
Chapter#6: Looping Statements

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

Objectives

 Introducing the idea of looping statements and conditions.

 Introducing for loop statement

Introducing while statement

 Introducing do… while statement

 Learning the difference between looping statements

 Learning from examples of loops in Java

2

3

Tree methods of processing statements in a program
 In sequence

 Branching

 Looping

 Branching: Altering the flow of program execution by making a selection
or choice (if else … else if …)

Looping: Altering the flow of program execution by repetition of a
particular block of statement(s)

Processing Statements

Source: The Art and Science of Java, Eric Roberts

Statement Types in Java

• Programs in Java consist of a set of classes. Those classes contain methods, and
each of those methods consists of a sequence of statements. (we will see this
again)

• Statements in Java fall into three basic types:

– Simple statements

– Compound statements

– Control statements

• Simple statements are formed by adding a semicolon to the end of a Java
expression.

• Compound statements (also called blocks) consist of a sequence of statements
enclosed in curly braces.

• Control statements fall into two categories:

– Conditional statements that specify some kind of test
– Iterative statements that specify repetition

Source: The Art and Science of Java, Eric Roberts

The Repeat-N-Times Paradigm

One strategy for generalizing the addition program is to use the Repeat-N-Times
idiom, which executes a set of statements a specified number of times. The
general form of the idiom is

for (int i = 0; i < repetitions; i++) {

statements to be repeated

}

As is true for all idiomatic patterns in this book, the italicized words indicate the
parts of the pattern you need to change for each application. To use this pattern,
for example, you need to replace repetitions with an expression giving the number
of repetitions and include the statements to be repeated inside the curly braces.

The information about the number of repetitions is specified by the first line in
the pattern, which is called the header line.

The statements to be repeated are called the body of the for statement and are
indented with respect to the header line.

A control statement that repeats a section of code is called a loop.

Each execution of the body of a loop is called a cycle.

for (int i = 0; i < repetitions; i++) {

statements to be repeated

}

Source: The Art and Science of Java, Eric Roberts

The for Statement Template

The for statement in Java is a particularly powerful tool for specifying the control structure of a

loop independently from the operations the loop body performs. The syntax looks like this:

for (init ; test ; step) {

statements to be repeated

}

Java evaluates a for statement by executing the following steps:

Evaluate init, which typically declares a control variable.1.

Evaluate test and exit from the loop if the value is false.2.

Execute the statements in the body of the loop.3.

Evaluate step, which usually updates the control variable.4.

Return to step 2 to begin the next loop cycle.5.

for (init ; test ; step) {

statements to be repeated

}

Source: The Art and Science of Java, Eric Roberts

The while Statement

The while statement is the simplest of Java’s iterative control
statements and has the following form:

while (condition) {

statements to be repeated

}

When Java encounters a while statement, it begins by evaluating the condition in

parentheses, which must have a boolean value.

If the value of condition is true, Java executes the statements in the body of the loop.

At the end of each cycle, Java reevaluates condition to see whether its value has changed. If

condition evaluates to false, Java exits from the loop and continues with the statement

following the closing brace at the end of the while body.

while (condition) {

statements to be repeated

}

Source: The Art and Science of Java, Eric Roberts

These statements are equivalent

The Repeat-Until-Sentinel Idiom

A better approach for the addition program that works for any number of values
is to use the Repeat-Until-Sentinel idiom, which executes a set of statements
until the user enters a specific value called a sentinel to signal the end of
the list:

while (true) {

prompt user and read in a value

if (value == sentinel) break;

rest of loop body

}

You should choose a sentinel value that is not likely to occur in the input data. It
also makes sense to define the sentinel as a named constant to make the sentinel
value easy to change.

Source: The Art and Science of Java, Eric Roberts

The Loop-and-a-Half Pattern

The while statement in Java always tests the condition at the beginning of
each cycle of the loop. Sometimes, however, you need to perform some
computation before you can make the test. In those situations, the loop-and-a-
half pattern is very useful:

while (true) {

computation necessary to make the test

if (test for completion) break;

computation for the rest of the loop cycle

}

Because the condition in the while statement itself is always true, this loop
would continue forever without some other strategy to indicate completion.
The loop-and-a-half pattern uses the if and break statements to exit the
loop. When the test for completion becomes true, Java executes the break
statement, which causes the loop to exit, skipping the rest of the cycle.

Source: The Art and Science of Java, Eric Roberts

The Repeat-Until-Sentinel Idiom

A better approach for the addition program that works for any number of
values is to use the Repeat-Until-Sentinel idiom, which executes a set of
statements until the user enters a specific value called a sentinel to signal
the end of the list:

while (true) {

prompt user and read in a value

if (value == sentinel) break;

rest of loop body

}

You should choose a sentinel value that is not likely to occur in the input data.
It also makes sense to define the sentinel as a named constant to make the
sentinel value easy to change.

Source: The Art and Science of Java, Eric Robert

do .. while statement

Use: After executing the repeating statements, then check the conditional

expression

Syntax of the Do-While Statements

do {

statement 1

statement 2

…

} while (<conditional expression>);

Important: Although the conditional expression is false,

The statement (s) will be executed at least one.

Source: The Art and Science of Java, Eric Roberts

Review
Conditions and Bitwise operations

Sample Programs
(Please make sure you understand the following programs we did in class)

Chapter#6: Looping Statements

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

