree game using a directed branching game; let us denote this
cost-sharing scheme byξMST . It is well-known that a min-cost spanning tree is a 2-approximation to the min-
cost Steiner tree; hence once can infer that the values1

2ξMST serve also as cross-monotone, 2-approximately
budget-balanced cost-shares for the corresponding Steiner tree game.

2

The Single-Source Rent-or-Buy Game In this paper we will consider theSingle-Source Rent-or-BuyNetwork
Design game; this combines features of Steiner tree and shortest paths. The game is defined as follows: we are
given a complete undirected graphG = (V,E) with edge costsce satisfying the triangle inequality,1 a special
source(or root) vertexr, and an integer parameterM ≥ 1. There are also a set ofusers(also calledplayersor
demands) D ⊆ V , each of which is identified with a vertex of the graph. We assume that there is a unique player
at each vertex. Our results can be extended (with a slight loss in the performance guarantee) to multiple players
at each vertex, each with aweightdj indicating its amount of demand; we sketch how to do this in Section 6.2.

The objective is to connect each playerj to the sourcer via some pathPj , on which one unit of bandwidth has
been allocated. What makes the game interesting is that aggregating paths is beneficial, in tune with the idea of
economies of scale. Hence there are two different actions that can be performed by each edge: either the edge
can beboughtat costMce, but then an arbitrary amount of bandwidth can be sent on that edge (and hence an
arbitrary number of pathsPj can use it); or bandwidth on the edge can berentedat costce per unit bandwidth
(and hence if the paths for some setS of players were using the edge, then the edge would costce × |S|; in the
general weighted case, the cost would bece times the total weight of the players inS). As usual, any edge can
be used for any of the users. Our main theorem is the following:

Theorem 1.1 There is a cross-monotone cost-sharing method for the Single-Source Rent-or-Buy network design
game that is alsoβ-budget-balanced, whereβ = 4.6. Furthermore, these cost-shares can be computed in
deterministic polynomial time.

This improves on the results of Pál and Tardos [13], who gave a 15-approximate cross-monotone cost-sharing
scheme for the problem. They use a primal-dual algorithm to build the network and obtain cost-shares.

We construct the claimed cost-shares based on expected costs in the approximation algorithm of Gupta et al. [5].
Loosely speaking, that algorithm works by randomly reducing the network design problem to computing Steiner
trees over subsets of terminals; we show that if we use the function1

2ξMST to allocate approximate cost-shares
to each vertex in this resulting Steiner game, then the expected cost share of a vertex (taken over the random
reduction) gives us the cross-monotone cost-shares claimed in Therorem 1.1. However, since the variances
of the random variables involved may be large in general, computing these expected costs in polynomial time
is non-trivial. (In fact, a similar method to obtain cost-shares was proposed independently by Leonardi and
Scḧafer [11], who showed a budget-balance factor of4(1 + ε) for anyε > 0 for their cost-shares; however, they
left open the problem of the efficient computation of these costs.) To do this computation, we have to give a
new alternative analysis of the algorithm of [5]; this analysis allows us to give a derandomization using a small
sample space, which has some additional useful properties that help ensure cross-monotonicity.

As is standard, we often use the symbole to denote an edge inG. The same symbol will also be used in some
places to denote the base of the natural logarithm; since the two usages are sufficiently distinct, we hope this
does not cause confusion. Logarithms will be to the base two, unless specified otherwise. The rest of this paper
is organized as follows. The basic algorithm and the idea for computing cost-shares are discussed in Section 2;
Section 3 proves some basic properties of the cost-sharing scheme, such as cross-monotonicity. Section 4 gives
a way of analyzing our algorithm—boundingβ, in particular—that is different from the one of [5]. This proof
is used as a starting-point in Section 5 to show that our estimate ofβ from Section 4 changes negligibly in our
derandomized algorithm. Finally, further extensions are described in Section 6.

1Since we can work with the metric completion of the input graph instead, the assumption of the triangle inequality is without loss
of generality.

3

2 The Algorithm and the Cost-Sharing

We will use an algorithmSimpleCFL suggested by Gupta et al. [5] for the equivalent problem of connected
facility location (without facility costs). First, let us recall the algorithm from [5]. Hereα > 0 is a constant that
will be chosen later.

S1. Mark each demandj independently with probabilityα/M , and letD′ be the set of marked demands.

S2. Construct a minimum spanning treeT onF = D′∪{r}. (This is a 2-approximate Steiner tree onF .) The
elements ofF are called theopen facilities.

S3. Assign each demandj ∈ D to its closest open facilityi(j) in F .

The algorithm suggests a simple and intuitive idea for the cost-shares: each player pays a cost proportional to
the expectedcost incurred by it on running the above algorithm. For a given a sequence of coin-tosses, the
players inD′ will pay for buyingthe MST, where their shares are derived from the cross-monotone cost-sharing
schemeξMST for the MST problem given in [6, 9]. All other players (players inD \ D′) will pay for renting
their shortest paths toF . The cost-shares defined for a particular set of coin-tosses exactly cover the cost of the
solution built. From [5] we know that this algorithm is aβ-approximation algorithm for some constantβ. To
getβ-approximate cost-shares we divide the above defined shares byβ. Formally:

ξ(D, j) =
1
β

E[M ξMST (F, j) + `(j, F)] , (2.1)

where`(j, S) is the length of a shortest-path fromj to the closest vertex of the setS, and the expectation is over
the coin tosses. (Note that the setF = D′ ∪ {r} depends on the coin tosses.)

Outline of the Proof There are two parts to proving the result: we first have to show that the properties of the
cost-shares claimed in Theorem 1.1 are indeed satisfied; i.e., they areβ-budget-balanced and cross-monotone.
These properties are proved in Section 3.

The technically involved part of the proof involves showing that our cost-shares can be computed in (determin-
istic) polynomial time. A little thought will convince the reader that this is not obvious, even with the results
of Gupta et al. [5]. Indeed, we need to estimate the expectations in (2.1) for each of the players, but the ran-
dom variables in (2.1) do not have small variance in general. Furthermore, it is unclear how to derandomize
the proof of [5], since it relies on some severe conditioning. To take care of this problem, we give a proof of
the performance guarantee of theSimpleCFL algorithm different from the one given by [5]; this is done in
Section 4. Our new proof will yield a somewhat worse constant than that of [5], but allow us to derandomize
the algorithm by marking the demands in Step (S1) int-wise independent fashion for a constantt; this appears
in Section 5. Usingt-wise independent random choices in Step (S1) allows us to use a polynomial-sized sample
space, letting us compute expectations such as those of (2.1) in (deterministic) polynomial time, by considering
all the points in the sample space. However, we need to make sure that the properties of the expectation proved
in Section 3 (fairness and cross-monotonicity) also hold for the expectation usingt-wise independent random
choices. Interestingly, the properties of aparticular construction oft-wise independent random variables turns
out to be crucial, as described in the proof of Theorem 3.5.

