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Abstract

We present approximation algorithms for the unsplittable flow problem (UFP) in undirected
graphs. As is standard in this line of research, we assume that the maximum demand is at most
the minimum capacity. We focus on the non-uniform capacity case in which the edge capacities
can vary arbitrarily over the graph. Our results are:

• We obtain an O(∆α−1 log2 n) approximation ratio for UFP, where n is the number of
vertices, ∆ the maximum degree, and α the expansion of the graph. Furthermore, if
we specialize to the case where all edges have the same capacity, our algorithm gives an
O(∆α−1 log n) approximation.

• For certain strong constant-degree expanders considered by Frieze [17] we obtain anO(
√

log n)
approximation for the uniform capacity case.

• For UFP on the line and the ring, we give the first constant-factor approximation algo-
rithms.

All of the above results improve if the maximum demand is bounded away from the minimum
capacity. The above results either improve upon, or are incomparable to previously known
results for these problems. The main technique used for these results is randomized rounding
followed by greedy alteration, and is inspired by the use of this idea in recent work.
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1 Introduction

In the unsplittable flow problem (UFP), we are given an n-vertex graph G = (V,E) with edge
capacities {ce}, and a set of k vertex pairs (terminals) T = {(si, ti) : i = 1, . . . , k}; each pair (si, ti)
in T has a demand ρi and a weight (or profit) wi. The goal is to find the maximum weight subset
of pairs from T , along with a path for each chosen pair, so that the entire demand for each such
pair can be routed on its path while respecting the capacity constraints.

Let us note at the outset that even very special cases of UFP are NP-hard: for instance, when
G is just a single edge, UFP specializes to the Knapsack problem. When each ce = 1 and each
ρi = wi = 1, UFP specializes to the well-known maximum edge-disjoint paths problem (EDP), the
goal being simply to find the largest number of pairs from T which can be simultaneously connected
by edge-disjoint paths in G. EDP is NP-hard even when restricted to planar graphs.

A substantial amount of research has focused on obtaining good approximation algorithms for both
EDP and UFP due to their importance in network routing and design. For EDP, the best known
approximation ratio on general graphs is O(min(n2/3,

√
m)) [14], where n and m are the number

of vertices and edges in the graph, respectively. In directed graphs the best known approximation
ratio is O(min(n2/3 log1/3 n,

√
m)) [35] and it is NP-hard to approximate it to a ratio better than

Ω(m1/2−ε) [20]. However, in undirected graphs, which will be the focus of this paper, EDP is only
known to be hard to approximate to within constant factors [19]. Very recently, a hardness factor
of Ω(log1/2−ε n) has been shown [3, 4]. Improved approximation ratios for EDP have been obtained
for special classes of graphs like trees, mesh-like planar graphs, and graphs with high expansion;
see, e.g., [21, 25] for references.

Let ρmax = maxi ρi be the maximum demand among the pairs and cmin = mine ce be the minimum
capacity of an edge. In this paper, we will only consider instances with ρmax ≤ cmin; this is a
standard assumption in the literature and is sometimes referred to as the no-bottleneck assumption.
In its absence, an UFP instance on a graph G = (V,E) can be embedded into any other graph
G′ = (V,E′) with E ⊆ E′, thus making it difficult to study the role of graph structure in the
approximability of the problem. Moreover, the restriction is a reasonable one in many applications:
e.g., it still includes EDP as a special case. In the rest of the paper, we will assume without loss of
generality that cmin = 1 and that 0 < ρi ≤ 1 for all i.

A special case of UFP is the uniform capacity unsplittable flow problem (UCUFP) in which all
edges have the same capacity. UCUFP has received more attention and its approximability is often
related to the corresponding EDP problem; much less is known about UFP where edges have varying
capacities.

1.1 Our Results

In this paper we address UFP with non-uniform edge capacities on undirected graphs. Our results
will be quantified in terms of the so-called flow number1 FG of the underlying graph G; this
parameter was defined by Kolman and Scheideler [25],2 who related FG to the expansion of the

1We formally define the flow number in Section 2.2, but let us point out that FG, as used in this paper, depends
only on the structure of the underlying graph G and not on the edge capacities.

2Kolman and Scheideler actually gave a definition for flow number that could take non-uniform edge capacities
into account as well. In this paper flow number will be for the underlying graph, independent of capacities.
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graph, and showed that FG = O(∆α−1 log n), where α is the edge expansion and ∆ is the maximum
degree of the graph G. Let us now present our results for general graphs; while comparisons
to known results are given in Section 1.3, let us mention that our results improve upon, or are
incomparable to previous results.

• An O(FG log n) = O(∆α−1 log2 n) approximation for UFP.

• An O(FG) = O(∆α−1 log n) approximation algorithm for UCUFP.

• When the maximum demand is much smaller than the smallest capacity, the above bounds
can be improved. In particular, if ρmax ≤ cmin/B for some integer B, the approximation
guarantees improve to O((FG log n)1/B) = O((∆α−1 log2 n)1/B) for UFP, and O(F 1/B

G ) =
O((∆α−1 log n)1/B) for UCUFP.

In fact, we have a continuum of approximation ratios between UFP and UCUFP of the form O(FG ·
min(logn, cmax)), where cmax is the maximum capacity of an edge (assuming cmin = 1). The above
results are typically most interesting when G is a constant-degree expander, with ∆α−1 = O(1);
however, as noted in [25], there are other interesting cases such butterflies and hypercubes where
FG can be shown to be a poly-logarithmic factor better than the upper bound implied by FG =
O(∆α−1 log n).

Additionally, we obtain even better approximation ratios on special classes of graphs by further
exploiting some of the techniques used in proving the above. In particular, we obtain:

• An O(
√

log n) approximation for UCUFP on “sufficiently strong” constant degree expanders
as defined by Frieze [17] (see Definition 2.2 and Theorem 4.1).

• An O(1) approximation for UFP on line and ring networks (see Theorems 5.5 and 5.8).

1.2 Techniques

Previous approaches to approximating EDP and UCUFP on graphs with high expansion relied
on proving the existence of near-optimal solutions to the multicommodity flow relaxation of the
problem that use short flow paths (i.e., those that are only poly-logarithmic in length). Kolman
and Scheideler [25] generalize this to UFP through their notion of flow number F . However, their
upper bound on the length of the flow paths depends on the edge-capacities in G, which could
be quite large in some cases, giving a weaker bound. We take a different approach, and show the
existence of flow paths using only a few (poly-logarithmic number of) edges of low capacity, even
though the overall length of the flow path might be large. Since high capacity edges (of capacity
Ω(log n)) behave fairly well under randomized rounding, this leaves us to worry only about the
behavior of the low capacity edges under randomized rounding.

Our second idea, which subsequently proves useful for the case of the line and the ring as well, is
to perform the randomized rounding step with more care. Näıve rounding schemes scale down the
fractional solution before randomized rounding, with the scaling factor chosen to be large enough
to argue that none of the constraints are violated. Typically, the events corresponding to the
violation of these constraints are not independent and the union bound is too weak to estimate
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the failure probability of the randomized rounding. Hence, probabilistic tools like the Lovász Local
Lemma (as in [33, 25]) or a correlation inequality like the FKG inequality (as in [33]) are used
to overcome these problems. Not surprisingly, these approaches are often technically involved,
adding substantial complexity to both the algorithm and the analysis. We take a different route,
and use the method of alterations [2] which is applicable to monotone problems. Applications of
this technique to approximation algorithms were recently given by Srinivasan [34], who applied
it to general packing and covering problems, and by Calinescu et al. [13] who applied it to a
specific packing problem. In this approach, the first step is the same as above: scaling followed by
randomized rounding. However, instead of desiring feasibility (i.e., that all constraints be satisfied
by the randomized rounding), one looks at the random solution and alters it if it is not feasible: in
our case, this is done by changing certain ‘1’s in the random solution to ‘0’s to ensure feasibility.
Since this greedy (problem-dependent) alteration step ensures feasibility by fiat, the burden shifts
to analyzing the expected loss in quality during the alteration step. This turns out to be simple
and effective for various problems, and we believe that this idea will find more applications in the
future.

1.3 Relationship to Previous Work

In this section, we will discuss previous work on UFP, UCUFP and EDP problems, and also indicate
how our results mentioned above relate to previously known results.

