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Abstract

We consider a single-source network design problem from a game-theoretic perspective. Gupta, Kumar
and RoughgarderPfoc. 35th Annual ACM STQ(ages 365-372, 2003) developed a simple method for a
single-source rent-or-buy problem that also yields the best-known approximation ratio for the problem. We
show how to use a variant of this method to develop an approximately budget-balanced and group strate-
gyproof cost-sharing method for the problem.

The novelty of our approach stems from our obtaining the cost-sharing methods for the rent-or-buy prob-
lem by carefully combining cost-shares for the simpler Steiner tree problem. Our algorithm is conceptually
simpler than the previous such cost-sharing method duéltari®l TardosRroc. 44th Annual FOCShages
584-593, 2003), and improves the previously-known approximation factdr tof4.6.

1 Introduction

This paper studies the problem of giving gooalst-sharing mechanisnier a single-source network design
problem. Imagine a general network design problem, where the participaiiggi@d want to build a network
connecting them to a common source (a server); however, they are autonomous and behave in a selfish (but
non-malicious) fashion. Informally, a cost-sharing mechanism builds a network, and allocates the cost incurred
among the agents, so that no group of agents is charged too much, thus precluding the possibility of their being
unhappy and trying to secede from the system.

The type of problem we consider is where we are given an undirected grapliV, F), and a set oflemands

D C V that want to connect to a common sourc&Ve want to devise an algorithm that builds a cheap network

on the demand®, and also specify what portion of its cost is paid by which of the participants in the network;
moreover, this should be done in a manner that ensures that the cost paid by any subset of the participants is
“fair”.

To make all this precise, let us consider a network design game on a@raptV, E). The cost-shares will be
specified by a functiog : 2 x V' — R, where¢(D, i) will specify the cost share paid by the playes V/

when the actual set of demanddisC V. To ensure that players are not penalized when they do not participate
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in the game, we require thgtD,i) = 0 for i ¢ D. For a particular seD of demands, we usePT(D) to

denote the minimum cost network serving the users in th&sand usé\lg(D) to denote the cost (or expected
cost, in the case of randomized algorithms) of the network computed by our algorithm. We will be concerned
with designing algorithms and cost-sharing functigribat satisfy the following properties:

1. (B-approximate budget-balance)For any set of demands, we require that

OPT(D) > > &(D,i) > Alg(D)/3
ieD
for some given parametg@r > 1. Equivalently, by multiplying the shares Igy we could require that the
cost-shares are at least the total cost of the solution found by the algorithm, but do not@xxe&dD).
If 6 =1, we say that the cost-sharing functigis budget-balanced

2. (cross-monotonicity)For anyA C D and anyi € A, £(D,i) < (A, ). l.e., the cost-share of any fixed
demand point should not increase due to other demands entering the system. This property is also known
under the name of population-monotone.

It is well-known that the two properties above immediately imply the following desirable property (see,le.qg., [8]
or Lemmg 3.1L, for a proof):

3. (fairmess)ForanyA C D, > .., &(D,i) < OPT(A). Le., the cost paid by any subset of people should
not exceed the optimal cost of connecting them alone and hence they have no incentive to secede. This
property is often referred to @mmpetitiveness

Cross-monotonicity is a key ingredient used in solving the following type of mechanism design problems/games:
consider the network design problem with a set of demand ndgesgith each user (or demand)having an
associated utilityy. Since the users have limited utilities, the service provider has to now decide which subset
of customers it must serve, in addition to designing the network and deciding how to share the cost between
the served customers. A mechanism for solving this problem is cgitagp strategyprooff no subset of users

has an incentive to deviate from the protocol (e.g., by misreporting their utility) in the hope of improving the
outcome for themselves (e.g., receiving the service at a cheaper cost). Moulin and Shenker [8] show that having
a cross-monotone cost-sharing method for a problem naturally gives rise to a group strategyproof mechanism
for the problem in the following way. We start with all the customers; if there is some customer whose cost
share (computed w.r.t. the current set of customers) exceeds its utility, we drop it from the set, recompute cost
shares and repeat. At the end, we are left with the desired set of customers and their cost-shares.

As an example of cross-monotonicity, let us consider th&iIMuM SPANNING TREE game on the complete
graphG = (V, E) with edge weights, given by a set of playdpsand aroot r ¢ D; the objective is to find the
cheapest tre®IST (D) spanningD andr. It must be emphasized that this game does not allow the use of Steiner
vertices inMST (D), andr is not a player, and hence should have no cost-share. It is not difficult to verify that a
budget-balanced and fair cost-sharing scheme for this game can be found thus: find an MST, roanid st

the cost-share for vertexe D to be the cost of the edge froito its parent. However, this scheme is not cross-
monotone, and getting a cross-monotone cost-sharing scheme for the minimum spanning tree problem takes
more work. Kent and Skorin-Kapovl[6] and Jain and Vazirahi [9] developed such budget-balanced and cross-
monotone cost-sharing schemes for the spanning tree game using a directed branching game; let us denote this
cost-sharing scheme Igy;s7. It is well-known that a min-cost spanning tree is a 2-approximation to the min-
cost Steiner tree; hence once can infer that the va%ﬁgggT serve also as cross-monotone, 2-approximately
budget-balanced cost-shares for the corresponding Steiner tree game.
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The Single-Source Rent-or-Buy Game In this paper we will consider tHgingle-Source Rent-or-BiNetwork

Design game; this combines features of Steiner tree and shortest paths. The game is defined as follows: we are
given a complete undirected graph= (V, E) with edge costs,. satisfying the triangle inequali@a special
source(or root) vertexr, and an integer paramet&f > 1. There are also a set abers(also calledplayersor
demandsD C V, each of which is identified with a vertex of the graph. We assume that there is a unique player

at each vertex. Our results can be extended (with a slight loss in the performance guarantee) to multiple players
at each vertex, each withveeightd; indicating its amount of demand; we sketch how to do this in Sen 6.2.