4

3 Properties of the Cost-Sharing Scheme

Recall that given an instance of the game specified by a set of demandsD, a cost-sharing schemefor the
game is simply a functionξ(D, i) (with ξ(D, i) = 0 for i 6∈ D). We now need to show that the function
defined in (2.1) is a cost-sharing scheme with the properties we care about, namely, approximate budget-balance,
fairness, and cross-monotonicity. As mentioned in the introduction, it is well-known that these three properties
are not independent, and that a cross-monotone and approximately budget balanced cost-sharing is always fair.

Lemma 3.1 If a cost-sharing functionξ is approximately budget balanced and cross-monotone then it is also
fair.

Proof: Consider a subsetA ⊆ D. By cross-monotonicity, it follows that
∑

i∈A ξ(D, i) ≤
∑

i∈A ξ(A, i).
Now using the upper bound in the approximate budget-balance property gives us

∑
i∈A ξ(A, i) ≤ OPT(A), and

completes the proof of the lemma.

We will need the following facts about the cost-sharing schemeξMST :

Theorem 3.2 ([6, 9]) There exists an efficiently computable cost-sharing schemeξMST for the Minimum Span-
ning Tree game that is budget-balanced and cross-monotone.

Since the spanning tree connectsD and r, we will use the notationξMST (D ∪ {r}, i) andξMST (D, i) inter-
changeably; however, the results of [6, 9] will always ensure thatξMST (D ∪ {r}, r) = 0.

To prove approximate budget-balance, we will need the following result bounding the performance of the algo-
rithm SimpleCFL; its proof appears in Sections 4 and 5.

Theorem 3.3 The expected cost of the algorithmSimpleCFL on a set of demandsD is at mostβ OPT(D)
(whereβ = 4.6), even if the demands are marked in at-wise independent fashion in Step (S1), for a suitably
large constantt.

Note that this is a stronger form of the performance guarantee proved in [5] (albeit with a worse constant), since
it requires only constant-wise independence of the random variables. Armed with this result, we are now in a
position to prove the properties of the functionξ defined in (2.1), and thus to prove Theorem 1.1.

Notation. In our randomized algorithm,Yj will denote the indicator random variable for demandj getting
marked. Given a sample pointω (i.e., the underlying sequence of coin-tosses) in our probability space,Yj(ω)
will be the following deterministic quantity:1, if j gets marked due to this sequence of coin-tosses, and0
otherwise.

The above two theorems imply thatξ is β-approximately budget-balanced – for any random sampleω, ξ shares
exactly the cost of the solution built:

Lemma 3.4 The functionξ is β-approximately budget-balanced.

Proof: Consider the cost-sharesβ ξ. For a fixed random sampleω, let Fω denote the set of facilities; i.e.,
Fω = {r} ∪ { j ∈ D |Yj(ω) = 1 }. Also let c(MST(Fω)) denote the cost of an MST forFω. ¿From our
definition ofξ(D, i), we get the following:∑

i∈D

β ξ(D, i) = Eω[M
∑
i∈D

ξMST (Fω, i) +
∑
i∈D

`(i, Fω)] = Eω[M × c(MST(Fω)) +
∑
i∈D

`(i, Fω)] , (3.2)

using the facts thatξMST is a cost-share function and henceξMST (Fω, i) = 0 for i 6∈ Fω, and thatξMST is
budget-balanced and thus

∑
i∈Fω

ξMST (Fω, i) = c(MST(Fω)).

5

Now it is easy to see that the cost-sharesβ ξ recover the cost of the solution constructed, and hence are at least
Alg(D). This is true, as for each element of the sample spaceω, M × c(MST(Fω)) +

∑
i `(i, Fω) is the cost of

the solution which opens facilities atFω.

To see that
∑

i∈D ξ(D, i) ≤ OPT(D), note that the final expression in (3.2) is the expected cost of running
SimpleCFL on the set of demandsD, and hence Theorem 3.3 implies that the expectation is no more than
β OPT(D), and thus

∑
i∈D ξ(D, i) ≤ OPT(D).

3.1 Details of the limited-independence marking

Before presenting the specific type oft-wise independent random marking that we will use, it would be useful
to see howβ depends onα; recall thatα was a parameter used to determine the marking probability in Step (S1)
of the algorithmSimpleCFL. We show first in bound (4.17) of Section 4.2 that

β ≤ max
{

2(1 + α),
2(2e2α + eα − 2)

e2α − 1

}
(3.3)

under fully-independent marking. We then show in Section 5.2 that this bound changes negligibly ift is a suffi-
ciently large constant: ift = a log(1/ε) wherea is an absolute constant, then the r.h.s. of (3.3) gets multiplied
at most by(1 + ε). Thus, settingα = 1.296, we will be able to guarantee thatβ ≤ 4.6.

In order to prove that the expectation usingt-wise independent random marking is cross-monotone, we need
a particular choice of random marking. LetF be a field of size≥ n, with |F| chosen large enough so that
dα|F|/Me/|F| is sufficiently close toα/M ; in particular, suppose|F| ≥ Ω(M log n), say. Let the elements of
the field be{a1, a2, ..., a|F|}, and let the verticesV of the graph be labeled by the firstn elements{a1, a2, . . . , an}.
Let S be any pre-specified subset ofF with |S| = dα|F|/Me. To get a sample, generateω = (x0, x1, . . . , xt−1)
uniformly at random fromFt, and defineYi to be1 if

∑t−1
j=0 xja

j
i lies inS, andYi = 0 otherwise. By construc-

tion, we havePr [Yi = 1] ∼ α/M . In particular, since|F| ≥ Ω(M log n), we have

α/M ≤ Pr [Yi = 1] ≤ α/M + 1/|F| = (α + o(1))/M ;

by (3.3) and the few sentences following it, we see that this replacement ofα by α + o(1) impactsβ only by
an additiveo(1) factor. Therefore, in all our arguments below, we will assume thatPr [Yi = 1] = α/M for all
i ∈ D. It is well-known that theYi generated as above are allt-wise independent; see, e.g., [1, 7]. Note that the
above distribution is generatingn coin tossesYi, while we need only|D| of them; however, we can just ignore
all theYj for j /∈ D.

