Chapter Five

Introduction to Text Mining

“What is a moderate interpretation of the text? Halfway between what it really means and what you’d like it to mean?”

Antonin Scalia

Anasse Bari, Ph.D.

CopyRights @ Anasse Bari
Learning Outcomes

- Learning the Fundamentals of Text Mining and Text Categorization
- Acquiring Understanding of Data Cleaning in Textual Data
- Learning Document Vector Representation, Term Frequency Measures and Document Nearest Neighbors
Outline

- Introduction to Text Mining
- Text Categorization
- Data Cleaning in Textual Data
- Vector Representation
- Term Frequency Measures
- Similarity Measures in Text
- Document Nearest Neighbors
Introduction to Text Mining

- Text Categorization
 - Assign text documents to existing, well-defined categories.
- Clustering
 - Group text documents into clusters of similar documents.
- Text Filtering
 - Retrieve documents which match a user profile.
- Text Summarization: single vs. multiple documents
Text Categorization

- Classify each test document by assigning category labels.
 - M-ary categorization assumes M labels per document.
 - Binary categorization requires yes/no decision for every document/category pair.

- Most techniques require training.
 - Parametric vs non-parametric.
 - Batch vs. on-line.
Data Cleaning in Textual Data

- Document parsing
- Stopwords: Set of words that are deemed “irrelevant”, even though they may appear frequently
 - E.g., a, the, of, for, with, etc.
 - Stop lists may vary when document set varies
- Stemming:
 - Several words are small syntactic variants of each other since they share a common word stem
 - E.g., drug, drugs, drugged
 - Porter’s algorithm
 - Dimension reduction
- Proximity Search support: To be able to search for a group of words as a single unit (like a noun phrase)
Vector Representation

- All documents are represented by word vectors
- Each document is represented by a vector
- Each dimension of the vector is associated with a word/term
- For each document, the value of each dimension is the frequency of that word that exists in the vector
- Given a collection of training data, present each term as an n-dimensional vector

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_2</th>
<th>...</th>
<th>D_j</th>
<th>...</th>
<th>D_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>w_{11}</td>
<td>w_{12}</td>
<td>...</td>
<td>w_{1j}</td>
<td>...</td>
</tr>
<tr>
<td>T_2</td>
<td>w_{21}</td>
<td>w_{22}</td>
<td>...</td>
<td>w_{2j}</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T_i</td>
<td>w_{i1}</td>
<td>w_{i2}</td>
<td>...</td>
<td>w_{ij}</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T_m</td>
<td>w_{m1}</td>
<td>w_{m2}</td>
<td>...</td>
<td>w_{mj}</td>
<td>...</td>
</tr>
</tbody>
</table>
Weighted Schemes

- The weighted scheme of each term in a vector (sentence or document) is defined as follows

\[w(t_{ji}) = L(t_{ji}) \cdot G(t_j) \]

- where, \(L(t_{ji}) \) is the local weight for term \(j \) in sentence \(i \) (or in the document)
- \(G(t_j) \) is the global weight for term \(j \) in the whole document.

- The local weights are:
 - No weight (TF): \(L(t_{ji}) = tf(t_{ji}) \)
 - Binary weight: \(L(t_{ji}) = 1 \), if \(tf(t_{ji}) \geq 1 \), \(L(t_{ji}) = 0 \), otherwise
 - Augmented weight: \(L(t_{ji}) = 0.5 + 0.5 \times \frac{tf(t_{ji})}{tf(max)} \) where, \(tf(max) = \max\{ tf(t_{1i}), tf(t_{2i}), ... , tf(t_{mi}) \} \) and \(m \) is the max number of terms in the document.
 - Logarithm weight: \(L(t_{ji}) = \log (1 + tf(t_{ji})) \)

- The global weights are:
 - No weighting: \(G(t_j) = 1 \)
 - Inverse document frequency (IDF): \(G(t_j) = \log(N/n(t_j)) \) where, \(N \) is the total number of sentences in the document, and \(n(t_j) \) is the number of sentences that contain term \(j \).

- Normalization
 - Normalizes the sentence \(S_i \) (or document \(D \)) by its length \(| S_i | \) (or \(| D | \))
Term Frequency Measure

- Let’s define some statistics for text documents:
 - **TF**: term frequency
 - In the case of the term frequency $tf(t,d)$, the simplest choice is to use the raw frequency of a term in a document, i.e. the number of times that term t occurs in document d.
 - **IDF**: Inverse document frequency
 - The inverse document frequency is a measure of how much information the word provides, that is, whether the term is common or rare across all documents.

$$idf(t,D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

- N is the total number of documents in the corpus.
- The denominator of above equation is the number of documents where the term t appears. If the term is not in the corpus, this will lead to a division-by-zero. It is therefore common to adjust the denominator to

$$1 + |\{d \in D : t \in d\}|$$
Term Frequency Measure

• Let’s define some statistics for text documents:
 • TFIDF: Term frequency–Inverse document frequency
 • Then tf–idf is calculated as

\[
tfidf(t, d, D) = tf(t, d) \times idf(t, D)
\]