The objective is to connect each playeto the source via some pathP;, on which one unit of bandwidth has

been allocated. What makes the game interesting is that aggregating paths is beneficial, in tune with the idea of
economies of scale. Hence there are two different actions that can be performed by each edge: either the edge
can beboughtat costM ¢., but then an arbitrary amount of bandwidth can be sent on that edge (and hence an
arbitrary number of path®; can use it); or bandwidth on the edge carrdxatedat costc. per unit bandwidth

(and hence if the paths for some $eof players were using the edge, then the edge would<ost|.S|; in the

general weighted case, the cost wouldcpéimes the total weight of the players ). As usual, any edge can

be used for any of the users. Our main theorem is the following:

Theorem 1.1 There is a cross-monotone cost-sharing method for the Single-Source Rent-or-Buy network design
game that is alsgd-budget-balanced, wher@ = 4.6. Furthermore, these cost-shares can be computed in
deterministic polynomial time.

This improves on the results oflPand Tardos [13], who gave a 15-approximate cross-monotone cost-sharing
scheme for the problem. They use a primal-dual algorithm to build the network and obtain cost-shares.

We construct the claimed cost-shares based on expected costs in the approximation algorithm of Gugta et al. [5].
Loosely speaking, that algorithm works by randomly reducing the network design problem to computing Steiner
trees over subsets of terminals; we show that if we use the fun%mT to allocate approximate cost-shares

to each vertex in this resulting Steiner game, then the expected cost share of a vertex (taken over the random
reduction) gives us the cross-monotone cost-shares claimed in Thegrorem 1.1. However, since the variances
of the random variables involved may be large in general, computing these expected costs in polynomial time
is non-trivial. (In fact, a similar method to obtain cost-shares was proposed independently by Leonardi and
Schafer [11], who showed a budget-balance factot(df+ €) for anye > 0 for their cost-shares; however, they

left open the problem of the efficient computation of these costs.) To do this computation, we have to give a
new alternative analysis of the algorithm of [5]; this analysis allows us to give a derandomization using a small
sample space, which has some additional useful properties that help ensure cross-monotonicity.

As is standard, we often use the symbab denote an edge i@. The same symbol will also be used in some
places to denote the base of the natural logarithm; since the two usages are sufficiently distinct, we hope this
does not cause confusion. Logarithms will be to the base two, unless specified otherwise. The rest of this paper
is organized as follows. The basic algorithm and the idea for computing cost-shares are discussed in|Section 2;
Sectior] B proves some basic properties of the cost-sharing scheme, such as cross-monotonicitly] Section 4 gives
a way of analyzing our algorithm—boundintty in particular—that is different from the one 6f [5]. This proof

is used as a starting-point in Sect[dn 5 to show that our estimateroim Sectiorj 4 changes negligibly in our
derandomized algorithm. Finally, further extensions are described in Sgtion 6.

1Since we can work with the metric completion of the input graph instead, the assumption of the triangle inequality is without loss
of generality.



2 The Algorithm and the Cost-Sharing

We will use an algorithnBimpleCFL suggested by Gupta et &l. [5] for the equivalent problem of connected
facility location (without facility costs). First, let us recall the algorithm frorh [5]. Harg 0 is a constant that
will be chosen later.

S1. Mark each demang independently with probability /M, and letD’ be the set of marked demands.

S2. Construct a minimum spanning tfBen F' = D' U{r}. (This is a 2-approximate Steiner tree Br) The
elements off" are called th@pen facilities

S3. Assign each demande D to its closest open facility(j) in F'.

The algorithm suggests a simple and intuitive idea for the cost-shares: each player pays a cost proportional to
the expectedcost incurred by it on running the above algorithm. For a given a sequence of coin-tosses, the
players inD’ will pay for buyingthe MST, where their shares are derived from the cross-monotone cost-sharing
schemé ;g1 for the MST problem given i [6,19]. All other players (playersiin\ D’) will pay for renting

their shortest paths tB. The cost-shares defined for a particular set of coin-tosses exactly cover the cost of the
solution built. From[[5] we know that this algorithm isfgapproximation algorithm for some constaht To
gets-approximate cost-shares we divide the above defined sharesHormally:

&(D.j) = ; E[M &xsr(F.4) + (G, F)], (2.1)

where/(j, S) is the length of a shortest-path frohto the closest vertex of the st and the expectation is over
the coin tosses. (Note that the $et= D’ U {r} depends on the coin tosses.)

Outline of the Proof There are two parts to proving the result: we first have to show that the properties of the
cost-shares claimed in Theorém|1.1 are indeed satisfied; i.e., th@ytargget-balanced and cross-monotone.
These properties are proved in Secfipn 3.

The technically involved part of the proof involves showing that our cost-shares can be computed in (determin-
istic) polynomial time. A little thought will convince the reader that this is not obvious, even with the results
of Gupta et al.[[5]. Indeed, we need to estimate the expectatiofs |n (2.1) for each of the players, but the ran-
dom variables in[(2]1) do not have small variance in general. Furthermore, it is unclear how to derandomize
the proof of [5], since it relies on some severe conditioning. To take care of this problem, we give a proof of
the performance guarantee of tBempleCFL algorithm different from the one given by![5]; this is done in
Sectior{ 4. Our new proof will yield a somewhat worse constant than that of [5], but allow us to derandomize
the algorithm by marking the demands in Step| (S)-wise independent fashion for a constarthis appears

in Sectior] . Using-wise independent random choices in Sfeg (S1) allows us to use a polynomial-sized sample
space, letting us compute expectations such as thope pf (2.1) in (deterministic) polynomial time, by considering
all the points in the sample space. However, we need to make sure that the properties of the expectation proved
in Sectior| B (fairness and cross-monotonicity) also hold for the expectation tsiisg independent random
choices. Interestingly, the properties gbarticular construction ot-wise independent random variables turns

out to be crucial, as described in the proof of Theoferh 3.5.



