
Chapter#3: Expressions, Variables,
Input output using Scanner,
Introduction to Strings in Java

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

Objectives

 Introducing primitive data types

 Defining and learning about constants, variables, declarations, named constants.

 Defining and using operators and operands

 Defining assignment statements

 Using boolean expressions

 Using the scanner class to obtain input from the console

 Introducing strings in Java

 Introducing two programming Tips

 Limiting a double to two or n decimal numbers after the decimal point

 Reading a string with spaces

2

Understanding the Concept of “Variables”

3

Think of a Java program that can add two whole numbers (Integers) provided by the user ..

Are the two whole numbers (Integers) always the same ? Is the result always the same?

Our Second In Class Java Program:
AddTwoNumbers.java
(see attached file)

We will write a Java program that adds two Integer numbers provided by the user and display

the results to the screen.

Goal: Write a Java Program that adds two Integer numbers provided by the user and display the

results to the screen. Where do we start?

Step#1: Writing the algorithm

Algorithm:

Start

1. Read the first number from the console

2. Read the second number from the console

3. Store both numbers

4. Computer the addition of first number and the
second number

5. Store the result

6. Display the result

End

See attached

AddTwoNumbers.Java

program

Goal: Write a Java Program that adds two Integer numbers provided by the user and display the

results to the screen. Where do we start?

Step#2: Writing the program

Constants and Variables

 The simplest terms that appear in a java expressions are constants and variables. The
value of a constant does not change during the course of a program.

 A variable is a placeholder for a value that can be updated as the program runs.

 A variable in Java is most easily envisioned as a box capable of storing a value.
(a variable is a portion of memory to store a determined value)

 Each variable has the following attributes:

– A name, which enables you to differentiate one variable from another.

– A type (next slide), which specifies what type of value the variable can
contain.

– A value, which represents the current contents of the variable.

X

(contains a number)67

 The name and type of a variable are fixed. The value changes whenever you assign (put) a
new value to the variable.

Primitive Data Types

 Although complex data values are represented using objects, Java defines a
set of primitive types to represent simple data.

 Example of Primitive Data types:

int This type is used to represent integers, which are whole numbers
such as 17 or –53.

double This type is used to represent numbers that include a decimal
fraction, such as 3.14159265. In Java, such values are called
floating-point numbers; the name double comes from the fact
that the representation uses twice the minimum precision.

char This type represents a single character.

boolean This type represents a logical value (true or false).

Primitive Data Types (cont’d)
int:

• int data type is a 32-bit signed two's complement integer.

• Minimum value is - 2,147,483,648.(-2^31) – [the sign ^ means power]

• Maximum value is 2,147,483,647(inclusive).(2^31 -1)

• Int is generally used as the default data type for integral values unless there is a

concern about memory.

• The default value is 0.

• Example: int a = 100000, int b = -200000

long:

• Long data type is a 64-bit signed two's complement integer.

• Minimum value is -9,223,372,036,854,775,808.(-2^63)

• Maximum value is 9,223,372,036,854,775,807 (inclusive). (2^63 -1)

• This type is used when a wider range than int is needed.

• Default value is 0L.

• Example: long a = 100000L, long b = -200000L

Primitive Data Types (cont’d)
Byte:

 Byte data type is an 8-bit signed two's complement integer.

 Minimum value is -128 (-2^7)

 Maximum value is 127 (inclusive)(2^7 -1)

 Default value is 0

 Byte data type is used to save space in large arrays, mainly in place of integers,

since a byte is four times smaller than an int. Example: byte a = 100 , byte b = -50

Short:

 Short data type is a 16-bit signed two's complement integer.

 Minimum value is -32,768 (-2^15)

 Maximum value is 32,767 (inclusive) (2^15 -1)

 Short data type can also be used to save memory as byte data type. A short is 2

times smaller than an int

 Default value is 0.

 Example: short s = 10000, short r = -20000

Primitive Data Types (cont’d)
float:

• Float data type is a single-precision 32-bit IEEE 754 floating point.

• Float is mainly used to save memory in large arrays of floating point numbers.

• Default value is 0.0f.

• Float data type is never used for precise values such as currency. (Use BigDecimal for precision)

• Example: float f1 = 234.5f

double:

• double data type is a double-precision 64-bit IEEE 754 floating point.

• This data type is generally used as the default data type for decimal values, generally the

default choice.

• Double data type should never be used for precise values such as currency. ((Use BigDecimal for

precision)

• Default value is 0.0d.