Culminating a long line of work, Frieze [17] recently showed that for regular expanders with suf-
ficiently strong expansion and sufficiently large (but constant) degree, there exists a constant c
such that any cn/ log n vertex pairs can be connected via edge-disjoint paths provided no vertex
appears in more than a constant (depending on, and less than the degree) number of pairs. This
result is optimal to within constant factors, and has also been extended to expander digraphs [11].
An immediate consequence of this is an O(log n) approximation for EDP on such expanders. In
1996, Kleinberg and Rubinfeld [22] had used an earlier result of Broder, Frieze, and Upfal [12] to
show that a deterministic online algorithm, the so-called bounded greedy algorithm (BGA), gave
an O(log n log log n) approximation guarantee for EDP. (In fact, Frieze’s result mentioned above
implies an O(log n) bound for BGA.) In the same paper, Kleinberg and Rubinfeld also showed the
existence of a near-optimal fractional solution to any multicommodity flow instance on an expander
that used only short paths of length O(log3 n). This latter result formed the basis of an O(log3 n)
approximation for UCUFP on expanders by Srinivasan [33]. While the above results do not explic-
itly specify the dependence of the approximation ratio on ∆ and α, Kolman and Scheideler [25]
suggest that the actual approximation ratio is Ω(∆2α−2 log3 n).

In the context of UCUFP, the results of Kleinberg and Rubinfeld on short flow paths were improved
by Kolman and Scheideler [24, 25]. Their results were stated in terms of a parameter FG,c of a
graph G, which we shall call the capacitated flow number of G; here c refers to the capacities of the
edges. They proved the existence of near-optimal solutions to multicommodity flow instances that
use paths of length O(FG,c). (The earlier paper [24] gave its results in terms of a parameter called
the routing number R, but these results were superseded by those given in [25] in terms of FG,c.)
Moreover, in addition to improving the approximation ratio for UCUFP, the results of Kolman and
Scheideler offered other advantages: the dependence on the expansion α and the maximum degree
∆ were improved and made explicit, the bound on the flow path lengths was strengthened, and the
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proof, based on the work of Leighton and Rao [26], was much simpler and direct.

For our results, we will use a quantity FG, which we shall call the flow number of G; in contrast to
FG,c, this quantity depends only on the structure of the graph G and is independent of the edge
capacities. Also, while the two parameters FG and FG,c have similar definitions, their values turn
out to be incomparable in general. (A special case when FG = FG,c is when all edges have unit
capacities—i.e., when we have an instance of UCUFP.)

We now relate our results to the previous known results for UFP and UCUFP:

• Our approximation guarantee for UFP is O(FG log n) = O(∆α−1 log2 n), which is independent
of the edge capacities in the network; this is incomparable to the best known approximation
ratio of O(FG,c) given in [25, Theorem 4.1].

• O(FG) = O(∆α−1 log n) approximation ratio for UCUFP, which matches the bound of O(FG,c)
given by [25, Theorem 4.1]; however, we achieve this approximation via a different algorithm.

• For the case where the maximum demand is a factor 1/B smaller than the smallest capacity,
our bounds are O((FG log n)1/B) and O(F 1/B

G ) for UFP and UCUFP respectively. When
compared with the bound of O(B(F 1/B

G,c − 1)) given in [25, Theorem 4.5], our UFP bound is
incomparable while the UCUFP bound is better by a factor of B.

• The O(
√

log n) approximation for UCUFP on “sufficiently strong” constant degree expanders
is the first sub-logarithmic approximation for constant degree expanders that we are aware
of, and improves on the current best approximation ratio of O(log n) [17, 25].

UFP on the line: The EDP problem on the line corresponds to the maximum independent set
problem on interval graphs, which has a polynomial time algorithm. However, UCUFP on the
line generalizes Knapsack and hence is NP-hard; in fact, it is equivalent to the task assignment
problem on a single machine with fixed time windows. Generalizations of the task assignment
problem to multiple machines and time windows have been studied in the recent past [7, 29], and
most of these problems have O(1)-approximation algorithms as well as O(1) integrality gaps.

This is not the case with UFP on the line, for which no constant-factor approximation was known be-
fore this work. In fact, if the demands are not constrained to be less than the minimum capacity, the
integrality gap of the natural linear programming relaxation for UFP could be Ω(min(log ρmax, n))
(see Theorem 5.7). Furthermore, two of the standard techniques used to develop O(1) approxima-
tions for the task assignment problem, i.e., the local-ratio method [8, 7] and rounding fractional
solutions [29], seem not to extend to the case of UFP. In this work, we build upon ideas of Calinescu
et al. [13], and combine dynamic programming and randomized rounding with alterations to give
the first constant-factor approximation for UFP on the line when ρmax ≤ cmin. For the general case
(without the no-bottleneck assumption), we give an algorithm with approximation ratio Ω(log ρmax)
which matches the integrality gap in Theorem 5.7. We extend the results on the line to the ring
via a simple reduction.
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2 Preliminaries

2.1 The Natural LP Relaxation

UFP has a natural integer programming formulation based on multicommodity flow. Let Pi denote
the set of all paths in G from ui to vi. The integer program (IP) is:

max
∑k

i=1wixi , s.t.∑
π∈Pi fπ = xi i = 1, . . . , k∑k

i=1

∑
π∈Pi :π3e ρifπ ≤ ce e ∈ E(G)

xi ∈ {0, 1} i = 1, . . . , k

fπ ∈ {0, 1} π ∈ ∪ki=1Pi .

The linear programming (LP) relaxation, which we shall call lpmain, is obtained by allowing xi and
fπ to lie in the real interval [0, 1]. Let (x1, . . . , xk, fπ1 , fπ2 , . . . ) be a fractional solution to lpmain.
We shall refer to

∑k
i=1wixi as the profit or the value of the solution. We say that the solution

uses a flow path π if fπ > 0. Though the LP, as given here, is path-based and has exponential
size, an optimal solution to lpmain can be obtained in polynomial time. This can be done by
first solving a different, polynomial sized linear program which has flow variables for each edge and
then performing a path-decomposition on the solution of the linear program. We refer the reader
to [1] for more details. An alternative method is to solve the problem using the ellipsoid method.
Note that the formulation above has an exponential number of variables but a polynomial number
of constraints. It can be checked that the separation oracle for the dual of lpmain is a shortest
path computation, which can be implemented in polynomial time. By standard polyhedral theory,
an optimal solution to a linear program can be computed if its dual can be solved in polynomial
time [32].

In some situations, we need to solve a variant of lpmain where we are given an integer ` in [1, n]
and require that for each 1 ≤ i ≤ k, Pi is the set of ui-vi paths with at most ` edges in them. This
restricts the flow to be only on paths with at most ` edges. In this case, the separation oracle for
the dual of the LP is a constrained shortest path problem: given dual values ye ≥ 0 for each e, find
the shortest y-length path among all paths between ui and vi containing at most ` edges. Since
this problem can be solved in polynomial time using dynamic programming [1], we can solve the
length-constrained version of lpmain in polynomial time.

Finally, fast combinatorial methods that compute (1+ε)-approximate solutions for lpmain are also
known [30, 18, 16]; these methods can also be applied to the variant discussed above that requires
the flow to be only on paths with at most ` edges.

2.2 Expansion, Strong Expansion, and Flow Number

We now state the several notions of expansion and connectivity used in this paper. The first
definition is standard, while the second one is motivated by the work of Frieze [17].
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Definition 2.1 (Expansion) Let G be an n-vertex graph. For U ⊆ V (G), let ∂U denote the set
of edges of G with exactly one end point in U . The graph G is said to have expansion α if for all
U ⊆ V (G) we have

|U | ≤ n/2 ⇒ |∂U | ≥ α|U | ,

and if α is the largest real with this property.

Definition 2.2 (Strong Expansion) A ∆-regular n-vertex graph G is said to be an (α, β, γ)-
expander, for parameters α ∈ (0, 1− β), β ∈ (0, 1) and γ ∈ (0, 1

2) if, for any subset U ⊆ V (G), we
have

|U | ≤ γn ⇒ |∂U | ≥ (1− β)∆|U | and γn < |U | ≤ n/2 ⇒ |∂U | ≥ α∆|U | .

We say that G is a strong expander if it is an (α, β, γ)-expander for some constants α, β, γ with β
sufficiently small.

Basically, this definition implies that the graph, besides having expansion α as in Definition 2.1,
has even better expansion (1− β) on “small” sets of vertices. Note that the condition of being an
(α, β, γ)-expander gets stronger as β decreases. As noted by Frieze [17], random regular graphs
and Ramanujan graphs [27] are examples of strong expanders.

Finally, we define the flow number FG of a graph G = (V,E), a concept first used by Kolman and
Scheideler [25]. Let deg(x) denote the degree of vertex x ∈ V . Consider the following concurrent
multicommodity flow instance defined on G: let all edges in G have unit capacity, and let the
demand between any pair of vertices u, v ∈ V is deg(u) deg(v)/(2|E|) for u 6= v.