3 Properties of the Cost-Sharing Scheme

Recall that given an instance of the game specified by a set of denfiandsost-sharing schemfor the

game is simply a functiog(D, ) (with £(D,i) = 0 for ¢ ¢ D). We now need to show that the function
defined in[(2.L) is a cost-sharing scheme with the properties we care about, namely, approximate budget-balance,
fairness, and cross-monotonicity. As mentioned in the introduction, it is well-known that these three properties
are not independent, and that a cross-monotone and approximately budget balanced cost-sharing is always fair.

Lemma 3.1 If a cost-sharing functioq is approximately budget balanced and cross-monotone then it is also
fair.

Proof: Consider a subset C D. By cross-monotonicity, it follows thak ;. , £(D,4) < > .o 4 &(A, 7).
Now using the upper bound in the approximate budget-balance property giyes ys(A4,i) < OPT(A), and
completes the proof of the lemma. |

We will need the following facts about the cost-sharing schégper :

Theorem 3.2 ([6]9]) There exists an efficiently computable cost-sharing scligme for the Minimum Span-
ning Tree game that is budget-balanced and cross-monotone.

Since the spanning tree connedsand r, we will use the notatiog ;s (D U {r},i) and&ys7(D, %) inter-
changeably; however, the results|ofl[6, 9] will always ensureghat (D U {r},r) = 0.

To prove approximate budget-balance, we will need the following result bounding the performance of the algo-
rithm SimpleCFL; its proof appears in Sectiopk 4 drid 5.

Theorem 3.3 The expected cost of the algoritf®mpleCFL on a set of demand® is at most3 OPT (D)
(where3 = 4.6), even if the demands are marked in-wise independent fashion in Stép]|(S1), for a suitably
large constant.

Note that this is a stronger form of the performance guarantee provied in [5] (albeit with a worse constant), since
it requires only constant-wise independence of the random variables. Armed with this result, we are now in a
position to prove the properties of the functigdefined in[(2.]1), and thus to prove Theorenj 1.1.

Notation. In our randomized algorithmy; will denote the indicator random variable for demandetting
marked. Given a sample poiat(i.e., the underlying sequence of coin-tosses) in our probability spage)
will be the following deterministic quantityl, if j gets marked due to this sequence of coin-tosses,0and
otherwise.

The above two theorems imply thats S-approximately budget-balanced — for any random sampéeshares
exactly the cost of the solution built:
Lemma 3.4 The functiort is S-approximately budget-balanced.

Proof: Consider the cost-sharéks. For a fixed random sample, let F,, denote the set of facilities; i.e.,
F, ={r}u{j € D|Yj(w) = 1}. Also letc¢(MST(F,)) denote the cost of an MST fdr,,. ¢From our
definition of¢(D, i), we get the following:

> BED, i) =Eu[M Y yrsr(Fu,i) + Y Ui, F)] =Ey[M x c(MST(E,)) + Y (i, F,)], (3.2)

€D S €D €D

using the facts thag,; s is a cost-share function and henggsr(F,,i) = 0 fori ¢ F,, and that;sr is
budget-balanced and thds, . &avrst(Fl, i) = ¢(MST(F,)).
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Now it is easy to see that the cost-shapesrecover the cost of the solution constructed, and hence are at least
Alg(D). This is true, as for each element of the sample spade x ¢(MST(F,)) + >, £(i, F.,) is the cost of
the solution which opens facilities &t,.

To see thab ., £(D,i) < OPT(D), note that the final expression in (B.2) is the expected cost of running
SimpleCFL on the set of demand®, and hence Theorem 3.3 implies that the expectation is no more than
BOPT(D), and thusy ;. £(D,i) < OPT(D). [

3.1 Details of the limited-independence marking

Before presenting the specific typetefise independent random marking that we will use, it would be useful
to see hows depends owmy; recall thato was a parameter used to determine the marking probability in[Stép (S1)
of the algorithmSimpleCFL. We show first in bound (4.17) of Sectipn }4.2 that

(3.3)

ﬁgmaX{Z(l—l—a),2(2€2a+ea_2)}

e2a — 1

under fully-independent marking. We then show in Sedtioh 5.2 that this bound changes negligibly guffi-
ciently large constant: if = alog(1/€) wherea is an absolute constant, then the r.h.s[ of|(3.3) gets multiplied
at most by(1 + €). Thus, settingy = 1.296, we will be able to guarantee that< 4.6.

In order to prove that the expectation usingise independent random marking is cross-monotone, we need
a particular choice of random marking. LBtbe a field of size> n, with |F| chosen large enough so that
[a|F|/M]/|F| is sufficiently close tax/M; in particular, supposg| > Q(M logn), say. Let the elements of
the field be{as, az, ..., ajr }, and let the vertice® of the graph be labeled by the firselementday, az, . . ., a, }.
Let S be any pre-specified subsetlbivith [S| = [«|F|/M . To get a sample, generate= (xo, x1,...,%i—1)
uniformly at random fron¥?, and define’; to be1 if Z;;%) z;al liesinS, andY; = 0 otherwise. By construc-
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tion, we havePr [Y; = 1| ~ /M. In particular, sinceF| > Q(M logn), we have
/M < Pr(Y; =1] < a/M +1/|F| = (a+o(1))/M;

by (3.3) and the few sentences following it, we see that this replacemenbyfx + o(1) impacts only by

an additiveo(1) factor. Therefore, in all our arguments below, we will assume®hdty; = 1] = «/M for all

1 € D. Itis well-known that thé’; generated as above areialvise independent; see, e.@.[[1, 7]. Note that the
above distribution is generatingcoin tosse¥;, while we need onlyD| of them; however, we can just ignore
all theY for j ¢ D.

For a fixedw € F?, let F, denote the set of facilities; i.ef,, = {r} U{j € D|Y;(w) =1}.

Theorem 3.5 Assuming that the random marking is done usingithése independent random variables ex-
plained above, or using independent random variables, then the funci®rross-monotone, i.e$(A,i) >
¢(D,i)foranyA C D.