• A high weight in tf–idf is reached by a high term frequency (in the given document) and a low document frequency of the term in the whole collection of documents;
• Since the ratio inside the idf’s log function is always greater than or equal to 1, the value of idf (and tf-idf) is greater than or equal to 0.
• As a term appears in more documents, the ratio inside the logarithm approaches 1, bringing the idf and tf-idf closer to 0.
Similarity Measures in Text

- For various tasks, need measurement of similarity between documents
 - Cosine similarity
 - Manhattan Distance
 - Mahalanobis Distance
 - Refer to clustering slides for more information
- This correspond to the angle between the two vectors

\[
\|\mathbf{v}\| = \sqrt{\sum_{i=1}^{n} v_i^2}; \quad \|\mathbf{u}\| = \sqrt{\sum_{i=1}^{n} u_i^2}; \\
\cos(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \times \|\mathbf{v}\|}
\]
Document Nearest Neighbors

• Training set includes classes.
• Examine K documents near document to be classified.
• K is determined empirically.
• New document placed in class with the most number of close documents.
• O(n) for each document to be classified
• For each pattern in the test set, search for the k nearest patterns to the input pattern using a Euclidean distance measure
• Compute the confidence C_i / k for a class i, that is the number of patterns among the K nearest patterns belonging to class i. The output is the class with the highest confidence.
Document Nearest Neighbors - Example

• We have three kinds of document:
 • Politics
 • D1: President Obama went to Europe to negotiate on foreign policy
 • D2: North Korea changed it’s foreign policy to make the world more peaceful for people.
 • D3: President Obama will talk about peaceful world in the future.
 • Health
 • D1: Recent research on human body tell us successes to treat the cancer.
 • D2: To have more healthy body you should have minimum 10 minutes workout
 • D3: Doing sport, workout prevent your body to get some cancers and even make you more happier.
 • Social
 • D1: There are lots of homeless people in the world.
 • D2: To have more happy life, do the thing you like.
 • D3: We hope a day all people in the world have a happier life.
We have three kinds of document:

Politics
- D1: President Obama went to Europe to negotiate on foreign policy
- D2: North Korea changed its foreign policy to make the world more peaceful for people.
- D3: President Obama will talk about peaceful world in the future.

Health
- D1: Recent research on human body tells us successes to treat cancer.
- D2: To have more healthy body you should have minimum 10 minutes workout
- D3: Doing sport, workout prevent your body to get some cancers and even make you more happier.

Social
- D1: There are lots of homeless people in the world.
- D2: To have more happy life, do the thing you like.
- D3: We hope a day all people in the world have a happier life.
<table>
<thead>
<tr>
<th>Class</th>
<th>Politics</th>
<th>Health</th>
<th>Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dictionary</td>
<td>D1 D2 D3</td>
<td>D1 D2 D3</td>
<td>D1 D2 D3</td>
</tr>
<tr>
<td>negotiate</td>
<td>1 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>foreign</td>
<td>1 1 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>policy</td>
<td>1 1 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>world</td>
<td>0 1 1</td>
<td>0 0 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>peaceful</td>
<td>0 1 1</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Research</td>
<td>0 0 0</td>
<td>1 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Human</td>
<td>0 0 0</td>
<td>1 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Body</td>
<td>0 0 0</td>
<td>1 1 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Treat</td>
<td>0 0 0</td>
<td>1 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Cancer</td>
<td>0 0 0</td>
<td>1 0 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Healthy</td>
<td>0 0 0</td>
<td>0 1 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Workout</td>
<td>0 0 0</td>
<td>0 1 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Sport</td>
<td>0 0 0</td>
<td>0 0 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Homeless</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>People</td>
<td>0 1 0</td>
<td>0 0 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>Happy</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>Life</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>
Now, suppose we have a new document and we are looking for the most related class:

- When you help some homeless people, you will feel more happy.
- We create the term frequency vector of input document \Rightarrow
- We need to compute the cosine distance based on mentioned formulas
We have three kinds of document (higher value = more similar).

We used the mentioned cos formula, the results are:

- **Politics**
 - D1: \(\cos(u,v) \) is 0
 - D2: \(\cos(u,v) \) is 0.29
 - D3: \(\cos(u,v) \) is 0

- **Health**
 - D1: \(\cos(u,v) \) is 0
 - D2: \(\cos(u,v) \) is 0
 - D3: \(\cos(u,v) \) is 0.26

- **Social**
 - D1: \(\cos(u,v) \) is 0.66
 - D2: \(\cos(u,v) \) is 0.33
 - D3: \(\cos(u,v) \) is 0.66

Therefore, the new document is classified as social class \((K=2 \text{ or } 3)\).