For any solution S to this instance, define the flow value to be the maximum λ such that S routes
at least a λ fraction of every demand in the instance. Let the dilation D(S) be the length of the
longest flow path in S, and the congestion C(S) be the inverse of the flow value; in other words,
we have to scale the edge capacities by C(S) to ensure that all demands are satisfied by this flow
S. The flow number FG is defined as the minimum, over all possible solutions S, of the quantity
max{C(S), D(S)}.
An important result proved in [25, Theorem 2.4] is the following: if G has edge-expansion α, and
maximum degree ∆, then

Ω(α−1) ≤ FG ≤ O(∆α−1 log n) . (2.1)

For their results on UFP in [25], Kolman and Scheideler extended the definition of the flow number
to handle non-uniform capacities. This was done essentially by replacing each edge by dcee parallel
copies, and letting the capacitated flow number FG,c be the flow-number of the resulting graph3.

It is worth noting that the quantities FG,c and FG are incomparable. Indeed, consider the line
graph on n nodes, where all edges except the middle edge in the line have capacity c, and the
middle edge has capacity 1. It can be verified that FG is Θ(n), but FG,c = Θ(c · n)� FG. On the
other hand, consider the balanced binary tree on n nodes, where all edges at level i have capacity
n
2i

; in this case FG = Θ(n), while FG,c = Θ(logn)� FG.

Finally, we shall often make use of the following Chernoff-Hoeffding bound (see [28]).
3While the paper [25] refers to this quantity merely as F , we will call it FG,c to emphasize the dependence on the

capacities ce as well as the graph G.
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Theorem 2.3 (Chernoff-Hoeffding) Let X1, . . . , Xn be independent random variables such that
Xi ∈ [0, 1] for all i. Consider X =

∑n
i=1Xi. Let µ denote E[X]. For any δ > 0,

Pr[X ≥ (1 + δ) µ] <
(

eδ

(1 + δ)(1+δ)

)µ
.

3 Approximation Bounds for UFP Based on Expansion

As indicated in Section 1.2, our approach will be to show that the flows in any fractional solution
to lpmain can be rerouted to yield a new fractional solution in which the flow paths use few edges
of small capacity, where “few” is quantified using the flow number FG; we will call such a solution
favorable. While such a rerouting may reduce the profit of the resulting solution, we prove that this
loss can be made small. Next, we will show that any favorable fractional solution can be rounded
efficiently to an integral solution without much reduction in the profit.

3.1 Rerouting Using Short Paths

The idea of rerouting to use short flow paths is not new, having been first given by Kleinberg and
Rubinfeld [22], and subsequently widely used. Our contribution is to redefine the notion of “short”:
we restrict our attention only to edges of low capacity, requiring our paths to have few edges of
small capacity. Note that this rerouting procedure need not be algorithmically efficient: we merely
want to establish the existence of a favorable fractional solution with high profit. If we know such
a solution exists, it can be obtained by solving a modified version of lpmain in which we have fπ
variables defined only for paths which use few edges of small capacity. As mentioned in Section 2.1,
such an LP can be solved exactly in polynomial time using the ellipsoid method or approximately
solved using efficient combinatorial algorithms.

Before getting into the technical details, let us recall that FG = O(∆α−1 log n), and that the
capacities and demands have been normalized so that cmin = 1 and ρmax ≤ 1.

Definition 3.1 (Favorable solution) A fractional solution to lpmain is said to be (c, d)-favorable
if every flow path used by the solution has at most d edges of capacity at most c.

Theorem 3.2 For parameters ε ∈ (0, 1] and c ≥ 1, given a fractional solution to lpmain with
profit W , there exists a (c, 4cFG/ε)-favorable fractional solution with profit at least W/(1 + ε).

The following corollary will be useful in the context of UCUFP; it is obtained by setting c = 1 in
Theorem 3.2.

Corollary 3.3 For any ε ∈ (0, 1], given a fractional solution to lpmain with profit W , there exists
a (1, 4FG/ε)-favorable fractional solution with profit at least W/(1 + ε).

The remainder of this section is devoted to the proof of Theorem 3.2; the reader more interested
in the rounding of favorable solutions should skip to Section 3.2.

Proof of Theorem 3.2: Our proof will use the concept of a balanced multicommodity flow problem
(BMFP) defined by Kolman and Scheideler [25]. For our purposes, a BMFP instance consists of
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an uncapacitated graph, a set of ordered vertex pairs {(ui, vi)}, and demands 0 ≤ ρi ≤ 1, one for
each vertex pair. The total demand entering a vertex v is defined as the sum of ρi for all i such
that vi = v; the total demand leaving a vertex is defined similarly. In a BMFP instance, the total
demand entering or leaving a vertex x is required to be equal its degree deg(x).

Suppose, as in the statement of Theorem 3.2, that we are given a fractional solution to lpmain

with profit W . Let P be the set of all flow paths used by this solution. Set L = 2cFG/ε. Let P ′
denote the subset of P consisting of paths with at least 2L edges of capacity at most c. We shall
now define an instance of BMFP on the underlying uncapacitated graph G. For each flow path
π ∈ P ′, if π ∈ Pi, let us “orient” it from si to ti, and for vertex u on π, let predπ(u) denote the
vertex that is the predecessor of u on π. We say that u is a good vertex if predπ(u) exists and
the edge (predπ(u), u) has capacity at most c. Let u1, u2, . . . , uL be the first L good vertices on π,
and let v1, v2, . . . , vL be the last L good vertices on π. We add the pairs {(uj , vj) : 1 ≤ j ≤ L},
each with demand ρifπ/c, to the BMFP instance. We do this for all the flow paths in P ′. Since
each edge e incident to a vertex x can contribute at most min{ce/c, 1} to the demand entering or
leaving x, the total demand entering or leaving any vertex is clearly at most its degree. We then
add dummy demands, if required, to satisfy the definition of a BMFP. We now need the following
proposition, which appears in [25, Claim 2.2]:

Proposition 3.4 A 1/(2FG) fraction of all the demands (i.e., each demand scaled down by 1/(2FG))
in a BMFP can be concurrently satisfied on the underlying uncapacitated graph G using a family
of flow paths of length at most 2FG each.

Let Q be a family of flow paths guaranteed by Prop. 3.4. We take the flow going over paths in P ′,
and use these paths in Q to reroute this flow. Note that a path π ∈ P ′ is associated with L paths in
Q, each of which “shortcuts” π. We send ρifπ/L flow through each of these shortcuts, adjusting the
flow on edges in π appropriately. When we do this for all paths, we obtain a candidate fractional
solution with profit W that uses paths with at most max (L+ 2FG, 2L) edges of capacity at most
c. Notice that L+2FG ≤ 2L, if ε ≤ 1. Thus, the flow paths in this candidate solution have at most
2L = 4cFG/ε edges with capacity at most c.

This candidate solution could violate some edge capacities. However, by Prop. 3.4, had we sent
ρifπ/(2cFG) flow through each shortcut for π ∈ P ′ we would have had a total flow of at most 1
on each edge. Since we are in fact sending ρifπ/L = ερifπ/(2cFG) flow over each shortcut, we get
a total flow of at most ε on each edge due to the shortcuts. Thus, after adding the flow paths in
P \ P ′, the total flow on an edge e is at most ce + ε ≤ (1 + ε)ce. Now, scaling each flow value and
each xi by 1/(1 + ε) gives us a feasible solution. The new profit after scaling is clearly W/(1 + ε),
which proves Theorem 3.2.

3.2 Rounding a Favorable Solution

Theorem 3.5 For a large enough value of d, given a (log n, d)-favorable fractional solution to
lpmain with profit W , we can efficiently compute a (random) integral solution with expected profit
W ′ such that:

1. W ′ = Ω(W/d).

8



2. If, additionally, ρmax ≤ 1/B, for integer B ≥ 2, then W ′ = Ω
(
W/d1/(B−1)

)
.

3. If, additionally, each ρi = 1/B, for integer B ≥ 1, then W ′ = Ω
(
W/d1/B

)
.

Before proving this theorem, let us derive some of the results implied by it.

Corollary 3.6 For graphs with expansion α and maximum degree ∆, the following can be derived.

(a) An O(FG log n) = O(∆α−1 log2 n) approximation for UFP.

(b) An O(FG) = O(∆α−1 log n) approximation for UCUFP.

(c) For integer B, if ρmax ≤ 1/B, then the approximation ratios improve to
O((FG log n)1/B) = O((∆α−1 log2 n)1/B) for UFP, and
O(F 1/B

G ) = O((∆α−1 log n)1/B) for UCUFP.