Proof: The particular type of-wise independent distribution that we use has the following natural but crucial
property: for any choice af € T, if the set of marked demands in the runSimpleCFL on A is A’(w) and

the set of marked demands in the run Bris D’(w), then A’(w) C D’(w). (To our knowledge, this crucial
property need not necessarily hold foralwise independent distributions.) Define the joint probabjity’, )

to be the probability of selecting an element of the sample spaech that the marked demands in the run of
SimpleCFL on A is F and onD itis E. Note thatp(F, E) > 0 only if F* C E. A joint probability with this
property can also be defined for the case when the marking is fully independent.



With this additional property, we can prove that the schérnsecross-monotone. To see this, note that
£(A,i) = ﬂzﬁFEMMmﬂFU+mF'>BZMFEMMWNEWM@D]5@@,
FE

where the inequality uses the fact that the suppornt(df, £') is only on pairs withF C FE, and the cross-
monotonicity oféassr. n

4 A New Analysis of the Performance oSimpleCFL

Suppose first that the marking is done fully independently in (S1); we now give a way of an&8iming
pleCFL that is different from the one of [5]. We will then use this proof in Secfipbn 5 to show that our estimate
of 3 changes negligibly when we conduct-aise independent marking for a large-enough (but constant) value
of t. Recall that a solution to the Connected Facility Location Problem with demaridgjiven by the facili-
ties " and the Steiner tree on them, with the cost being. , £(j,i(j)) + Mc(T). Of the two terms in the sum,

the former cost is referred to as thennectioncost, and the latter is theteinercost. LetOPT be an optimal
solution with facilitiesF* and treeT™, and letC* andS* = M ¢(T™*) be the connection and Steiner costs in
OPT; also letZ* = C* 4+ S*.

The bound for the Steiner coStis the same as in [5]: we consider the optimal solution OPT, and compute the
expected cost assuming that we construct the Steiner tree in[Siep (S2) using the paths of the optimal solution.
We present the formal proof in Lemia4.1; part (a) of this lemma will only be required in Sgftion 5. The random
variablesy; are as defined in Sectipn B.1.

Lemma 4.1 (a) The expected costof Step[(S2) oimpleCFL is bounded by a non-negative linear combina-
tion of the value§E[Y}] : j € D}; (b) this non-negative linear combination is at most

2 (S* + aC*). (4.4)

Proof: Consider the optimal solutio@PT: it connects each € D to a facility:*(j) € F™* via a shortest path,
and hence pays a connection costisf = ZjeD £(j,i*(j)). Let F' be as defined in Ste 2). Define a graph
connectingF' thus: buy all the edges ifi*, and then for eacl € F, buy the edges in the shortest path frgho
i*(j) used byOPT. Note that we pay/ c. for each edge in Step [[SR), and hence pay ¢(T*) = S* for edges

of T*. For the random paths we add, the expected cost of the path bepaedir (j) iISE[Y; | x M £(j,i*(j)).
Thus, the expected total cost of this graph that connecfs igpat most

S+ ) E[Y;] x MA(j,i(5)).
jeD

Since we buy a minimum spanning tree in Sfeg (S2), the expected buying cost of dlifigraemost twice the
expression just seen; i.e., at most

2 (S*+ Y B[Y;] x ML(j,i*(5))), (4.5)
Jj€ED
proving part (a) of the Lemma. Sinég Y, ] = a/M, we get part part (b) of the lemma. ]

Massaging the optimal solution: Before we proceed to bound the connection costs, let us mahfy to
get another solutio®PT’, which costs more tha@PT, but which has some more structure that allows us to
complete the argument. The new solution has the following properties:
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P1. OPT’ opens facilities af” C F*, and these are connected byy&leT” instead of a tre@™; each demand
j is now connected to the facility(j), which is not necessarily its closest facility.

P2. The number of demands assigned to a facilitf"inexcept perhaps the roet is a multiple of M. (We
will call this themod-Mconstraint).

Lemma 4.2 There is a solutiof©OPT’ with the properties above, which has connection ¢dsk C* + S* and
Steiner cos’ < 25*. Hence, the total cost @PT' is Z/ < C* + 35*.

Proof: Modifying the assignment of demands to nodeginto satisfy the mod-M constraint is fairly simple.

Given the treel™, we process this in a two-pass fashion. The first pass goes bottom-up, starting at the leaves
which must all be inF™*, and making sure that each node satisfies the mod-M property by sending sothe
demand from the node to its parent in the tree. OPT has nodes that areffigiand hence cannot be facilities

in F’. We eliminate these nodes during a top-down pass, where we distribute their demand among their children.
The details are as follows.

Given the treel™, we process this in a two-pass fashion. The first pass goes bottom-up, starting at the leaves
which must all be inf™*. Consider a vertex all of whose descendants satisfy the mod-M property, artutdé¢he
demand currently assigned to it.df= aM + b, whereb < M, we send units of demand from: to its parent.

The number of demands assigned to each is now a multiple ofFurthermore, the increase in connection
costisb < M times the distance betweerand its parent; this ensures that every node (except posgiblys
demands that are a multiple of.

Of course, we may now have demands gathering at nodé8df that are not inF™*; handling this is fairly
simple in a top-down fashion. We will send some of the demand back down the tree from parents to children;
however, we maintain the invariant that at magtunits of demand will be sent down an edge. Let a vertex

v ¢ F* haveaM demand (and let us assume we have handled all its ancestors). Since &i least)M of

this demand must have been collected in the bottom-up pass, and each child could have enly/sdatmand
upwards, there must be « children ofv sending demands to it. We choose angf these children and send
backM units of demand along those edges.

To complete the argument, note that the net demand sent along an ddgead eitheb units upwards, oM —b

units downwards, and hence the cost of this movement can be changjedhas obtaining thaf”’ < C* + S*.
Furthermore, since we finally do not use any new facilities, and can even close the facilities with no demands
assigned to itF” C F™*. Finally, the cycle property is obtained by taking an Eulerian toufoaind replacing

it by a cycle by short-cutting repeated vertices using the metric property. This at most doubles the Steiner cost,
giving S’ < 25*. |

Back to Bounding the Connection Cost:From now on, we shall only consider the modified solut@aT’.
For simplicity, by making copies of nodes if necessary, we can assume that each #ddembeen assigned
M demands. Recall that is a cycle which contains. (See Figurg|1.) Starting from let us name the facilities
onT” in (say) clockwise order = fo, f1,..., fx, fxo1 = r. (Hence referring t¢; makes sense for al] since
we can just considdrmod (k + 1).)