For a fixedω ∈ Ft, let Fω denote the set of facilities; i.e.,Fω = {r} ∪ { j ∈ D |Yj(ω) = 1 }.

Theorem 3.5 Assuming that the random marking is done using thet-wise independent random variables ex-
plained above, or using independent random variables, then the functionξ is cross-monotone, i.e.,ξ(A, i) ≥
ξ(D, i) for anyA ⊆ D.

Proof: The particular type oft-wise independent distribution that we use has the following natural but crucial
property: for any choice ofω ∈ Ft, if the set of marked demands in the run ofSimpleCFL on A is A′(ω) and
the set of marked demands in the run onD is D′(ω), thenA′(ω) ⊆ D′(ω). (To our knowledge, this crucial
property need not necessarily hold for allt-wise independent distributions.) Define the joint probabilityp(F,E)
to be the probability of selecting an element of the sample spaceω such that the marked demands in the run of
SimpleCFL on A is F and onD it is E. Note thatp(F,E) > 0 only if F ⊆ E. A joint probability with this
property can also be defined for the case when the marking is fully independent.

6

With this additional property, we can prove that the schemeξ is cross-monotone. To see this, note that

ξ(A, i) =
1
β

∑
F,E

p(F,E)[M ξMST (F, i) + `(i, F)] ≥ 1
β

∑
F,E

p(F,E)[M ξMST (E, i) + `(i, E)] = ξ(D, i),

where the inequality uses the fact that the support ofp(F,E) is only on pairs withF ⊆ E, and the cross-
monotonicity ofξMST .

4 A New Analysis of the Performance ofSimpleCFL

Suppose first that the marking is done fully independently in Step (S1); we now give a way of analyzingSim-
pleCFL that is different from the one of [5]. We will then use this proof in Section 5 to show that our estimate
of β changes negligibly when we conduct at-wise independent marking for a large-enough (but constant) value
of t. Recall that a solution to the Connected Facility Location Problem with demandsD is given by the facili-
tiesF and the Steiner tree on them, with the cost being

∑
j∈D `(j, i(j)) + Mc(T). Of the two terms in the sum,

the former cost is referred to as theconnectioncost, and the latter is theSteinercost. LetOPT be an optimal
solution with facilitiesF ∗ and treeT ∗, and letC∗ andS∗ = M c(T ∗) be the connection and Steiner costs in
OPT; also letZ∗ = C∗ + S∗.

The bound for the Steiner costS is the same as in [5]: we consider the optimal solution OPT, and compute the
expected cost assuming that we construct the Steiner tree in Step (S2) using the paths of the optimal solution.
We present the formal proof in Lemma 4.1; part (a) of this lemma will only be required in Section 5. The random
variablesYj are as defined in Section 3.1.

Lemma 4.1 (a) The expected costS of Step (S2) ofSimpleCFL is bounded by a non-negative linear combina-
tion of the values{E[Yj] : j ∈ D}; (b) this non-negative linear combination is at most

2 (S∗ + αC∗). (4.4)

Proof: Consider the optimal solutionOPT: it connects eachj ∈ D to a facility i∗(j) ∈ F ∗ via a shortest path,
and hence pays a connection cost ofC∗ =

∑
j∈D `(j, i∗(j)). Let F be as defined in Step (S2). Define a graph

connectingF thus: buy all the edges inT ∗, and then for eachj ∈ F , buy the edges in the shortest path fromj to
i∗(j) used byOPT. Note that we payM ce for each edgee in Step (S2), and hence payM c(T ∗) = S∗ for edges
of T ∗. For the random paths we add, the expected cost of the path betweenj andi∗(j) is E[Yj] ×M `(j, i∗(j)).
Thus, the expected total cost of this graph that connects upF is at most

S∗ +
∑
j∈D

E[Yj] ×M `(j, i∗(j)).

Since we buy a minimum spanning tree in Step (S2), the expected buying cost of our treeT is at most twice the
expression just seen; i.e., at most

2 (S∗ +
∑
j∈D

E[Yj] ×M `(j, i∗(j))), (4.5)

proving part (a) of the Lemma. SinceE[Yj] = α/M , we get part part (b) of the lemma.

Massaging the optimal solution: Before we proceed to bound the connection costs, let us modifyOPT to
get another solutionOPT′, which costs more thanOPT, but which has some more structure that allows us to
complete the argument. The new solution has the following properties:

7

P1. OPT′ opens facilities atF ′ ⊆ F ∗, and these are connected by acycleT ′ instead of a treeT ∗; each demand
j is now connected to the facilityi′(j), which is not necessarily its closest facility.

P2. The number of demands assigned to a facility inF ′, except perhaps the rootr, is a multiple ofM . (We
will call this themod-Mconstraint).

Lemma 4.2 There is a solutionOPT′ with the properties above, which has connection costC ′ ≤ C∗ + S∗ and
Steiner costS′ ≤ 2S∗. Hence, the total cost ofOPT′ is Z ′ ≤ C∗ + 3S∗.

Proof: Modifying the assignment of demands to nodes inF ∗ to satisfy the mod-M constraint is fairly simple.
Given the treeT ∗, we process this in a two-pass fashion. The first pass goes bottom-up, starting at the leaves
which must all be inF ∗, and making sure that each node satisfies the mod-M property by sending someb < M
demand from the node to its parent in the tree. OPT has nodes that are not inF ∗, and hence cannot be facilities
in F ′. We eliminate these nodes during a top-down pass, where we distribute their demand among their children.
The details are as follows.

Given the treeT ∗, we process this in a two-pass fashion. The first pass goes bottom-up, starting at the leaves
which must all be inF ∗. Consider a vertex all of whose descendants satisfy the mod-M property, and letx be the
demand currently assigned to it. Ifx = aM + b, whereb < M , we sendb units of demand fromx to its parent.
The number of demands assigned to each is now a multiple ofM . Furthermore, the increase in connection
cost isb < M times the distance betweenx and its parent; this ensures that every node (except possiblyr) has
demands that are a multiple ofM .

Of course, we may now have demands gathering at nodes ofOPT that are not inF ∗; handling this is fairly
simple in a top-down fashion. We will send some of the demand back down the tree from parents to children;
however, we maintain the invariant that at mostM units of demand will be sent down an edge. Let a vertex
v 6∈ F ∗ haveaM demand (and let us assume we have handled all its ancestors). Since at least(a − 1)M of
this demand must have been collected in the bottom-up pass, and each child could have only sent< M demand
upwards, there must be≥ a children ofv sending demands to it. We choose anya of these children and send
backM units of demand along those edges.