Proof of Corollary 3.6: For part (a), applying Theorem 3.2 with c = log n and ε = 1 gives us
a (log n, O(FG log n))-favorable fractional solution; now applying Part 1 of Theorem 3.5 completes
the proof.

For part (b), note that Corollary 3.3 gives a (1, O(FG))-favorable solution; however, since all
edges in UCUFP have unit capacity, such a solution is trivially also (log n, O(FG))-favorable. Now
applying Part 1 of Theorem 3.5 completes the proof.

In fact, the above ideas can be combined to give an O(min{log n, cmax}FG) approximation for
UFP; we can apply Theorem 3.2 with c = min{log n, cmax} and ε = 1 to get a (c,O(c FG))-
favorable solution, interpret it as an O(log n,O(c FG))-favorable solution, and finally apply Part 1
of Theorem 3.5 to get the O(c FG)-approximation.

We turn to proving part (c). Suppose we have an instance I of UFP with ρmax ≤ 1/B with integer
B ≥ 2. Let us create two new UFP instances, I1 and I2, both with the same underlying graph as
I but with I1 having exactly those source-sink pairs from I with demands at most 1/(B + 1) and
I2 having the remaining source-sink pairs, i.e., those with ρi ∈ (1/(B + 1), 1/B].

Part 2 of Theorem 3.5 now gives us an O(d1/B)-approximation for I1 from a (log n, d)-favorable
fractional solution to the LP relaxation of I1. To approximate I2, we create a new instance I ′2 by
setting all demand values in I2 to exactly 1/B. Since we have scaled each demand by a factor of
at most (B + 1)/B, we can take an optimum solution to the LP relaxation of I2, divide each xi by
(B + 1)/B, and end up with a feasible solution to the LP relaxation of I ′2 that has a B/(B + 1)
fraction of the profit of the former. Using Part 3 of Theorem 3.5, we can then get an integral solution
to I ′2 of profit at least Ω(d−1/B)×B/(B + 1) times the optimum profit of the LP relaxation of I2.
But this integral solution is also feasible for I2, since we only increased demands in going from I2

to I ′2; thus we have an O(d1/B)-approximation for I2.

Either I1 or I2 has optimal profit at least half that of I, so we can simply pick the better of the
two approximate solutions. Finally, for UFP, we can set d = O(FG log n) by applying Theorem 3.2;
for UCUFP, Corollary 3.3 implies that we can set d = O(FG).
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Remark. The above corollary implies a constant factor approximation for UCUFP when ρmax ≤
1/dlogFGe. If ρmax ≤ 1/max{dlogFGe, log log n}, then a constant factor approximation can be
obtained for UFP as well. Thus, in cases when FG = O(log n), such as when G is a butterfly or an
expander, UFP has a constant factor approximation algorithm when ρmax = O(1/ log log n). Our
algorithms are considerably simpler than those in [25] that achieve similar results. Also, our proofs
(as the reader will soon see) are substantially simpler than those in [25] which rely upon the Lovász
Local Lemma.

3.2.1 Rounding in the General Case

In this section and the following one, we prove the several parts of the Theorem 3.5. Our rounding is
based on the work of Srinivasan [34]: we randomly round the (logn, d)-favorable fractional solution
after appropriate scaling, and follow that by an alteration phase to obtain a feasible solution. We
prove that this yields an O(d) approximation in expectation. We note that Srinivasan [33], and
Baveja and Srinivasan [9] showed that randomized rounding yields an O(d) approximation for
UCUFP if all flow path lengths are bounded by d. However, the proof is involved and is based
on the FKG inequality. While it is conceivable that those techniques can be used to round the
favorable solutions guaranteed by the previous section, we believe that such an approach would be
more involved than the one we present below.

Proof of Theorem 3.5 (Part 1): The rounding procedure works in two phases: the selection
phase where we choose random paths, and the pruning or alteration phase, in which we ensure that
our solution is feasible.

Selection Phase: Independently, for each i ∈ {1, . . . , k}, we do the following: we select at most
one of the paths in Pi with the property that each path π ∈ Pi is selected with probability
equal to fπ/(16d). To do this, let us order the paths in Pi arbitrarily as π1, π2, . . . , πh. For
0 ≤ j ≤ h define yj as 1

16d

∑
`≤j fπ` . Now pick a random number ζ from [0, 1]. We select path

πj iff ζ ∈ [yj−1, yj); if ζ ≥ yh, no path is selected. Since
∑

π∈Pi fπ = xi, we will have selected
some path in Pi with probability xi/(16d).

Alteration/Pruning Phase: For path π ∈ Pi, let ρ(π) to denote the demand value ρi associated
with π. We sort the paths in descending order of their demand values. We consider the paths
picked picked in the selection phase, one by one in the sorted order above. When considering
a path π we either add it to the final solution or discard it. The criterion for adding a path π
to the solution is as follows: if π can be added to the current set of paths without violating
edge capacities, add it, else discard it. If some path π is added, it should be understood that
the demand ρ(π) is routed along π.

It is clear that we will have a feasible integral solution at the end of the pruning phase. The
following lemma suffices to prove Part (1) of Theorem 3.5.

Lemma 3.7 The resulting random integral solution has expected profit Ω(W/d).

Before proving this lemma, let us state a technical probabilistic tail estimate whose proof we defer
to the appendix.
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Lemma 3.8 Let a1, . . . , ah, y1, . . . , yh ∈ [0, 1] be such that ∀ i < j :
(
ai ≤ 1

2 ⇒ aj ≤ 1
2

)
and

furthermore
∑h

i=1 aiyi ≤ 1. Let 0 < θ < 1 and let independent 0-1 random variables Y1, . . . , Yh and
(possibly dependent) 0-1 random variables Z1, . . . , Zh be defined as follows:

Yi =
{

1, with probability θyi
0, otherwise.

; Zi =
{

1, if
∑

j<i ajYj ≤ 1− ai
0, otherwise.

Then, for each i, Pr[Zi = 0] is at most

1. (2 + 2e)θ, in general.

2. eBθB−1, if each ai ∈ [0, 1
B ] for an integer B ≥ 2.

3. eBθB, if each ai = 1
B for an integer B ≥ 1.

Proof of Lemma 3.7: Recall that the pruning phase of the algorithm orders the paths used by
the (log n, d)-favorable solution in a specific way, based upon the demand values associated with the
paths, thereby effectively ordering the k commodities. Without loss of generality, assume that this
ordering is 1, 2, . . . , k. Now, for each commodity i, edge e and path π ∈

⋃k
i=1 Pi, define indicator

random variables for the following events of interest:

• Xi(π), for the event “the selection phase chooses path π ∈ Pi”.

• Yi(e), for the event “the selection phase chooses a path in Pi that contains e”.

• Zi(e), for the event “even if all commodities preceding i were routed along the paths chosen
for them in the selection phase, there would be at least ρi residual capacity on edge e”.

• Ai(π), for the event “the final random solution (after the pruning phase) routes commodity
i along path π”.

• Ai, for the event “commodity i is routed in the final random solution”.

Note that the pruning phase eliminates a path π chosen in the selection phase only if Zi(e) = 0 for
some e ∈ π. Therefore,

Pr[Ai(π) = 1] ≥ Pr [Xi(π) = 1 ∧ ∀ e ∈ π (Zi(e) = 1)]

≥ Pr[Xi(π) = 1] ·
(

1−
∑
e∈π

Pr[Zi(e) = 0 | Xi(π) = 1]
)

= Pr[Xi(π) = 1] ·
(

1−
∑
e∈π

Pr[Zi(e) = 0]
)
, (3.2)

where the final equation follows because Zi(e) is independent of the routing of commodity i, by
definition. We already know that Pr[Xi(π) = 1] = fπ/(16d), so we turn our attention to upper
bounding Pr[Zi(e) = 0].

Fix an edge e ∈ E(G). The random variables {Yi(e)}ki=1 are easily seen to be independent from
the description of the rounding algorithm. Also, setting yi(e) =

∑
π∈Pi:π3e fπ and θ = 1/(16d), we

get Pr[Yi(e) = 1] = θyi(e). Setting ai(e) = ρi/ce and using the constraints in lpmain, we see that
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for all i, ai(e), yi(e) ∈ [0, 1] and that
∑k

i=1 ai(e)yi(e) ≤ 1. Translating the definition of Zi(e) into
algebraic notation directly gives us Zi(e) = 1 iff

∑
j<i aj(e)Yj(e) ≤ 1− ai(e). Finally, the ordering

of the paths before the pruning phase ensures that ∀ i < j :
(
ai(e) ≤ 1

2 ⇒ aj(e) ≤ 1
2

)
. Therefore,

we may apply Part 1 of Lemma 3.8 to obtain

Pr[Zi(e) = 0] ≤ 2 + 2e
16d

. (3.3)

For those edges that satisfy ce > log n, we can say something stronger. Since ρmax ≤ 1, the random
variables {ρiYi(e)}ki=1 are distributed in [0, 1]. Let Y =

∑k
j=1 ρjYj(e). We have E[Y ] ≤ ce/(16d).