Let D; be the set of demands assigneditoand hencéD;| = M for [ # 0 by assumption (P2). Let us abuse
notation and add to Dy. Let P/ be the portion of the cycl&”’ joining f; andf;1, and letc(P/) denote the length

of P/, and hences’ = M 3"}, c(P}). LetC} be the total connection cost of the demand®jrin the solution

OPT' (with C" = Zf:o C)). Our algorithm chooses, in StS3), the cheapest assignment of demands to nodes
in F. Thus, to bound the expected connection cost, it suffices to bound the expected connection cost of an
arbitrary experiment that assigns demands to nodés iWe present one such experiment next in Sedtioh 4.1,



Figure 1:The transformed instand@PT’

and analyze it; in Sectidn 4.2, we present and briefly analyze an improved experiment. We have chosen this
approach since there are several details to be handled in Seclion 4.2; handling these seems easier if we start with
the simpler approach of Sectipn 4.1 as a warmup.

4.1 A Candidate Assignment

Here we consider the following experimentZi N F # (), then we assigall the demands i, to the element

in D;N F thatis closest tg;. Else we have to assign these demands to some other open facility (i.e., “go outside
D;"). In this case, consider the smallgst 0 such thatD;; N F' # (); let s = [ + t. Note that- € Dy, and so

t < k. We now send all the demands i» to the facility in D, closest tofs. If we assign demands iP; to a
marked node Dy, then a path for each demandiin goes througty;, P/, P/ ,,..., P/, ;, and then from

f1++ to the element iD;,, N F closest to it. We will bound the expected cost of these paths, which in turn will
bound the expected connection costahpleCFL.

Let us define some random variables. D&tbe the indicator variable thd®; N F' = () in our algorithm. (Note
that Xy = 0 with probability1.) Let A; be the distance fronf; and the closest element 65 N F; if D; N F'is
empty, then4; can be set t0. By the above arguments, the assignment cost oMhdemands inD; is at most

k k
Cl+M Z(Xl X)) e(P)+ M Z(Xl X)) (1= X5) A (4.6)
i=l i=l

Indeed, the first term is the distance traveled by the demanfls o reachf;, the second term expresses the
fact that demands us® (and payM c(P})) if and only if Dy, ..., D; all do not intersec#’, and the third term
implies that we incur a cost a¥f A; if we assign demands ify; to the closest member @), N F.

Note thatX; and X; are independent far# j, and thatt[ X;| = (1 — a/M)™ = q. To boundM - E[(1 —
X;)A;], let the distances froryi to the members ab; be

0<a; <as <...<apy, with Zaj:q(. 4.7)
J

Now,
M
B[(1—X)A;] =) aj xa/Mx (1—a/M)I~",

j=1



Note that the coefficients af; decrease agincreases, and hence subject to the constrainis (4.7), the expectation
is maximized when all the;’s are equal ta” /M. This yields

E[(1-X)4;] < (Ci/M)[1 — (1 —a/M)M] = (C]/M) (1 -q). (4.8)
Let C; be the expected connection cost of the demands;im our current experiment. Combining the above-
seen facts with the inequality (4.6), we get thatifor 0,

k k
CL<CI+M Y e(Phg " +>"Cl1—qq (4.9)
=

1=l

Note thatC, = C}; adding this to the sum @.9) over allthe total expected connection cost is

k k i k i
<> a+M> P)Y 1S i - Y gt (4.10)
1=0 i=1 =1 i=1 =1
k q k 1
<’ n_1 "1 —q) ——
C+M;c(g)1_q+;qu q)l_q
q
< ! ! -
_20+71_q5 (4.11)

However,q < 1/, and hence the second term is at mg&e® — 1). Now using Lemma 4]2 to replac# by
C* + S* andS’ by 25*, we see that the expected connection cost of our algorithm can be bounded by:

2e”

eOZ_

C<20*+ oS (4.12)

Adding with {4.4), the total expected cost is at mOst 5 < 2(1 + )C* + (2+ 27) - §*. Since the optimal

ex

costisZ* = C* + S*, we choosex =~ 1.35 to minimize the approximation ratio, and get the following result.

Theorem 4.3 The algorithmSimpleCFL is a 5 = 4.7-approximation algorithm foCFL.

If we were to use an.55-approximation for Steiner treé [14] to buy edges in Sfep (S2), we would be getting
an improved approximation ratio df2 for CFL, while the analysis of [5] gets a 3.55 approximation. However,

we need to use the 2-approximation algorithm of the MST, as there is a cross-monotone cost-sharing function
Emst for the MST problem.

4.2 A More Refined Assignment

We now present an improvet6-approximation. The idea behind the improvement is a natural one: instead
of always going clockwise to look for the closest clusigrwith a facility in it, we can look both clockwise

and counter-clockwise for the closest cluster with a facility, breaking ties randomly. As one might expect, we
show that this decreases the cost (§ee [4.17)), since it is no longer the case that a cluster with a facility in its
neighboring counter-clockwise cluster goes several hops in the clockwise direction to find a (farther) facility.

More formally, let us modify the experiment of Sectjon|4.1 to assign the demands to facilifieasrfollows.
Choose just one global “tie-breaker” bit TB at random. WH&mM F = () and we go outsidé;, instead of
always going around the cycle in a clockwise order, consider the smaliest such that eitheD;; or D;_;
has an non-empty intersection witf) let D be the corresponding set wifh, N F* # (. If both D;,, andD,_,
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intersectF', then we break the tie randomly using TB: if EB0, then we choos®;_; (i.e., setD, to beD;_;);
else if TB = 1, we setD, to be D;,;. The same bit TB is used by all groups. Note thatr € Dy, and so
t < [k/2]. We now send all the demands i to the facility in D, closest tofs.

