
Chapter#13: The ArrayList Class in

Java (brief introduction to data

structures)

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

Learning Outcomes

 Learning and applying the ArrayList class

 Introducing the concept of generic type in Java, boxing and unboxing

 Learning how to implement an ArrayList of objects

Exposure to the concept of data structures

Introducing The ArrayList Class
 Although arrays are conceptually important as a data structure,

they are not used as much in Java as they are in most other
languages. The reason is that the java.util package includes a
class called ArrayList that provides the standard array behavior
along with other useful operations.

 The main differences between Java arrays and ArrayLists stem
from the fact that ArrayList is a Java class rather than a special
form in the language. As a result, all operations on ArrayLists
are indicated using method calls. For example, the most
obvious differences include:
 You create a new ArrayList by calling the ArrayList constructor.

 You get the number of elements by calling the size method rather than
by selecting a length field.

 You use the get and set methods to select individual elements.

 The next slide summarizes the most important methods in the
ArrayList class. The notation <T> indicates the base type.

In The Art and Science of Java, Stanford professor and well-known leader in CS Education Eric Roberts

Generic Types in Java
 The <T> notation used on the preceding slide is a new feature

of Java that was introduced with version 5.0 of the language. In
the method descriptions, the <T> notation is a placeholder for
the element type used in the array. Class definitions that include
a type parameter are called generic types.

 The advantage of specifying the element type is that Java now
knows what type of value the ArrayList contains. When you
call set, Java can ensure that the value matches the element type.
When you call get, Java knows what type of value to expect,
eliminating the need for a type cast.

 When you declare or create an ArrayList, it is a good idea to
specify the element type in angle brackets. For example, to
declare and initialize an ArrayList called names that contains
elements of type String, you would write

ArrayList<String> names = new ArrayList<String>();

In The Art and Science of Java, Stanford professor and well-known leader in CS Education Eric Roberts

Methods in the ArrayList Class
boolean add(<T> element)

Adds a new element to the end of the ArrayList; the return value is always true.

void add(int index, <T> element)
Inserts a new element into the ArrayList before the position specified by index.

<T> remove(int index)

Removes the element at the specified position and returns that value.

boolean remove(<T> element)
Removes the first instance of element, if it appears; returns true if a match is found.

void clear()
Removes all elements from the ArrayList.

int size()
Returns the number of elements in the ArrayList.

<T> get(int index)

Returns the object at the specified index.

<T> set(int index, <T> value)

Sets the element at the specified index to the new value and returns the old value.

int indexOf(<T> value)
Returns the index of the first occurrence of the specified value, or -1 if it does not appear.

boolean contains(<T> value)
Returns true if the ArrayList contains the specified value.

boolean isEmpty()
Returns true if the ArrayList contains no elements.

In The Art and Science of Java, Stanford professor and well-known leader in CS Education Eric Roberts

Boxing and Unboxing

 Generic types benefit substantially from the technique of
boxing and unboxing.

 As of Java Standard Edition 5.0, Java automatically converts
values back and forth between a primitive type and the
corresponding wrapper class. This feature makes it possible
to store primitive values in an ArrayList, even though the
elements of any ArrayList must be a Java class.

 In the second statement, Java uses boxing to enclose 42
in a wrapper object of type Integer. When Java executes
the third statement, it unboxes the Integer to obtain the
int.

 ArrayList<Integer> list = new ArrayList<Integer>();

 list.add(42);

 int answer = list.get(0);

 For example, suppose that you execute the following lines:

In The Art and Science of Java, Stanford professor and well-known leader in CS Education Eric Roberts

Example One: ArrayLists of Integers

Example Two: ArrayLists of Products

Example Two: ArrayLists of Products

More on ArrayLists

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

http://www.dummies.com/how-to/content/use-array-lists-in-java.html

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://www.dummies.com/how-to/content/use-array-lists-in-java.html

End Chapter#13: The ArrayList Class

in Java (brief introduction to data

structures)

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