Now, for any i,

Pr[Zi(e) = 0] = Pr

 i−1∑
j=1

ρjYj(e) > ce − ρi


≤ Pr[Y > ce − 1] .

Let β = (ce − 1)/E[Y ]. The Chernoff-Hoeffding bound, after some routine algebra, gives

Pr[Y > ce − 1] ≤
(

eβ

ββ

)E[Y ]

≤
(

e
β

)ce−1

≤
(

ece
16d(ce − 1)

)ce−1

≤ 2−2ce ≤ 1
n2

, (3.4)

for large enough d. Finally, recall that we started with a fractional solution that was (log n, d)-
favorable, i.e., on any path π used by the solution, there are at most d edges of “small” capacity
(≤ log n). Applying (3.3) for the small-capacity edges on π and (3.4) for the large-capacity edges
yields ∑

e∈π
Pr[Zi(e) = 0] ≤ d· 2 + 2e

16d
+ n· 1

n2
≤ 1

2
.

Using this in (3.2) gives Pr[Ai(π) = 1] ≥ Pr[Xi(π) = 1] · (1− 1
2) = fπ/(32d).

As the selection phase chooses at most one path for each i, we have Pr[Ai = 1] =
∑

π∈Pi Pr[Ai(π) =
1] ≥

∑
π∈Pi fπ/(32d) = xi/(32d). Therefore the expected profit of the final solution (after the

pruning phase) is
∑k

i=1wi Pr[Ai = 1] ≥
∑k

i=1wixi/(32d) = W/(32d) = Ω(W/d).

This completes the proof of Part 1 of Theorem 3.5.

3.2.2 Exploiting a Gap between Demands and Capacities

We now complete the proof of Theorem 3.5 by proving the remaining two parts.
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Proof of Theorem 3.5 (Part 2): So far, we have worked with arbitrary demands subject only
to the no-bottleneck assumption. This part of the theorem applies when we have the stronger
guarantee that there is a separation between the largest demand and the smallest capacity (i.e., in
the language of our normalized variables, ρmax is bounded away from 1). For the proof, we modify
the above rounding algorithm to produce even better solutions.

Suppose ρmax ≤ 1/B for some integer B ≥ 3. We run the rounding algorithm just as above, except
that in the selection phase we select a path π with probability fπ/(3ed1/(B−1)), instead of the earlier
fπ/(16d). We define the random variables Xi(π), Yi(e), Zi(e), Ai(π) and Ai as in Section 3.2.1 and
analyze our rounding procedure just as before, except that instead of (3.3) we use the following
inequality:

Pr[Zi(e) = 0] ≤ eB
(

1
3ed1/(B−1)

)B−1

≤ 1
3d
, (3.5)

which we obtain from Lemma 3.8 Part 2 using θ = 1/(3ed1/(B−1)). Continuing the analysis as
before, we eventually obtain

∑
e∈π Pr[Zi(e) = 0] ≤ 1

2 which gives us an expected profit of at least
W/(6ed1/(B−1)) = Ω(W/d1/(B−1)). Finally, for the case B = 2 (when all demands lie in the range
[0, 1

2 ]), the bound Ω(W/d1/(2−1)) = Ω(W/d), which we already showed in Section 3.2.1.

Proof of Theorem 3.5 (Part 3): This part of the theorem handles the case when we have an
even stronger guarantee on the demands: they are discrete, i.e., each ρi = 1/B for some integer
B ≥ 2. For this case, we assume that the edge capacities are integers: if the capacities are not
integral, we can round the capacity ce of each edge down to bcec, and scale down the fractional
solution (by at most a factor of two) to maintain the feasibility of the solution. Now we use a
rounding algorithm where we select a path π with probability fπ/(2ed1/B). The analysis is very
similar to the ones above, but since ai(e) = ρi/ce = 1/ceB (and ce is a positive integer), we can use
Lemma 3.8 Part 3; indeed, setting θ = 1/(2ed1/B), we obtain the following.

Pr[Zi(e) = 0] ≤ eB
(

1
2ed1/B

)B
≤ 1

4d
. (3.6)

Continuing the analysis as before, we see that our expected profit is at least W/(4ed1/B) =
Ω(W/d1/B). Finally, note that the claimed guarantee for the case of B = 1 is Ω(W/d1) which
follows from Section 3.2.1, and hence our result for the discrete case holds for all B ≥ 1.

4 An Improved Result for Strong Expanders

For strong expanders as specified in Definition 2.2, we can improve over the results in Corollary 3.6
to obtain the following theorem.

Theorem 4.1 For sufficiently large constant ∆, there is an approximation algorithm with ratio
O(
√

log n) for UCUFP on ∆-regular strong expanders.

To prove this, we need the following result of Frieze [17].
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Theorem 4.2 (Frieze) There exist constants k1, k2 such that given an n-vertex ∆-regular strong
expander, with ∆ sufficiently large, any (k1∆n/ log n) pairs of vertices, with no vertex appearing in
more than k2∆ pairs, can be connected by disjoint paths of length O(log n) in polynomial time.

In order to prove the theorem above, we will need the following lemma.

Lemma 4.3 Given a graph G = (V,E) with weights we on edges, and parameters k and C, suppose
we want to find a set of k (or fewer) edges of maximum total weight such that no vertex is adjacent
to more than C of these edges. There is a polynomial time O(1)-approximation algorithm for this
problem. In fact, the approximation ratio of this algorithm remains a constant even if we allow the
optimum to have C ′ edges adjacent to any vertex, where C ′ is O(C).

Proof of Lemma 4.3: Consider the greedy algorithm that repeatedly picks the heaviest unpicked
edge that does not already have C picked edges incident to one of its end-points. The algorithm
stops if k edges have been picked or if there are no edges that can be picked. We claim that this
algorithm is a constant factor approximation algorithm for this problem. Let F be the set of edges
picked by our algorithm, and let F ∗ be the set of edges in an optimal solution.

We only need to bound the cost of the edges in F ∗ \F . Let V ′ be the set of vertices v such that F
has C edges incident to v. For v ∈ V ′, let lv be the smallest weight of an edge in F incident to v.
It is easy to see that

∑
v∈V ′ C · lv is at most twice the weight of the edges in F . We claim that the

weight of the edges in F ∗ \ F is at most
∑

v∈V ′ C · lv.
Indeed, let e ∈ F ∗ \ F . When the greedy algorithm considers e but does not pick it, our solution
must have already picked C edges incident to one of the end-points of e. Let this end-point be u.
Then, we ≤ lu and we charge the weight of e to u. Since F ∗ contains at most C edges incident to
any vertex, this charging scheme charges at most C · lv to any vertex in v in V ′. Hence the total
weight of edges in F ∗ \ F is at most the total charge to vertices in V ′, which is in turn at most∑

v∈V ′ C · lv. The second part of our lemma is also easy to see, because then the total charge on
any vertex v is at most C ′ · lv.

Proof of Theorem 4.1: Suppose we have an instance I of UCUFP. Fix an optimal integral
solution O for I and partition the terminals pairs of O into three parts as follows:

• O1 includes exactly those pairs with demand at most 1
2 .

• O2 includes exactly those pairs not in O1, and routed by O on paths of length at most
√

log n.

• O3 includes the rest of the pairs.

We will use these three parts to prove the performance guarantee of our algorithm, which we now
describe.

Our algorithm partitions I into two instances: I1, which is I restricted to demands ρi ≤ 1
2 , and

I2, which is I \ I1. By Corollary 3.6, applied with B = 2, we can find a solution to I1 that
O
(√

∆α−1 log n
)
-approximates the optimum (here α is as in Definition 2.2). Since O1 is a feasible

solution for I1, our solution is within the same factor of O1.
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Now we solve an LP relaxation of I2 with the added restriction that flow path lengths are at most√
log n. By part 1 of Theorem 3.5, the fractional solution can be rounded to give an O(

√
log n)-

approximation to the LP optimum. Since O2 is feasible for the LP relaxation, we obtain an
O(
√

log n)-approximation to the value of O2.