Let the random variableX; and A; be as in Section 4.1. We will not go over the analysis of this experiment in

the same level of detail, but let us point out some of the salient ideas: for some facilifytinbe used by> «

groups of larger index (say), we must have: Xi) = 0, and (ii) either all2x groupsD;1, ..., D;2,; do not
intersectF’, or only the last one does and we chodgewith probability half. Like in [4.1D), the expected total

cost will again be a non-negative linear combination of the va{u&$ and{c(P/)}. Using the idea outlined in

this paragraph, as well as expressions analogous fo (4.8) afnd (4.9) in the previous analysis, we can verify that
the coefficient ofC (in this linear combination) will be at most

L+ (1—q)+2(1—0q) ) (@ + qQ“ 'M-q)<1+(1-g+g=2 (4.13)

rk>1

Analyzing the coefficient of(P/) needs more work. Assume without loss of generality thd2 | < i < k; the
complementary case is similar. Given a $etf indices, letU (7) denote the event thaf; = 1 for all j € T’
informally, the ‘U” denotes “unmarked”. We consider when the demands in gifoupill use the pathP/; we
will do so by considering the casés< i andl > i.

Case I:1 < i. Let A be the event that the demands in grddpuse the pathP;. For A; to hold, the following
eventB; should also happe8;, = U({j : |j — | <i—1}). So

Pr[Al]—Pr[Bl]xPr[Al‘Bl] —q(l D+ XPI"[A[‘B[].

Now, if k41 —1 > [, itis easy to see by symmetry (since TB is equally likely tdloe 1) thatPr [ 4; | B;] <
1/2; thus we have '
if k+1—1>1thenPr[A;] < qg?(~0+1/2, (4.14)

Next, supposé + 1 < 2[. Define an event;: U{j: i+1—-1<|j—1 <k-—1}). We have
Pr [ A | (B;AC)] =1/2, by symmetry. Also, a moments thought reveals that

PrA | (BAG)| =1-(1-q)/2=(1+0q)/2
Thus we have

Pri4] = *=0+ . ( [cl!Bl] (1/2)+Pr [C | Bi] - (1+9)/2)

QD (1= g?®) - (1/2) + 02D - (14 g)/2)
q2(i—l)+1 . (1/2) . (1 + qQ(k—i)+1)‘

Comparing with|(4.14), we see thatlif 4, thenPr [ A;] < q2(—O+1.(1/2) - (1 + g2*—)+1), Summing over
all I < i, we get that the total contribution of dl};, I < 4, to the coefficient of(P/) in the expected connection

cost, is at most q

e ot (14 =D+, (4.15)

We now move to the next case.

Casell:i <l <k.LetA; beasinCasel. Nowdefit =U({j:|j—1 <l—(i+1)}). Once againj3; is a
necessary condition fod;. Also note thaPr [B)] = 0if k+1—1 <1 — (i+ 1); thus, we can restrict attention

11



to thosel > i such that < Iy = [(k+ i+ 1)/2]. Now, sincel > i, it is easy to see thatr [ A4, | B]] < 1/2;
also,Pr [B]] = q*!=*=D+1. Summing over all € [i + 1,1o], we get a total contribution of

lo—t

(1/2)- Y g% " < qug) (1 —ghih. (4.16)
j=1

Adding with {4.16), the coefficient af( P/) in the expected connection cost is seen to be at most

q (24 L ghitly < Q _ % _

e
21— q?) ST @Si—em a7

So, the total expected connection cost is at Rest+ % -5, Using Lemm2 to replage’ by C* + S*
andS’ by 25*, the expected connection cost is at most

2(620‘ +e*—1)

5"

20* +

Adding with (4.4), the total expected cost is at most

2(2e%* 4 > — 2)

2(1 *
(1+a)C" + a1

. S*. (4.17)

Since the optimal cost i8* = C* + S*, we choosex = 1.296 to minimize the approximation ratio to get the
following result.

Theorem 4.4 The algorithmSimpleCFL is a 5 = 4.6-approximation algorithm foCFL.

5 Analysis of the Limited-Independence Marking

We start with some useful derandomization tools in Sedtioh 5.1, and then analyze the limited-independence
marking in Sectiof 5]2.

5.1 Derandomization tools

We will use the following theorem, which appears as Lemma 2.3in [2]:

Theorem 5.1 ([2]) Lett > 4 be an even integer. SuppaoXe, . .., X, aret-wise independent random variables
taking values if0, 1]. LetX = X; +--- + X,, andp = E [X], and letA > 0. Then
t,LL + t2 t/2
N S

whereC; = 2v/xt - ¢!/ . (5/(2¢))/2 < 8.
See|[15] for tail-bounds similar to the above.

We next present some notation.
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e For each grou;, letZ; 1, Z; 9, ..., Z; pr be the respective indicator random variables for the demands
in D; getting marked by our algorithm, when these demands are considenemdecreasing order of
distance fromy;.

e Let A be any set of ordered paifsj, k)}. Then,N(A) is the indicator random variable for the event
“forall (j, k) € A, Zj = 0". Also, T(A) denotesy; ;yc 4 Zj k- (*N” stands for “none”, and ™ for
“total”.)

We now give two types of upper-bounds BAN (A4)]:

Lemma 5.2 Lett; andt, be anyevenpositive integers such thét, to < ¢ (recall that the marking is done in a
t-wise independent manner). The following hold for any4ef ordered pairs{(j, k) }.

(i) LetIE(s, A) be the random variable denoting the inclusion-exclusion expansidf(df) truncated at the
sth level; i.e.,

s

IE(s,A) =) (-1)" > I %«

r=0 AICA: |Al|=r (j,k)EA!