To complete the argument, note that the net demand sent along an edge ofT ∗ was eitherb units upwards, orM−b
units downwards, and hence the cost of this movement can be changed toS∗, thus obtaining thatC ′ ≤ C∗ +S∗.
Furthermore, since we finally do not use any new facilities, and can even close the facilities with no demands
assigned to it,F ′ ⊆ F ∗. Finally, the cycle property is obtained by taking an Eulerian tour ofT ∗ and replacing
it by a cycle by short-cutting repeated vertices using the metric property. This at most doubles the Steiner cost,
giving S′ ≤ 2S∗.

Back to Bounding the Connection Cost:From now on, we shall only consider the modified solutionOPT′.
For simplicity, by making copies of nodes if necessary, we can assume that each node inF ′ has been assigned
M demands. Recall thatT ′ is a cycle which containsr. (See Figure 1.) Starting fromr, let us name the facilities
on T ′ in (say) clockwise orderr = f0, f1, . . . , fk, fk+1 = r. (Hence referring tofl makes sense for alll, since
we can just considerl mod(k + 1).)

Let Dl be the set of demands assigned tofl, and hence|Dl| = M for l 6= 0 by assumption (P2). Let us abuse
notation and addr toD0. LetP ′

l be the portion of the cycleT ′ joiningfl andfl+1, and letc(P ′
l) denote the length

of P ′
l , and henceS′ = M

∑k
l=0 c(P ′

l). Let C ′
l be the total connection cost of the demands inDl in the solution

OPT′ (with C ′ =
∑k

l=0 C ′
l). Our algorithm chooses, in Step (S3), the cheapest assignment of demands to nodes

in F . Thus, to bound the expected connection cost, it suffices to bound the expected connection cost of an
arbitrary experiment that assigns demands to nodes inF . We present one such experiment next in Section 4.1,

8

f

f
f

f

M M M

M

M
M

f

f

f

f

0 1
2

i

i+1

f

3

45 6

k r

M

M

M

f = f

P’3

k+1

Figure 1:The transformed instanceOPT′

and analyze it; in Section 4.2, we present and briefly analyze an improved experiment. We have chosen this
approach since there are several details to be handled in Section 4.2; handling these seems easier if we start with
the simpler approach of Section 4.1 as a warmup.

4.1 A Candidate Assignment

Here we consider the following experiment: ifDl ∩F 6= ∅, then we assignall the demands inDl to the element
in Dl∩F that is closest tofl. Else we have to assign these demands to some other open facility (i.e., “go outside
Dl”). In this case, consider the smallestt > 0 such thatDl+t ∩ F 6= ∅; let s = l + t. Note thatr ∈ D0, and so
t ≤ k. We now send all the demands inDl to the facility inDs closest tofs. If we assign demands inDl to a
marked node inDl+t, then a path for each demand inDl goes throughfl, P

′
l , P

′
l+1, . . . , P

′
l+t−1, and then from

fl+t to the element inDl+t ∩ F closest to it. We will bound the expected cost of these paths, which in turn will
bound the expected connection cost ofSimpleCFL.

Let us define some random variables. LetXi be the indicator variable thatDi ∩ F = ∅ in our algorithm. (Note
thatX0 = 0 with probability1.) Let Ai be the distance fromfi and the closest element ofDi ∩ F ; if Di ∩ F is
empty, thenAi can be set to0. By the above arguments, the assignment cost of theM demands inDl is at most

C ′
l + M

k∑
i=l

(Xl · · ·Xi) c(P ′
i) + M

k∑
i=l

(Xl · · ·Xi−1) (1−Xi) Ai (4.6)

Indeed, the first term is the distance traveled by the demands inDl to reachfl, the second term expresses the
fact that demands usePi (and payM c(P ′

i)) if and only if Dl, . . . , Di all do not intersectF , and the third term
implies that we incur a cost ofM Ai if we assign demands inDl to the closest member ofDi ∩ F .

Note thatXi andXj are independent fori 6= j, and thatE[Xi] = (1 − α/M)M = q. To boundM · E[(1 −
Xi)Ai] , let the distances fromfi to the members ofDi be

0 ≤ a1 ≤ a2 ≤ . . . ≤ aM , with
∑

j

aj = C ′
i. (4.7)

Now,

E[(1−Xi)Ai] =
M∑

j=1

aj × α/M × (1− α/M)j−1.

9

Note that the coefficients ofaj decrease asj increases, and hence subject to the constraints (4.7), the expectation
is maximized when all theaj ’s are equal toC ′

i/M . This yields

E[(1−Xi)Ai] ≤ (C ′
i/M) [1− (1− α/M)M] = (C ′

i/M) (1− q). (4.8)

Let Cl be the expected connection cost of the demands inDl in our current experiment. Combining the above-
seen facts with the inequality (4.6), we get that forl > 0,

Cl ≤ C ′
l + M

k∑
i=l

c(P ′
i) qi−l+1 +

k∑
i=l

C ′
i (1− q) qi−l. (4.9)

Note thatC0 = C ′
0; adding this to the sum of (4.9) over alll, the total expected connection cost is

C ≤
k∑

l=0

C ′
l + M

k∑
i=1

c(P ′
i)

i∑
l=1

qi−l+1 +
k∑

i=1

C ′
i (1− q)

i∑
l=1

qi−l (4.10)

≤ C ′ + M

k∑
i=1

c(P ′
i)

q
1− q

+
k∑

i=1

C ′
i (1− q)

1
1− q

≤ 2 C ′ +
q

1− q
S′ (4.11)

However,q ≤ 1/eα, and hence the second term is at most1/(eα − 1). Now using Lemma 4.2 to replaceC ′ by
C∗ + S∗ andS′ by 2S∗, we see that the expected connection cost of our algorithm can be bounded by:

C ≤ 2 C∗ +
2 eα

eα − 1
S∗. (4.12)

Adding with (4.4), the total expected cost is at mostC + S ≤ 2(1 + α)C∗ + (2 + 2eα

eα−1) · S∗. Since the optimal
cost isZ∗ = C∗ + S∗, we chooseα ≈ 1.35 to minimize the approximation ratio, and get the following result.

Theorem 4.3 The algorithmSimpleCFL is aβ = 4.7-approximation algorithm forCFL.