Finally, we give an approximation to O3. First we bound |O3|. Each demand in O3 is more than
1
2 , thus a feasible solution induces edge disjoint paths for the pairs. Further, by definition, each
pair in O3 uses a path of length at least

√
log n. Therefore, it follows that |O3| ≤ |E(G)|/

√
log n =

O(∆n/
√

log n). We choose a set of pairs S such that |S| ≤ k1∆n/ log n and no more than k2∆
pairs in S are incident to any vertex. Here k1 and k2 are the constants in Theorem 4.2. We do this
as follows. We build an auxiliary graph G′ on the vertex set V ; for each demand (si, ti) in I2 we
have an edge in G′ between si and ti and the weight of this edge is wi. Now, we obtain S as the
collection of edges in G′ using Lemma 4.3 with k = (k1∆n/ log n), C = k2∆ and C ′ = ∆. From
the lemma, the total weight of the pairs in S is within a constant factor of the k1∆n/ log n pairs in
O3 of largest weight. Since |O3| = O(∆n/

√
log n), it follows that the total weight of pairs in S is

within a Ω(1/
√

log n) factor of the total weight of pairs in O3. Theorem 4.2 guarantees that all the
pairs in S can be routed via edge disjoint paths and hence we obtain an O(

√
log n) approximation

to O3.

Since one of O1,O2,O3 has at least a third of the profit of O and we approximated each within an
O(
√

log n) factor, we get the desired result.

5 Line and Ring Networks

In this section we consider UFP restricted to the line network. We handle the ring network in a
very similar fashion; we give the relevant details at the end of the section. Before we proceed, let
us fix some notation. The terminal pairs now form intervals I1, I2, . . . , Im on the line [1, n], with
Ij having demand ρj and weight (or profit) wj . Edge e on the line has capacity c(e). For an edge
e, let I(e) be the set of all demands (intervals) that contain e. Recall that we are working under
the no-bottleneck assumption: ρmax ≤ 1 = cmin.

The UCUFP on the line is equivalent to a resource allocation problem that has been studied recently
[29, 7, 10, 13]; however, we will not use the resource allocation terminology. Constant factor
approximation algorithms for the resource allocation problem, and consequently UCUFP on the
line, have been obtained via several different techniques — LP rounding [8, 29], the local-ratio
method [7, 10], and primal-dual algorithms [7, 10]. Most of these techniques do not seem to extend
to UFP on the line where capacities are non-uniform. There is, however, one exception: a recent
algorithm of Calinescu et al. [13] which gives constant factor approximations for UCUFP on the line.
We extend their algorithm and analysis to non-uniform capacities. Their algorithm is the following:
the demands are divided into two sets, one set containing demands which are “large” compared to
the (common) capacity, say 1, and the other containing the rest. Dynamic programming is then
invoked to find the optimal solution on the set of large demands. For the “small” demands, the
algorithm solves the LP and then randomly rounds the solution (after scaling it by a constant
α < 1). The resulting set of demands has the right weight in expectation, but it may not be
feasible. The alteration step then looks at the randomly chosen demands in order of their left end
points, accepting a demand in the final output if adding it maintains feasibility. Since all edges
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have capacity 1, a demand Ij is rejected in this step if demands sharing an edge with it and that
have been inserted earlier add up to 1− ρj . However, these demands are small and their expected
sum is at most α, so applying a Chernoff bound shows the probability that a demand is chosen
randomly and later rejected is small.

Our algorithm for UFP is very similar to that in [13], but the analysis requires new ideas. One
difficulty is the following: in the alteration step, a demand ρj which spans edges e1, e2, . . . , ek in
the left-to-right order is rejected if for some edge ei, the demands already accepted that are using
edge ei sum up to more than c(ei) − ρj . In the uniform capacity case it is sufficient to just look
at the edge e1 for the rejection probability. In the non-uniform case, taking a union bound for the
rejection probability over edges e1, . . . , ek is too weak to give a constant factor approximation and
we need a more careful analysis.

Another idea is needed in defining small and large demands so that dynamic programming is still
feasible for the large demands, and the small demands are still small enough to allow us to make
the concentration arguments. To this end, we define the bottleneck capacity bj of a demand Ij to be
the capacity of the lowest capacity edge on this demand. Now a demand Ij is δ-small if ρj ≤ δbj ,
else it is δ-large.

In the sequel, we show how to find the optimal solution for the δ-large demands, and a constant
factor approximation for the set of δ-small demands, for some appropriate choice of δ. We then
output the better of the two solutions.

5.1 The Large Demands

The following lemma is key to invoking dynamic programming to find an optimal solution for the
δ-large demands in nO(1/δ2) time.

Lemma 5.1 The number of δ-large demands that cross an edge in any feasible solution is at most
2b1/δ2c.

Proof : Fix a feasible solution S, and consider an edge e. Let Se be the set of all δ-large demands
in S that cross e. We partition Se into two sets S` and Sr as follows: a demand in Se is in S` if
it has a bottleneck capacity edge to the left of e (including e), otherwise the demand is in Sr. We
show that |S`| ≤ b1/δ2c, and a similar argument shows that |Sr| ≤ b1/δ2c.
Let A be the set of bottleneck edges for demands in S` and let e′ be the rightmost edge in A.
Since e′ is the bottleneck edge for some δ-large demand Ij ∈ S`, by definition, ρj ≥ δc(e′). Since
ρj ≤ cmin, it follows that c(e′) ≤ cmin/δ. Because e′ is the rightmost edge in A, all demands in
S` pass through e′. But each demand Ik in S` is δ-large, which implies that ρk ≥ δbk ≥ δcmin. It
follows that |S`| ≤ bc(e′)/(δcmin)c ≤ b1/δ2c.

Using Lemma 5.1 and standard dynamic programming ideas, we obtain the following.

Theorem 5.2 For an instance of UFP on a line network that has only δ-large demands, an opti-
mum solution can be found in nO(1/δ2) time.

The dynamic program computes a table T [i, S], for all values of i between 1 and n − 1, and for
all subsets S of demands that contain the edge (i, i + 1) and such that |S| ≤ 2b1/δ2c. The table
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entry T [i, S] is the maximum profit that can be achieved from demands with their left end points
in 1, 2, . . . , i and such that S is the subset of demands among them that contain the edge (i, i+ 1).
It is easy to see that the table entry T [i, S] can be computed if all entries of the form T [i′, ·] are
available for 1 ≤ i′ < i. Thus T can be computed sequentially in increasing order of i.

5.2 The Small Demands

We now show that for any constant δ < 1
2 , when all demands in a UFP instance are δ-small, we

can give an O(1)-approximation to the optimal solution. The approximation factor deteriorates as
δ increases. On the other hand, the running time of the algorithm in Theorem 5.2 increases as δ
decreases. Let us choose the parameters as follows:

δ = 0.001, and α = 0.032 .

We first solve the linear program lpmain for the problem. Let xj be the fractional value assigned
to demand Ij . We define two {0, 1}-random variables Xj and Yj as follows.

1. Let Xj be set to 1 independently with probability αxj .

2. Sort the demands corresponding to Xj = 1 in order of their left end points (breaking ties
arbitrarily). Consider them in this order, adding the current demand to the output if the
addition does not violate any edge capacity. Set Yj = 1 if demand Ij is output.

By construction, this procedure produces a feasible solution. Clearly, E [Xj ] = Pr[Xj = 1] = αxj .
The probability that Ij will be in the final solution is E [Yj ] = Pr[Yj = 1] = αxj ·Pr[Yj = 1|Xj = 1].
The rest of the argument shows that Pr[Yj = 0 | Xj = 1], the chance of rejection, is at most 0.597;
this, in turn, shows that the expected weight of the solution is at least

∑
j wjxj/77.51, i.e., a

constant factor away from the weight of the fractional solution.

Let us focus on a particular demand Ij with Xj = 1, and let Ej = 〈e1, . . . , ek〉 be the edges on Ij
from left to right. The crucial idea is the following: when considering Ij , its probability of rejection
depends on whether there is “enough room” on all these edges. Instead of taking a union bound
over all edges, we choose a subsequence of edges such that the capacity of each edge drops by half,
and such that for a demand to be rejected, a “bad” event happens at one of these chosen edges.
Now a union bound on the bad events at these edges suffices. We show that this union bound
gives us a sum whose terms decrease rapidly — faster than geometrically — and thus the chance
of rejection is a constant times the probability of rejection on some edge ei. Finally, arguments
similar to that in [13] complete the proof.

Formally, create a subsequence E′j = 〈ei1 , ei2 , . . . , eih〉 of Ej as follows: set i1 = 1, and hence
ei1 = e1. For ` > 1, set i` = min{t : t > i`−1 and c(et) < c(ei`−1

)/2}. In other words ei` is the
leftmost to the right of ei`−1

with capacity at most half the capacity of ei`−1
. If there is no such

edge we stop the construction of the sequence. For 1 ≤ a ≤ h, let Ea denote the (bad) event that
the random demands chosen in step 1 use at least 1

2c(eia) − δbj capacity in the edge eia . Recall
that bj is the bottleneck capacity of Ij . The following lemma shows that it is enough to bound the
chance that no bad event occurs on these chosen edges.