Then, the inequalityV (A) < I E(t1, A) holds always; also,

E[IE(t, A)] < (1 — a/M)Al 4+ <e;‘4|;1|> - (5.18)

(i) Let NCM(t2, A) denote the “normalized central mome ’(A)_O‘M'/fw)tQ. Then, the inequalitiv(A) <
(afA]/M)*2
NCM/(tq2, A) holds always; also,

if 4 <ty < a|A|/M, thenE [NCM (L3, A)] < 8- (2t2)2/2 - (a] A|/M)72/2, (5.19)

Proof: The upper bounds that are claimed to hold always\vda!) in (i) and (ii), easily follow from the fact
thatt; andt, are even. Bound (5.18) follows from the statement and proof of Theoreni 2 in [3]. Boun{l (5.19)
follows from Theoren 5]1, using the fact that thg“+ ¢>” term in Theoren 5]1 is at mo&t . if ¢ < . n

5.2 The analysis

Let € be an arbitrary positive constant lying (0, 1). We now prove that if the demands are marked-mise
independent fashion whete= a log(1/¢) for a suitably large constant then the expected approximation ratio

is at most(1 + €) times what it is, in our analysis of independent marking in Se¢tionh 4.2. The random bit (tie-
breaker) TB introduced in Sectipn #.2 is still chosen independently of the marking; this only multiplies the size
of our small sample space by a factorof

By Lemma[4.1(a), we get that for the Steiner cost, we can continue to use the pound (4.4) evenwinder
independent marking; it is the connection cost that needs work. We now show that the expected total connection
cost under the algorithm of Sectipn 4.1 changes very little under limited-independence marking; we then briefly
sketch the small modifications required for the algorithm of Se¢tign 4.2.

Recall the algorithm of Sectidn 4.1. The total connection cost is a random variable that is the sum of three
quantities: (i) the deterministic valle), C}, which represents the cost of all demands in eBglfirst getting
routed tof;; (i) the value that corresponds to unsuccessfully traveling through gomend (iii) the total cost
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paid in traveling fromf; to the closest marked demandiii, onceD; is identified as the closest cluster. We will
only show that the expected total cost of (iii) gets multiplied by at nfbst ¢) due to ourt = alog(1/¢)-wise
independent marking; the argument for the term (ii) is analogous, and, in fact, simpler. Specifically, we will
show the following. Let be the index of some arbitrary but fixde,. We show that the expected value of the
random variable

=Y MX;Xjp1- X1 (1- Xi)A;
j=1
gets multiplied by at mosgtl + ¢). (Sincei is fixed, we have not subscriptédas;; this remark also holds for
some other definitions below.)

We now show how to use Lemrha b.2 to upper-botirid]. Letay, as, . .., ans be the distances of the demands
in D; from f;, written innondecreasingrder. Then, expanding thé1'— X;) A;” part of ¢, we see that

u—1

i M
6= MX;Xj-Xi- [ auZi- [[(1=Zi0)).
u=1

j=1 /=1

Fix u arbitrarily, and letz, = Z;, - [[v=] (1 — Zi)] - 23:1 X; X1+ X;_1. We aim to show theE [z,] is
multiplied by at most1 + €) in our¢-wise independent marking, as compared to the fully-independent marking.
Forj=0,1,...,i—1,defined; = {(r,s): (1 —j) <r<(i—1),1<s< M}. Thuswe get
i—1
2u=Ziu N{(i,0): 1<0<u—1})- ) N(4).
=0

Now leta; be a sufficiently large constant. Defingto be the smallest even integer that is at I@adbg(1/¢),

t1 to be the smallest even integer that is at |@ast log(1/¢), andt, to be the largest even integer that is at most
ay log(1/€e)/4. There are two cases; log(1/¢) < i — 1, oras log(1/e) > i — 1; we start with the harder first
case.

Case l:a; log(1/e) < i — 1. Break up the expression fer, into two sums, one for “smallj and the other for

“larger” j:

Ziw N{(i,0): 1<0<u—1})- Y NA)+Ziw N{(6,0): 1<<u—1})- > N(4).
j<ailog(1/e) j>a1log(1/e)

Thus, by Lemm& 5]2;, is always bounded by the sum of the following two random variables:

Ziw-TE(ag, {(i,0): 1< <u—1}) - > IE(t, A), and (5.20)
j<ailog(1l/e)
Ziw-TE(ag, {(i,0) : 1<f<u—1}) - > NCM(ty, 4y). (5.21)

j>ai1log(1/e€)

If we expand the expectations of these two random variables using the linearity of expectation, we get terms
each of which is a product of some of the random varialglesimportantly, the number of factors in each such

term is at most + as + ¢ and1 + as + t5 respectively. Thus, if we choose= 1+ as + ¢ (recall thatt; > t5),

then the expectations of these two random variables become

EZiu]-E[IE(a2,{(:,0) : 1 <l <u—1})]- Z E[IE(t:,A;)] and (5.22)
0<j<ailog(1/e¢)
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E[Z.) BB, {(,0): 1<t<u—1}]- Y E[NCM(ts, Ay) (5.23)
j>aqlog(1/e)

respectively. We next usg (5]18) afnd (5.19) to bound these values; we will see that choosing the epnstant
large enough results i [z, ] being at most1 + ¢) times what it is with independent marking.

The expressior (5.22) is at most
a w1l ea(u—1)\* M i NEL L
M-((l—a/M) +(MQ) ) Y (-t eaj/n)");
0<j<ajlog(1/e¢)

i.e., at most
= (A=a/M)" Tt (eajfaz)) - Y (L= a/M)M + (eaailog(1/e)/11)") .
0<j<ailog(1/e¢)

Similarly, the expressioi (5.P3) is at most

(L= a/M)" + (eafag)™) - D> (8- (2ta/(af))/).

j>a1 log(1/e)

SE

Thus, if the demands are markedtiwise independent fashion, thér{z, ] is at most(a/M) - (1 —a/M)*~1 +
(ear/az)??) times

Yo (A—a/M)™ +(caarlog(l/e)/t)") + Y (8- (2t2/(cf))/?).
0<j<ar log(1/¢) j>arlog(1/¢)

On the other hand, under fully-independent marking,

i—1
Elz] = % (1 —a/M) ST (1 - /MM (5.24)
=0

Recalling the definitions afy, a2, t1 andts, itis easy to verify that if; is chosen as a sufficiently large constant,
then the former value is at mo&t + ¢) times the latter. This completes the analysis of Case |.