If we were to use an1.55-approximation for Steiner tree [14] to buy edges in Step (S2), we would be getting
an improved approximation ratio of4.2 for CFL, while the analysis of [5] gets a 3.55 approximation. However,
we need to use the 2-approximation algorithm of the MST, as there is a cross-monotone cost-sharing function
ξMST for the MST problem.

4.2 A More Refined Assignment

We now present an improved4.6-approximation. The idea behind the improvement is a natural one: instead
of always going clockwise to look for the closest clusterDl with a facility in it, we can look both clockwise
and counter-clockwise for the closest cluster with a facility, breaking ties randomly. As one might expect, we
show that this decreases the cost (see (4.17)), since it is no longer the case that a cluster with a facility in its
neighboring counter-clockwise cluster goes several hops in the clockwise direction to find a (farther) facility.

More formally, let us modify the experiment of Section 4.1 to assign the demands to facilities inF as follows.
Choose just one global “tie-breaker” bit TB at random. WhenDl ∩ F = ∅ and we go outsideDl, instead of
always going around the cycle in a clockwise order, consider the smallestt > 0 such that eitherDl+t or Dl−t

has an non-empty intersection withF ; let Ds be the corresponding set withDs ∩F 6= ∅. If both Dl+t andDl−t

10

intersectF , then we break the tie randomly using TB: if TB= 0, then we chooseDl−t (i.e., setDs to beDl−t);
else if TB = 1, we setDs to beDl+t. The same bit TB is used by all groupsDl. Note thatr ∈ D0, and so
t ≤ dk/2e. We now send all the demands inDl to the facility inDs closest tofs.

Let the random variablesXi andAi be as in Section 4.1. We will not go over the analysis of this experiment in
the same level of detail, but let us point out some of the salient ideas: for some facility inDi to be used by≥ κ
groups of larger index (say), we must have: (i)Xi = 0, and (ii) either all2κ groupsDi+1, . . . , Di+2κ do not
intersectF , or only the last one does and we chooseDi with probability half. Like in (4.10), the expected total
cost will again be a non-negative linear combination of the values{C ′

i} and{c(P ′
i)}. Using the idea outlined in

this paragraph, as well as expressions analogous to (4.8) and (4.9) in the previous analysis, we can verify that
the coefficient ofC ′

i (in this linear combination) will be at most

1 + (1− q) + 2(1− q)
∑
κ≥1

(q2κ +
1
2

q2κ−1(1− q)) ≤ 1 + (1− q) + q = 2. (4.13)

Analyzing the coefficient ofc(P ′
i) needs more work. Assume without loss of generality thatbk/2c ≤ i ≤ k; the

complementary case is similar. Given a setT of indices, letU(T) denote the event thatXj = 1 for all j ∈ T ;
informally, the “U ” denotes “unmarked”. We consider when the demands in groupDl will use the pathP ′

i ; we
will do so by considering the casesl ≤ i andl > i.

Case I: l ≤ i. LetAl be the event that the demands in groupDl use the pathP ′
i . ForAl to hold, the following

eventBl should also happen:Bl ≡ U({j : |j − l| ≤ i− l}). So,

Pr [Al] = Pr [Bl] × Pr
[
Al

∣∣ Bl

]
= q2(i−l)+1 × Pr

[
Al

∣∣ Bl

]
.

Now, if k +1− l ≥ l, it is easy to see by symmetry (since TB is equally likely to be0 or 1) thatPr
[
Al

∣∣ Bl

]
≤

1/2; thus we have
if k + 1− l ≥ l, thenPr [Al] ≤ q2(i−l)+1/2. (4.14)

Next, supposek + 1 < 2l. Define an eventCl: Cl ≡ U({j : i + 1 − l ≤ |j − l| ≤ k − l}). We have
Pr

[
Al

∣∣ (Bl ∧ Cl)
]

= 1/2, by symmetry. Also, a moment’s thought reveals that

Pr
[
Al

∣∣ (Bl ∧ Cl)
]

= 1− (1− q)/2 = (1 + q)/2.

Thus we have

Pr [Al] = q2(i−l)+1 · (Pr
[
Cl

∣∣ Bl

]
· (1/2) + Pr

[
Cl

∣∣ Bl

]
· (1 + q)/2)

= q2(i−l)+1 · ((1− q2(k−i)) · (1/2) + q2(k−i) · (1 + q)/2)
= q2(i−l)+1 · (1/2) · (1 + q2(k−i)+1).

Comparing with (4.14), we see that ifl ≤ i, thenPr [Al] ≤ q2(i−l)+1 · (1/2) · (1 + q2(k−i)+1). Summing over
all l ≤ i, we get that the total contribution of allDl, l ≤ i, to the coefficient ofc(P ′

i) in the expected connection
cost, is at most

q
2(1− q2)

· (1 + q2(k−i)+1). (4.15)

We now move to the next case.

Case II: i < l ≤ k. LetAl be as in Case I. Now defineB′
l ≡ U({j : |j − l| ≤ l− (i + 1)}). Once again,B′

l is a
necessary condition forAl. Also note thatPr [B′

l] = 0 if k + 1− l ≤ l− (i + 1); thus, we can restrict attention

11

to thosel > i such thatl ≤ l0
.= b(k + i + 1)/2c. Now, sincel > i, it is easy to see thatPr

[
Al

∣∣ B′
l

]
≤ 1/2;

also,Pr [B′
l] = q2(l−i−1)+1. Summing over alll ∈ [i + 1, l0], we get a total contribution of

(1/2) ·
l0−i∑
j=1

q2j−1 ≤ q
2(1− q2)

· (1− qk−i+1). (4.16)

Adding with (4.16), the coefficient ofc(P ′
i) in the expected connection cost is seen to be at most

q
2(1− q2)

· (2 + q2(k−i)+1 − qk−i+1) ≤ q
1− q2

≤ e−α

1− e−2α
=

eα

e2α − 1
.

So, the total expected connection cost is at most2C ′ + eα

e2α−1
· S′. Using Lemma 4.2 to replaceC ′ by C∗ + S∗

andS′ by 2S∗, the expected connection cost is at most

2C∗ +
2(e2α + eα − 1)

e2α − 1
· S∗.

Adding with (4.4), the total expected cost is at most

2(1 + α)C∗ +
2(2e2α + eα − 2)

e2α − 1
· S∗. (4.17)

Since the optimal cost isZ∗ = C∗ + S∗, we chooseα = 1.296 to minimize the approximation ratio to get the
following result.