Lemma 5.3 Pr[Yj = 0 | Xj = 1] ≤
∑h

a=1 Pr[Ea].
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Proof : If Yj = 0 and Xj = 1 then some edge eg ∈ Ej had a capacity violation when Ij was
considered for insertion. Let eia be the edge in E′j to the left of eg and closest to it. (Here, an
edge is considered to be “to the left” of itself.) Note that such an edge always exists since ei1 = e1,
and e1 is the left most edge in Ij . By the construction of the subsequence, c(eg) ≥ 1

2c(eia). If
the capacity of eg was violated while trying to insert Ij , it must be that the capacity of demands
already accepted that cross eg is at least c(eg)−ρj which is lower bounded by 1

2c(eia)− δbj : we use
the fact that Ij is small which implies that ρj ≤ δbj and the fact that c(eg) ≥ 1

2c(eia). However,
any interval that is accepted before Ij and crosses eg, must also cross eia , and thus event Ea occurs.
Applying the trivial union bound, we have Pr[Yj = 0 | Xj = 1] ≤

∑
a Pr[Ea].

It is not enough to bound each Pr[Ea] by a constant, because we may have to take a union bound
over up to Θ(n) of these. But the following lemma addresses this concern.

Lemma 5.4 For our particular choices of α and δ, we have Pr[Ea] ≤ (0.4051)c(eia ), and therefore,∑h
a=1 Pr[Ea] ≤ 0.597.

Proof : Let Qa =
∑

Is∈I(eia ) ρsXs be the random variable that gives the sum of demands that edge
a intersects and that are chosen in step 1. Since each ρs ≤ 1, the independent variables {ρsXs} are
distributed in [0, 1]. We have Pr[Ea] = Pr[Qa ≥ 1

2c(eia) − δbj ]. Setting β = (1/2 − δ − α)/α, and
using the fact that bj ≤ c(eia) gives

Pr[Ea] = Pr[Qa ≥
1
2
c(eia)− δbj ] ≤ Pr[Qa ≥ (1 + β)αc(eia)] .

Also,

E [Qa] =
∑

Is∈I(eia )

ρsE [Xs] =
∑

Is∈I(eia )

αρsxs ≤ αc(eia) ,

where the last inequality follows from the feasibility of the LP solution. Since Qa is a sum of
independent random variables distributed in [0, 1] we apply a Chernoff-Hoeffding bound to get

Pr[Qa ≥ (1 + β)αc(eia)] ≤
(

eβ/(1 + β)1+β
)αc(eia )

≤ (0.4051)c(eia ) ,

where the final inequality follows by plugging in the constants we chose for α and δ. Since c(eia) <
c(eia−1)/2 and each c(eia) ≥ 1, we now get:

h∑
a=1

Pr[Ea] ≤
∑
a

(0.4051)c(eia ) ≤
∑
i≥0

(0.4051)2i ≤ 0.597 ,

which proves the lemma.

The previous two lemmas together imply Pr[Yj = 0 | Xj = 1] ≤ 0.597, and so the approximation
ratio of our algorithm is at most 1/(0.403α) ≤ 77.51.
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5.3 Combining Large and Small Demands

We combine the algorithms for large and small demands in a straightforward manner. Partition
any given instance of UFP on the line into two sub-instances: IL, which contains only the δ-large
demands, and IS , which contains only the δ-small demands. Solve IL optimally, and find a 77.51-
approximation to the optimum of IS ; we know how to do both these things in polynomial time.
Then, simply output the better of the two solutions.

In an optimal solution to I, either the small demands contribute at least a 77.51/78.51 fraction of
the weight, or the large demands contribute at least a 1/78.51 fraction of the weight. Choosing the
better of the two solutions, as above, ensures that we always obtain at least a 1/78.51 fraction of
the weight of an optimal solution to I. Thus, we have proved the following theorem (we remind
the reader than we have not tried to optimize our constants).

Theorem 5.5 There is a polynomial time 78.51-approximation for UFP on the line if ρmax ≤ cmin.

Corollary 5.6 There is a constant factor approximation for UFP on the line when ρmax/ρmin

is bounded even without the no-bottleneck assumption. Hence, for arbitrary demands we get an
O (log (ρmax/ρmin)) approximation.

Proof sketch: Since the analysis for the δ-small demands does not use the fact that ρmax ≤ cmin,
we need to only consider the large demands. For the δ-large demands, an argument similar to that
in Lemma 5.1 and Theorem 5.2 works when ρmax/ρmin is bounded.

So, given arbitrary demands, we can divide them into O (log (ρmax/ρmin)) classes so that for any
two demands j and j′ in the same class, ρj/ρj′ is bounded. This proves the result.

5.4 Integrality Gap

In this section, we show that the integrality gap of the natural LP for instances with ρmax ≤ cmin

is upper bounded by some fixed constant. The algorithm described in the previous section uses
dynamic programming for large demands and hence it does not imply a constant factor bound on
the integrality gap of the LP. If we do not have the no-bottleneck assumption, the integrality gap
can be Θ(log(ρmax/ρmin)). Thus, the performances of our algorithms, both with and without the
no-bottleneck assumption, match the integrality gap of the LP to within a constant factor.

Theorem 5.7 The integrality gap of the natural LP is O(1) when ρmax ≤ cmin. For arbitrary
demands the integrality gap is Θ((log (ρmax/ρmin)) which can be Ω(n).

Proof : We first show that the integrality gap of the natural LP is O(1) when ρmax ≤ cmin.
Consider a fractional solution to lpmain. Let xj be the fractional value assigned to demand Ij .
Let Sδ denote the set of δ-small demands, where δ is as chosen in Section 5.2. Consider the fractional
profit accrued by the δ-small demands, i.e.,

∑
j∈Sδ wjxj . If this is at least half the total profit of

the LP solution, then we are done. This is so because we have already shown that the LP restricted
to δ-small demands, for sufficiently small δ has at most a constant integrality gap.

Let Lδ be the set of demands i such that ρi ≥ δρmax. Note that Lδ contains the δ-large demands
but could include some δ-small demands as well. If Sδ does not have half the profit of the LP
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solution then clearly Lδ does. We show how we can obtain an Ω(δ) fraction of the profit of Lδ.
Suppose, for each demand i ∈ Lδ, we increase ρi to ρ′i = ρmax and decrease xi to x′i = δxi/2.
Also, for each edge e, we round down the capacity c(e) to c′(e) such that c′(e) is the largest integer
multiple of ρmax less than c(e) – note that c′(e) is at least c(e)/2. From this, it is easy to see that
x′ is a feasible solution to ρ′ with edge capacities c′. The profit of this solution has decreased by at
most δ/2. Also, any feasible solution to this new instance is feasible for the original instance since,
in going from the original to the new instance, we only increased demands and reduced capacities.
Observe that the instance we have created has all demands of equal size and all capacities that are
integer multiples of the demand. For such instances, which are basically unit demand instances, the
integrality gap of the LP is 1. This is a well known fact and follows from the total unimodularity
of consecutive-ones matrices [32]. Therefore we can recover a δ/2 fraction of the profit of Lδ.

Thus, for some sufficiently small but fixed δ, either Sδ or Lδ gives an f(δ) fraction of its fractional
profit for some function f . It follows that the integrality gap of the LP is O(1). We now remove
the assumption that ρmax ≤ cmin. In this case we partition the demands into O(log ρmax/ρmin)
sets S0, S1, S2, . . . where Sj contains demands i such that ρi ∈ [ρmax/2j , ρmax/2j+1). For demands
in any particular Sj , using arguments similar to those in Corollary 5.6, we can show that the
integrality gap of the LP is O(1). Picking the set Sj with the largest fractional profit from the LP
shows that the integrality gap of the LP is O(log ρmax/ρmin).

We now prove that the integrality gap is Ω (log (ρmax/ρmin)). Consider the line graph on n + 1
points corresponding to the integers in [0, n]. The capacity of the edge (i, i+ 1) is 1/2i. We have n
demands. Demand Ij corresponds to the interval [0, j], and ρj = 1/2j−1. All demands have profit
1. We claim that any integral solution can route only 1 demand. To see this, let Ij be the demand
with the smallest index that is routed in the solution. Ij saturates the edge (j − 1, j) and hence
no other demand Ij′ , j

′ > j can be routed. Thus, any integral solution has profit at most 1. Now
we construct a fractional solution with profit Ω(n). The fractional solution assigns xj = 1/2 for all
demands Ij . Consider the edge (j, j+ 1). The demands which contain this edge are Ij′ , j′ > j. But
note that

∑
j′:j′>j ρj′ ≤ 2/2j . Thus, the fractional solution is a feasible solution. The profit of this

solution is n/2. Also, notice that ρmax/ρmin is O(2n). Thus, we have shown the desired integrality
gap.