Case Il: a; log(1/e) > i — 1. We follow the above analysis; we need not consider the case of lardéow,
under limited-independence marking, the boundidn,| is simpler: it is at most

(/M) - (1= a/M)" " + (ea/az)®)- > ((1—a/M)M + (eaarlog(1/e)/t1)™).
0<j<i-1

Once again, this is at mot + ¢) times the r.h.s. of (5.24).

Modifications required for the algorithm of Section [4.3. We now sketch the few modifications required.
Conditional on'B = 1, the demands i; will get routed to:

e D, iff X; =0;

e D, for somet > 0, iff X;(1 — X;4) H;;ll(XHle_j) holds; and to
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e D;_, for somet > 0, iff Xle+t(1 — let) Hz;ll (Xl+lefj) holds.

Similar remarks hold conditional diiB = 0. The expected connection costli&2 times the cost conditional
onTB = 1, plus1/2 times the cost conditional o B = 0. Consider the case wheféB = 1. The total
connection cost can then be verified to still be a non-negative linear combination of terms of the form: “a
product of someX’s, multiplied by at most one term of the for(d — X;)A;”. Furthermore, it remains true

of the total connection cost that the expected values of: (a) the coefficient of Bfly and (b) the total term
multiplying any term of the form(1 — X;)A;, are both©(M). Using these observations, the above type of
analysis can be seen to hold for the algorithm of Se¢tion 4.2 also.

6 Further Extensions

6.1 Handling Facility Costs

For the model of connected facility location where there are facility opening costs as well, we can run a slight
variant of the algorithm above:

F1. Mark each demang € D independently with probability /M, and letD’ be the set of marked demands.

F2. Compute apr-approximate metric facility location solution with the original distances and facility open-
ing costs, but where the demand value for grey D’ is M, and is0 for j ¢ D'. Let I be the set of open
facilities returned by this algorithm.

F3. Construct @gp-approximate Steiner tréEon F U {r}.

F4. Assign each demande D to its closest open facility(j) in F'.

The cost analysis is very similar to that of Theofgm 2, and we only sketch the important ideas hére.d’et

and.S* denote the facility opening costs, connection costs and Steiner costs of the optimal solution. Note that
opening the same set of facilities@®T is also a feasible solution to the facility location instance in (F2)
with expected costO* + C*), and hence we pay

Ay = ppr (07 4 C) (6.25)

in expectation, wherer;, is the approximation guarantee of the algorithm used in (F2). Now a proof
along the lines of Lemmla 4.1 implies that there is a Steiner tree connecting these facilties with expected cost
(S* 4+ C* + A1), and hence the tree we construct in F3 costs atmgesimes that, which is

Az = psr(S* + C* + prr(C* + OY)). (6.26)

Finally, we have to bound the connection costs of (F4): one can use an analysis very similar t¢p Sgction 4.2,
but in addition to the expected costaf™ + 62_—613* paid there, one also has to pay an additional cost to go from
the marked demands iP’ to the facilties inF": this costsA; in expectation. Hence the expected assignment

cost in Step[(F4) is
Az =20 + 2.5 + (C* + O")prr. (6.27)
Adding up the three expressions above, we get a bound on the expected cost of at most

prL(2+ psT)O" + (L4 prr)(2 + psT)C* + (psT + 2¢/(e — 1)) 5™ (6.28)
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Now using the best known approximation factorspef, = 1.52 [12] and psr = 1.55 [14], we get a8.94-
approximate algorithm for the case of non-zero cost for opening facilities. (A better performance can be obtained
by choosingx carefully.)

To get cross-monotonic cost shares, we can instead ugg-the- 3 approximate Facility Location algorithm
of Pal and Tardod [13] and its accompanying cross-monotone cost sharing s¢hgntikee MST heuristic with
psT = 2 for Steiner tree (and use its cross-monotone cost-sharing schgmeas well). This gives us an
approximation factor off = 16; now setting the cost-share of each demgnal be

&(D.j) = ; E[M éxrsr (D' U, ) + M épp (D', )+ £G, D' Ur)]. (6.29)

can give us g-approximate cross-monotone cost sharing scheméRbwith facility costs as well.

6.2 Handing Non-Uniform Demands

The discussion in the previous sections assumed that each of the demanfishad a weightl; = 1; i.e., it

wanted to send just one unit of demand to the root. Moreover, we assumed that there was only one player at each
vertex inD. Let us briefly indicate how these assumptions can be discharged; in this section, we do not attempt
to optimize the constants, sacrificing the performance guarantees in favor of sketching the main ideas.

Let us note that handling the assumption of a single player at every vertex is simple: if thene,vpdagers at
vertexv, we createn,, new vertices, attach each of themitaising zero-cost edges, and place a unigue player
from v on each of the new vertices.

To handle arbitrary weightg; for demandj, we first take care of the following two special cases separately,
which ensure that the values @f all lie within a multiplicative factor of2? of each other.

Heavy Vertices If the weightd; of vertex; is at least), we candeterministically markhe vertexj in Sted SIL.
It can be shown thaPT would have connected these vertices up in its Steiner tree as well, and hence
this causes no loss in quality.

Light Vertices If the weightd; of nodej is at mostM/ /n?, then we do not markat all in Ste: note that the
total weight ", d; of such nodes is at most- M /n? = M/n. The expected cost of the Steiner tree
can only go down due to this change, and a slight variant on the proof of Thgorem 4.4 will show that the
expected assignment cost only increases by a factdr-6fl /n)—essentially, throwing back the demand
of M/n in any subtree can only cause an increase of a fact¢t ef 1/n) in the expected assignment
cost.

Having performed these operations, we can now rescale and assume that the ayeligits [n, n®], and that

the parameted/ is greater tham®. We round the weightd; down to the closest integét; |: this decreases

each weight by at most @ + 1/n) factor, and hence alters only the lower order terms of our performance
guarantee. And finally, we replace the playey &ty | d; | players: a long but straight-forward reworking of the
proofs in Sectiof 4 shows that the algorithm is a constant-factor approximation even with general weights, and
gives us the desired cost-shares.
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