• Example: double d1 = 123.4

BigDecimal k = BigDecimal.valueOf(doublevalue);

BigDecimal k = BigDecimal.valueOf(doublevalue);

Primitive Data Types (cont’d)

boolean:

• boolean data type represents one bit of information

• There are only two possible values: true and false.

• This data type is used for simple flags that track true/false conditions.

• Default value is false.

• Example: boolean one = true

char:

• char data type is a single 16-bit Unicode character.

• Minimum value is '\u0000' (or 0).

• Maximum value is '\uffff' (or 65,535 inclusive).

• Char data type is used to store any character.

• Example: char letterA ='A'

Java Identifiers
• Names for variables (and other things) are called identifiers.

• Identifiers in Java conform to the following rules:

– A variable name must begin with a letter or the underscore character.

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
do
double

else
extends
false
final
finally
float
for
goto
if
implements
import
instanceof
int

interface
long
native
new
null
package
private
protected
public
return
short
static
strictfp

super
switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

– Identifiers should make their purpose obvious to the reader.

– Identifiers should adhere to standard conventions. Variable names, for example, should begin
with a lowercase letter.

– The remaining characters must be letters, digits, or underscores.

– The name must not be one of Java’s reserved words:

Another important type is String
We will have a whole chapter on Strings.

For now you need to understand how to declare and use a String with the Scanner

15

A Variable in Java has to be declared (Variable declaration)

& initialized (Variable initialization)

Variable Declarations

• In Java, you must declare a variable before you can use it. The
declaration establishes the name and type of the variable and, in
most cases, specifies the initial value as well.

type name = value; /* int z = 10; */

• The most common form of a variable declaration is

where type is the name of a Java primitive type or class, name
is an identifier that indicates the name of the variable, and
value is an expression specifying the initial value.

Operators and Operands
• As in most languages, Java programs specify computation in the

form of arithmetic expressions that closely resemble
expressions in mathematics.

• Operators in Java usually appear between two subexpressions,
which are called its operands. Operators that take two
operands are called binary operators.

• The most common operators in Java are the ones that specify
arithmetic computation:

+ Addition

– Subtraction

* Multiplication

/ Division

% Remainder

• The - operator can also appear as a unary operator, as in the
expression -x, which denotes the negative of x.

Reference: The Art and Science of Java: Eric Roberts:

Division and Type Casts
• Whenever you apply a binary operator to numeric values in Java,

the result will be of type int if both operands are of type int, but
will be a double if either operand is a double.

• This rule has important consequences in the case of division.
For example, the expression

14 / 5

seems as if it should have the value 2.8, but because both
operands are of type int, Java computes an integer result by
throwing away the fractional part. The result is therefore 2.

• If you want to obtain the mathematically correct result, you
need to convert at least one operand to a double, as in

(double) 14 / 5

The conversion is accomplished by means of a type cast, which
consists of a type name in parentheses.

Reference: The Art and Science of Java: Eric Roberts:

9 / 5 * c + 32

The Pitfalls of Integer Division

Consider the following Java statements, which are intended to
convert 100˚ Celsius temperature to its Fahrenheit equivalent:

double c = 100;
double f = 9 / 5 * c + 32;

The computation consists of evaluating the following expression:

The problem arises from the
fact that both 9 and 5 are of

type int, which means that the
result is also an int.

9 / 5 * c + 32

1

100

132

Reference: The Art and Science of Java: Eric Roberts

The Pitfalls of Integer Division

You can fix this problem by converting the fraction to a double,
either by inserting decimal points or by using a type cast:

double c = 100;
double f = (double) 9 / 5 * c + 32;

The computation now looks like this:

1.8

180.0

212.0

(double) 9 / 5 * c + 32

9.0

Reference: The Art and Science of Java: Eric Roberts

The Remainder Operator

• The result of the % operator make intuitive sense only if both
operands are positive. The examples in this book do not
depend on knowing how % works with negative numbers.

• The remainder operator turns out to be useful in a surprising
number of programming applications and is well worth a bit of
study.

• The only arithmetic operator that has no direct mathematical
counterpart is %, which applies only to integer operands and
computes the remainder when the first divided by the second:

14 % 5 returns 4

14 % 7 returns 0

7 % 14 returns 7

Reference: The Art and Science of Java: Eric Roberts

Precedence
• If an expression contains more than one operator, Java uses

precedence rules to determine the order of evaluation. The
arithmetic operators have the following relative precedence:

unary - (type cast)

* / %

+ -

highest

lowest

Thus, Java evaluates unary - operators and type casts first, then
the operators *, /, and %, and then the operators + and -.

• Precedence applies only when two operands compete for the
same operator. If the operators are independent, Java evaluates
expressions from left to right.