Theorem 4.4 The algorithmSimpleCFL is aβ = 4.6-approximation algorithm forCFL.

5 Analysis of the Limited-Independence Marking

We start with some useful derandomization tools in Section 5.1, and then analyze the limited-independence
marking in Section 5.2.

5.1 Derandomization tools

We will use the following theorem, which appears as Lemma 2.3 in [2]:

Theorem 5.1 ([2]) Let t ≥ 4 be an even integer. SupposeX1, . . . , Xn are t-wise independent random variables
taking values in[0, 1]. LetX = X1 + · · ·+ Xn andµ = E [X], and letλ > 0. Then

Pr[|X − µ| ≥ λ] ≤ Ct ·
(

tµ + t2

λ2

)t/2

,

whereCt = 2
√

πt · e1/(6t) · (5/(2e))t/2 ≤ 8.

See [15] for tail-bounds similar to the above.

We next present some notation.

12

• For each groupDj , let Zj,1, Zj,2, . . . , Zj,M be the respective indicator random variables for the demands
in Dj getting marked by our algorithm, when these demands are considered innondecreasing order of
distance fromfj .

• Let A be any set of ordered pairs{(j, k)}. Then,N(A) is the indicator random variable for the event
“for all (j, k) ∈ A, Zj,k = 0”. Also, T (A) denotes

∑
(j,k)∈A Zj,k. (“N ” stands for “none”, and “T ” for

“total”.)

We now give two types of upper-bounds onE [N(A)]:

Lemma 5.2 Let t1 andt2 be anyevenpositive integers such thatt1, t2 ≤ t (recall that the marking is done in a
t-wise independent manner). The following hold for any setA of ordered pairs{(j, k)}.

(i) Let IE(s,A) be the random variable denoting the inclusion-exclusion expansion ofN(A) truncated at the
sth level; i.e.,

IE(s,A) =
s∑

r=0

(−1)r
∑

A′⊆A: |A′|=r

∏
(j,k)∈A′

Zj,k.

Then, the inequalityN(A) ≤ IE(t1, A) holds always; also,

E [IE(t1, A)] ≤ (1− α/M)|A| +
(

eα|A|
Mt1

)t1

. (5.18)

(ii) LetNCM(t2, A) denote the “normalized central moment”(T (A)−α|A|/M)t2

(α|A|/M)t2
. Then, the inequalityN(A) ≤

NCM(t2, A) holds always; also,

if 4 ≤ t2 ≤ α|A|/M , thenE [NCM(t2, A)] ≤ 8 · (2t2)t2/2 · (α|A|/M)−t2/2. (5.19)

Proof: The upper bounds that are claimed to hold always onN(A) in (i) and (ii), easily follow from the fact
that t1 andt2 are even. Bound (5.18) follows from the statement and proof of Theorem 2 in [3]. Bound (5.19)
follows from Theorem 5.1, using the fact that the “tµ + t2” term in Theorem 5.1 is at most2tµ if t ≤ µ.

5.2 The analysis

Let ε be an arbitrary positive constant lying in(0, 1). We now prove that if the demands are marked int-wise
independent fashion wheret = a log(1/ε) for a suitably large constanta, then the expected approximation ratio
is at most(1 + ε) times what it is, in our analysis of independent marking in Section 4.2. The random bit (tie-
breaker) TB introduced in Section 4.2 is still chosen independently of the marking; this only multiplies the size
of our small sample space by a factor of2.

By Lemma 4.1(a), we get that for the Steiner cost, we can continue to use the bound (4.4) even undert-wise
independent marking; it is the connection cost that needs work. We now show that the expected total connection
cost under the algorithm of Section 4.1 changes very little under limited-independence marking; we then briefly
sketch the small modifications required for the algorithm of Section 4.2.

Recall the algorithm of Section 4.1. The total connection cost is a random variable that is the sum of three
quantities: (i) the deterministic value

∑
l C

′
l , which represents the cost of all demands in eachDl first getting

routed tofl; (ii) the value that corresponds to unsuccessfully traveling through someDl, and (iii) the total cost

13

paid in traveling fromfi to the closest marked demand inDi, onceDi is identified as the closest cluster. We will
only show that the expected total cost of (iii) gets multiplied by at most(1 + ε) due to ourt = a log(1/ε)-wise
independent marking; the argument for the term (ii) is analogous, and, in fact, simpler. Specifically, we will
show the following. Leti be the index of some arbitrary but fixedDi. We show that the expected value of the
random variable

φ
.=

i∑
j=1

MXjXj+1 · · ·Xi−1 · (1−Xi)Ai

gets multiplied by at most(1 + ε). (Sincei is fixed, we have not subscriptedφ asφi; this remark also holds for
some other definitions below.)

We now show how to use Lemma 5.2 to upper-boundE [φ]. Let a1, a2, . . . , aM be the distances of the demands
in Di from fi, written innondecreasingorder. Then, expanding the “(1−Xi)Ai” part of φ, we see that

φ =
i∑

j=1

MXjXj+1 · · ·Xi−1 · [
M∑

u=1

auZi,u ·
u−1∏
`=1

(1− Zi,`)].

Fix u arbitrarily, and letzu
.= Zi,u ·

∏u−1
`=1 (1 − Zi,`)] ·

∑i
j=1 XjXj+1 · · ·Xi−1. We aim to show thatE [zu] is

multiplied by at most(1+ ε) in our t-wise independent marking, as compared to the fully-independent marking.
For j = 0, 1, . . . , i− 1, defineAj = {(r, s) : (i− j) ≤ r ≤ (i− 1), 1 ≤ s ≤ M}. Thus we get

zu = Zi,u ·N({(i, `) : 1 ≤ ` ≤ u− 1}) ·
i−1∑
j=0

N(Aj).

Now leta1 be a sufficiently large constant. Definea2 to be the smallest even integer that is at least2e log(1/ε),
t1 to be the smallest even integer that is at least2ea1 log(1/ε), andt2 to be the largest even integer that is at most
a1 log(1/ε)/4. There are two cases:a1 log(1/ε) ≤ i − 1, or a1 log(1/ε) > i − 1; we start with the harder first
case.

Case I:a1 log(1/ε) ≤ i− 1. Break up the expression forzu into two sums, one for “small”j and the other for
“larger” j:

Zi,u ·N({(i, `) : 1 ≤ ` ≤ u−1}) ·
∑

j≤a1 log(1/ε)

N(Aj)+Zi,u ·N({(i, `) : 1 ≤ ` ≤ u−1}) ·
∑

j>a1 log(1/ε)

N(Aj).