A bound of Θ(log ρmax/cmin) on the integrality gap can also be obtained by slightly altering the
above proof. We thank a reviewer for pointing this out.

5.5 UFP on a Ring Network

Finally, we consider UFP on the ring network. Unlike the line network, this gives us a choice of
one of two paths for each demand. However, we can reduce the problem on the ring to that on a
line network with a slight loss in the approximation factor as follows. Let e be any edge on the
ring with c(e) = cmin. Consider any integral optimal solution O to the problem. The demands
routed in O can be partitioned into two sets O1 and O2 where those in O1 use e and those in O2 do
not. We remove e and solve the problem approximately on the resulting line network. This clearly
approximates the value of O2. To approximate the solution for O1, for each demand we choose the
path that uses e and solve a knapsack problem to find a (1 + ε)-approximation to the maximum
weight set of demands that can be routed with capacity bounded by ce, where ε is an arbitrarily
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small constant. Since c(e) = cmin, any solution feasible at e will be feasible for the entire network.
Thus we obtain:

Theorem 5.8 For UFP on the ring there is a (1 + A+ ε) approximation where A is the approxi-
mation factor for the problem on the line, and ε > 0 is any fixed constant.

6 Concluding Remarks

Our O(FG log n)-approximation algorithm for UFP is based on randomly rounding a fractional so-
lution to the linear programming relaxation. Two natural questions suggest themselves: namely,
whether (a) there exists a deterministic algorithm with a similar approximation ratio, and (b) whether
there exists an online algorithm with a similar competitive ratio. The answer to both these ques-
tions is positive. For the former, note that the randomized algorithm presented in this paper can be
derandomized using the method of conditional expectations and pessimistic estimators [31]. The
standard details are not particularly illuminating, and hence we omit them.

Perhaps of greater interest is an online algorithm with a competitive ratio of O(FG log n) for the case
of the throughput measure, that is, the case where the weights are proportional to the request size
(wi = ρi). Such an algorithm can be obtained by combining the bounded greedy algorithm [21, 25]
and the algorithm of Awerbuch, Azar and Plotkin (AAP) [5] for large capacities. Kleinberg [21]
has previously developed and analyzed such a combined algorithm in a related context. However,
to apply this idea in our context, we need the existence of (log n,O(FG log n)) favorable solutions
to the linear program. We briefly describe our algorithm here. An edge is called a low-capacity edge
if its capacity is less than log n, and is called high-capacity otherwise. The AAP algorithm assumes
that all edges are of high capacity; it maintains edge lengths that are exponential in the congestion
of the edge—recall that the congestion of an edge e is the flow already routed on e, divided by the
capacity of e. A path is good for the AAP algorithm if the total length of the path is at most some
given bound (the LAAP bound) that depends only on n, the graph size. (Since we are only offering
a sketch of the extension, we omit the precise definition of the AAP factor here.)

The bounded greedy algorithm (BGA) [21, 25] is relevant for the low-capacity case. A path is
good for the BGA if the number of edges in it is at most a given bound B. We combine these
two measures as follows. In the combined algorithm, we call a path good if the total number of
low-capacity edges in it is O(FG log n), and the total length of the high-capacity edges is less than
the AAP bound LAAP . The online algorithm works as follows. When a new pair (u, v) arrives,
if a feasible good path exists between u and v, we route the demand pair (u, v) along any such
path, otherwise we reject it. The lengths of the high-capacity edges are updated according to the
AAP algorithm. The claimed competitive ratio can be obtained by combining the analysis for the
bounded greedy algorithm from [25] with that of [5] and using the existence of (log n,O(FG log n))-
favorable solution to the LP. We note that the idea of combining the algorithm (and analysis) for
high and low capacity edges is borrowed from earlier work of Kleinberg [21].

For UFP on the line and the ring, a (2 + ε)-approximation has been obtained in subsequent work
by Chekuri, Mydlarz and Shepherd [15]. The improvement is based on a different algorithm for
small demands which builds on certain grouping and scaling ideas for packing problems from the
work of Kolliopoulos and Stein [23].
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A The Technical Probabilistic Lemma

We give here a proof of the probabilistic lemma that we used to analyze the rounding-and-alteration
algorithm of Section 3.2.

Lemma A.1 (Restatement of Lemma 3.8) Let a1, . . . , ah, y1, . . . , yh ∈ [0, 1] be such that ∀ i <
j :

(
ai ≤ 1

2 ⇒ aj ≤ 1
2

)
and furthermore

∑h
i=1 aiyi ≤ 1. Let 0 < θ < 1 and let independent 0-1

random variables Y1, . . . , Yh and (possibly dependent) 0-1 random variables Z1, . . . , Zh be defined
as follows:

Yi =
{

1, with probability θyi
0, otherwise.

; Zi =
{

1, if
∑

j<i ajYj ≤ 1− ai
0, otherwise.

Then, for each i, Pr[Zi = 0] is at most

1. (2 + 2e)θ, in general.
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2. eBθB−1, if each ai ∈ [0, 1
B ] for an integer B ≥ 2.

3. eBθB, if each ai = 1
B for an integer B ≥ 1.

Proof of Part 1: Fix an i and define the index sets I = {j < i : aj > 1
2} and J = {j < i : aj ≤ 1

2}.
Then we have

Zi = 0 =⇒
(
∃ j ∈ I : Yj = 1

)
∨
(∑

j∈J ajYj > 1− ai
)
. (A.7)

Now

1 ≥
h∑
j=1

ajyj ≥
∑
j∈I

ajyj >
∑
j∈I

1
2
yj ,

whence

Pr[∃ j ∈ I : Yj = 1] ≤
∑
j∈I

Pr[Yj = 1] ≤
∑
j∈I

θyj < 2θ . (A.8)

Suppose ai >
1
2 . By the condition on the aj ’s this means J = ∅. Using (A.7) and (A.8), we

obtain Pr[Zi = 0] < 2θ. On the other hand, suppose ai ≤ 1
2 . The random variables {2ajYj}j∈J are

independent and distributed in [0, 1], and their sum Y (say) satisfies E[Y ] =
∑

j∈J 2ajθyj ≤ 2θ.
Applying the Chernoff-Hoeffding bound,

Pr
[∑

j∈J ajYj > 1− ai
]

= Pr[Y > 2− 2ai]

≤ Pr[Y > 1]

≤

(
e

1
2θ
−1(

1
2θ

)1/2θ
)2θ

= 2θ e1−2θ

≤ 2eθ .

Combining this with (A.8) and using (A.7), we get Pr[Zi = 0] ≤ (2 + 2e)θ.

Proof of Part 2: We first note that I = ∅ whence (A.7) simplifies to Pr[Zi = 0] ≤ Pr[
∑

j∈J ajYj >
1− ai]. Now, the independent random variables {BajYj}j∈J are distributed in [0, 1] and their sum
Y (say) satisfies E[Y ] =

∑
j∈J Bajθyj ≤ Bθ. Applying the Chernoff-Hoeffding bound and arguing

as above,

Pr
[∑

j∈J ajYj > 1− ai
]

= Pr[Y > B −Bai]

≤ Pr[Y > B − 1]

≤

(
e
B−1
Bθ
−1(

B−1
Bθ

)(B−1)/(Bθ)

)Bθ

=
(

1 +
1

B − 1

)B−1

· θB−1eB−1−Bθ

≤ eBθB−1 .
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Proof of Part 3: We first consider the case B ≥ 2. This works a lot like Part 2 above, except
that the random variables {BajYj}j∈J are now {0, 1}-variables, so their sum Y , if greater than
B − 1, must be at least B. Thus,

Pr
[∑

j∈J ajYj > 1− ai
]
≤ Pr[Y ≥ B]

≤

(
e

1
θ
−1(

1
θ

)1/θ
)Bθ

= (θe1−θ)B

≤ eBθB ,

as desired. Finally, we consider the case B = 1. In this case every ai = 1, so J = ∅. Also,
1 ≥

∑
j∈I ajyj =

∑
j∈I yj , whence

Pr[∃ j ∈ I : Yj = 1] ≤
∑
j∈I

Pr[Yj = 1] ≤
∑
j∈I

θyj ≤ θ . (A.9)

Combining this with (A.7) gives us Pr[Zi = 0] ≤ θ ≤ e1θ1, as desired.
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