• Parentheses may be used to change the order of operations.

Reference: The Art and Science of Java: Eric Roberts

(

Precedence Evaluation

What is the value of the expression at the bottom of the screen?

1 + 2) % 3 * 4 + 5 * 6 / 7 * (8 % 9) + 10

3

0

0

32

30

4

32

8

42

Reference: The Art and Science of Java: Eric Roberts

Simple rule

Use parenthesis if you forgot the precedence rule

Assignment Statements

variable = expression;

• You can change the value of a variable in your program by
using an assignment statement, which has the general form:

• The effect of an assignment statement is to compute the value
of the expression on the right side of the equal sign and assign
that value to the variable that appears on the left. Thus, the
assignment statement

Z = X + Y; //recall from AddTwoNumbers.java

adds together the current values of the variables total and value
and then stores that sum back in the variable total.

• When you assign a new value to a variable, the old value of that
variable is lost.

Reference: The Art and Science of Java: Eric Roberts

Shorthand Assignments

• Statements such as

X = X + value;

are so common that Java allows the following shorthand form:

X += value;

variable op= expression;

• The general form of a shorthand assignment is

where op is any of Java’s binary operators. The effect of this
statement is the same as

variable = variable op (expression);

For example, the following statement multiplies salary by 2.

salary *= 2;

Reference: The Art and Science of Java: Eric Roberts

Increment and Decrement Operators

• Another important shorthand form that appears frequently in
Java programs is the increment operator, which is most
commonly written immediately after a variable, like this:

x++;

The effect of this statement is to add one to the value of x,
which means that this statement is equivalent to

x += 1;

or in an even longer form

x = x + 1;

• The -- operator (which is called the decrement operator) is
similar but subtracts one instead of adding one.

Reference: The Art and Science of Java: Eric Roberts:

Boolean Expressions

George Boole (1791-1871)

In many ways, the most important primitive
type in Java is boolean, even though it is by far
the simplest. The only values in the boolean

domain are true and false, but these are exactly
the values you need if you want your program
to make decisions.

The name boolean comes from the English
mathematician George Boole who in 1854
wrote a book entitled An Investigation into the
Laws of Thought, on Which are Founded the
Mathematical Theories of Logic and Probabilities.
That book introduced a system of logic that
has come to be known as Boolean algebra, which
is the foundation for the boolean data type.

Reference: The Art and Science of Java: Eric Roberts

Boolean Operators

• The operators used with the boolean data type fall into two
categories: relational operators and logical operators.

• There are six relational operators that compare values of other
types and produce a boolean result:

== Equals

< Less than

!= Not equals

<= Less than or equal to

>= Greater than or equal to> Greater than

For example, the expression n <= 10 has the value true if x is less
than or equal to 10 and the value false otherwise.

p || q means either p or q (or both)

• There are also three logical operators:

&& Logical AND

|| Logical OR

! Logical NOT

p && q means both p andq

!p means the opposite of p

Reference: The Art and Science of Java: Eric Roberts

Notes on the Boolean Operators

• Remember that Java uses = to denote assignment. To test
whether two values are equal, you must use the == operator.

• The || operator means either or both, which is not always clear in
the English interpretation of or.

• It is not legal in Java to use more than one relational operator in
a single comparison as is often done in mathematics. To
express the idea embodied in the mathematical expression

0 ≤ x ≤ 9

0 <= x && x <= 9

you need to make both comparisons explicit, as in

• Be careful when you combine the ! operator with && and ||
because the interpretation often differs from informal English.

Reference: The Art and Science of Java: Eric Roberts

Short-Circuit Evaluation

• Java evaluates the && and || operators using a strategy called
short-circuit mode in which it evaluates the right operand only
if it needs to do so.

• One of the advantages of short-circuit evaluation is that you
can use && and || to prevent execution errors. If n were 0 in
the earlier example, evaluating x % n would cause a “division by
zero” error.

• For example, if n is 0, the right hand operand of && in

n != 0 && x % n == 0

is not evaluated at all because n != 0 is false. Because the
expression

false && anything

is always false, the rest of the expression no longer matters.

Reference: The Art and Science of Java: Eric Roberts

33

Tips that you would need as you are
programming

Limiting a number to two decimal points

Assuming sc is a scanner in your program..
….
String S1 = sc.next(); //read until it finds a space

String S2 = sc.nextLine(); //reads everything you type in the screen even
if it is separated by a space.

Tips that you would need

Reading Strings form the keyboard with or without spaces

End of Chapter#3: Expressions,
Variables, Input output using Scanner,
Introduction to Strings in Java

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