Thus, by Lemma 5.2,zu is always bounded by the sum of the following two random variables:

Zi,u · IE(a2, {(i, `) : 1 ≤ ` ≤ u− 1}) ·
∑

j≤a1 log(1/ε)

IE(t1, Aj), and (5.20)

Zi,u · IE(a2, {(i, `) : 1 ≤ ` ≤ u− 1}) ·
∑

j>a1 log(1/ε)

NCM(t2, Aj). (5.21)

If we expand the expectations of these two random variables using the linearity of expectation, we get terms
each of which is a product of some of the random variablesZ·,·; importantly, the number of factors in each such
term is at most1+a2 + t1 and1+a2 + t2 respectively. Thus, if we chooset = 1+a2 + t1 (recall thatt1 ≥ t2),
then the expectations of these two random variables become

E [Zi,u] · E [IE(a2, {(i, `) : 1 ≤ ` ≤ u− 1})] ·
∑

0≤j≤a1 log(1/ε)

E [IE(t1, Aj)] and (5.22)

14

E [Zi,u] · E [IE(a2, {(i, `) : 1 ≤ ` ≤ u− 1})] ·
∑

j>a1 log(1/ε)

E [NCM(t2, Aj)] (5.23)

respectively. We next use (5.18) and (5.19) to bound these values; we will see that choosing the constanta1

large enough results inE [zu] being at most(1 + ε) times what it is with independent marking.

The expression (5.22) is at most

α

M
·
(

(1− α/M)u−1 +
(

eα(u− 1)
Ma2

)a2
)
·

∑
0≤j≤a1 log(1/ε)

(
(1− α/M)Mj + (eαj/t1)t1

)
;

i.e., at most

α

M
· ((1− α/M)u−1 + (eα/a2)a2) ·

∑
0≤j≤a1 log(1/ε)

(
(1− α/M)Mj + (eαa1 log(1/ε)/t1)t1

)
.

Similarly, the expression (5.23) is at most

α

M
· ((1− α/M)u−1 + (eα/a2)a2) ·

∑
j>a1 log(1/ε)

(8 · (2t2/(αj))t2/2).

Thus, if the demands are marked int-wise independent fashion, thenE [zu] is at most(α/M) ·((1−α/M)u−1 +
(eα/a2)a2) times∑

0≤j≤a1 log(1/ε)

(
(1− α/M)Mj + (eαa1 log(1/ε)/t1)t1

)
+

∑
j>a1 log(1/ε)

(8 · (2t2/(αj))t2/2).

On the other hand, under fully-independent marking,

E [zu] =
α

M
· (1− α/M)u−1 ·

i−1∑
j=0

(1− α/M)Mj . (5.24)

Recalling the definitions ofa1, a2, t1 andt2, it is easy to verify that ifa1 is chosen as a sufficiently large constant,
then the former value is at most(1 + ε) times the latter. This completes the analysis of Case I.

Case II: a1 log(1/ε) > i − 1. We follow the above analysis; we need not consider the case of largerj. Now,
under limited-independence marking, the bound onE [zu] is simpler: it is at most

(α/M) · ((1− α/M)u−1 + (eα/a2)a2) ·
∑

0≤j≤i−1

(
(1− α/M)Mj + (eαa1 log(1/ε)/t1)t1

)
.

Once again, this is at most(1 + ε) times the r.h.s. of (5.24).

Modifications required for the algorithm of Section 4.2. We now sketch the few modifications required.
Conditional onTB = 1, the demands inDl will get routed to:

• Dl, iff Xl = 0;

• Dl+t for somet > 0, iff Xl(1−Xl+t)
∏t−1

j=1(Xl+jXl−j) holds; and to

15

• Dl−t for somet > 0, iff XlXl+t(1−Xl−t)
∏t−1

j=1(Xl+jXl−j) holds.

Similar remarks hold conditional onTB = 0. The expected connection cost is1/2 times the cost conditional
on TB = 1, plus1/2 times the cost conditional onTB = 0. Consider the case whereTB = 1. The total
connection cost can then be verified to still be a non-negative linear combination of terms of the form: “a
product of someXj ’s, multiplied by at most one term of the form(1 − Xl)Al”. Furthermore, it remains true
of the total connection cost that the expected values of: (a) the coefficient of anyc(P ′

i), and (b) the total term
multiplying any term of the form(1 − Xl)Al, are bothΘ(M). Using these observations, the above type of
analysis can be seen to hold for the algorithm of Section 4.2 also.

6 Further Extensions

6.1 Handling Facility Costs

For the model of connected facility location where there are facility opening costs as well, we can run a slight
variant of the algorithm above:

F1. Mark each demandj ∈ D independently with probability1/M , and letD′ be the set of marked demands.

F2. Compute aρFL-approximate metric facility location solution with the original distances and facility open-
ing costs, but where the demand value for anyj ∈ D′ is M , and is0 for j 6∈ D′. Let F be the set of open
facilities returned by this algorithm.

F3. Construct aρST -approximate Steiner treeT onF ∪ {r}.

F4. Assign each demandj ∈ D to its closest open facilityi(j) in F .

The cost analysis is very similar to that of Theorem 2, and we only sketch the important ideas here. LetO∗, C∗

andS∗ denote the facility opening costs, connection costs and Steiner costs of the optimal solution. Note that
opening the same set of facilities asOPT is also a feasible solution to the facility location instance in Step (F2)
with expected cost(O∗ + C∗), and hence we pay

A1
.= ρFL(O∗ + C∗) (6.25)

in expectation, whereρFL is the approximation guarantee of the algorithm used in Step (F2). Now a proof
along the lines of Lemma 4.1 implies that there is a Steiner tree connecting these facilties with expected cost
(S∗ + C∗ + A1), and hence the tree we construct in Step F3 costs at mostρST times that, which is

A2
.= ρST (S∗ + C∗ + ρFL(C∗ + O∗)). (6.26)

Finally, we have to bound the connection costs of Step (F4): one can use an analysis very similar to Section 4.2,
but in addition to the expected cost of2C∗ + 2e

e−1S∗ paid there, one also has to pay an additional cost to go from
the marked demands inD′ to the facilties inF : this costsA1 in expectation. Hence the expected assignment
cost in Step (F4) is

A3
.= 2C∗ + 2e

e−1S∗ + (C∗ + O∗)ρFL. (6.27)

Adding up the three expressions above, we get a bound on the expected cost of at most

ρFL(2 + ρST)O∗ + (1 + ρFL)(2 + ρST)C∗ + (ρST + 2e/(e− 1))S∗. (6.28)

16

Now using the best known approximation factors ofρFL = 1.52 [12] andρST = 1.55 [14], we get a8.94-
approximate algorithm for the case of non-zero cost for opening facilities. (A better performance can be obtained
by choosingα carefully.)

To get cross-monotonic cost shares, we can instead use theρFL = 3 approximate Facility Location algorithm
of Pál and Tardos [13] and its accompanying cross-monotone cost sharing schemeξFL, the MST heuristic with
ρST = 2 for Steiner tree (and use its cross-monotone cost-sharing schemeξMST as well). This gives us an
approximation factor ofβ = 16; now setting the cost-share of each demandj to be

ξ(D, j) =
1
β

E[M ξMST (D′ ∪ r, j) + M ξFL(D′, j) + `(j, D′ ∪ r)] , (6.29)

can give us aβ-approximate cross-monotone cost sharing scheme forCFL with facility costs as well.

6.2 Handing Non-Uniform Demands

The discussion in the previous sections assumed that each of the demandsj ∈ D had a weightdj = 1; i.e., it
wanted to send just one unit of demand to the root. Moreover, we assumed that there was only one player at each
vertex inD. Let us briefly indicate how these assumptions can be discharged; in this section, we do not attempt
to optimize the constants, sacrificing the performance guarantees in favor of sketching the main ideas.

Let us note that handling the assumption of a single player at every vertex is simple: if there werenv players at
vertexv, we createnv new vertices, attach each of them tov using zero-cost edges, and place a unique player
from v on each of the new vertices.

To handle arbitrary weightsdj for demandj, we first take care of the following two special cases separately,
which ensure that the values ofdj all lie within a multiplicative factor ofn2 of each other.

Heavy Vertices If the weightdj of vertexj is at leastM , we candeterministically markthe vertexj in Step S1.
It can be shown thatOPT would have connected these vertices up in its Steiner tree as well, and hence
this causes no loss in quality.

Light Vertices If the weightdj of nodej is at mostM/n2, then we do not markj at all in Step S1: note that the
total weight

∑
j∈V dj of such nodes is at mostn · M/n2 = M/n. The expected cost of the Steiner tree

can only go down due to this change, and a slight variant on the proof of Theorem 4.4 will show that the
expected assignment cost only increases by a factor of(1 + 1/n)—essentially, throwing back the demand
of M/n in any subtree can only cause an increase of a factor of(1 + 1/n) in the expected assignment
cost.

Having performed these operations, we can now rescale and assume that the weightsdj lie in [n, n3], and that
the parameterM is greater thann3. We round the weightsdj down to the closest integerbdjc: this decreases
each weight by at most a(1 + 1/n) factor, and hence alters only the lower order terms of our performance
guarantee. And finally, we replace the player atj by bdjc players: a long but straight-forward reworking of the
proofs in Section 4 shows that the algorithm is a constant-factor approximation even with general weights, and
gives us the desired cost-shares.

Acknowledgment.We thank the referees for their helpful comments.

17

References

[1] Noga Alon, Ĺaszĺo Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the maximal
independent set problem.Journal of Algorithms, 7:567–583, 1986.

[2] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. InProc. IEEE Symposium on
Foundations of Computer Science, pages 276–287, 1994.

[3] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković. Approximations of general
independent distributions. InProceedings of the 24th Annual ACM Symposium on Theory of Computing,
pages 10–16, 1992.

[4] Anupam Gupta, Amit Kumar, Jon Kleinberg, Rajeev Rastogi, and Bülent Yener. Provisioning a Virtual
Private Network: A network design problem for multicommodity flow. InProceedings of the 33rd Annual
ACM Symposium on Theory of Computing, pages 389–398, 2001.

[5] Anupam Gupta, Amit Kumar, and Tim Roughgarden. Simpler and better approximation algorithms for
network design. InProceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
365–372, 2003.

[6] Kathryn J. Kent and Darko Skorin-Kapov. Population monotonic cost allocations on MSTs. InProceedings
of the 6th International Conference on Operational Research (Rovinj, 1996), pages 43–48. Croatian Oper.
Res. Soc., Zagreb, 1996.

[7] Michael Luby. A simple parallel algorithm for the maximal independent set problem.SIAM J. Comput.,
15(4):1036–1053, 1986.

[8] Hervé Moulin and Scott Shenker. Strategyproof sharing of submodular costs: budget balance versus effi-
ciency.Economic Theory18, pp. 511-533, 2001.

[9] Kamal Jain and Vijay Vazirani. Applications of approximation algorithms to cooperative games. InPro-
ceedings of the 33rd Annual ACM Symposium on the Theory of Computing (STOC), pages 364–372, 2001.

[10] David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global knowledge. InPro-
ceedings of the 41th Annual IEEE Symposium on Foundations of Computer Science, pages 613–623, 2000.

[11] Stefano Leonardi and Guido Schäfer. Cross-monotonic cost-sharing methods for connected facility location
games. Theoretical Computer Science326(1-3), 431–442, 2004.

[12] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Improved approximation algorithms for metric facility
location problems. InApproximation algorithms for combinatorial optimization, volume 2462 ofLecture
Notes in Comput. Sci., pages 229–242. Springer, Berlin, 2002.

[13] Martin Ṕal andÉva Tardos. Group Strategyproof Mechanisms via Primal-Dual Algorithms. InProceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003, pp. 584-593.

[14] Gabriel Robins and Alexander Zelikovsky. Improved Steiner tree approximation in graphs. InProceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 770-779.

[15] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan.Chernoff-Hoeffding bounds for applications with
limited independence, SIAM J. Discrete Math., 8 (1995), pp. 223–250.

18

[16] H. P. Young. Cost allocation. In R. J. Aumann and S. Hart, editors,Handbook of Game Theory, volume 2,
chapter 34, pages 1193–1235. North-Holland, 1994.

19

	Introduction
	The Algorithm and the Cost-Sharing
	Properties of the Cost-Sharing Scheme
	Details of the limited-independence marking

	A New Analysis of the Performance of SimpleCFL
	A Candidate Assignment
	A More Refined Assignment

	Analysis of the Limited-Independence Marking
	Derandomization tools
	The analysis

	Further Extensions
	Handling Facility Costs
	Handing Non-Uniform Demands

