
Chapter#11: Main Pillars of the
Object Oriented Programming
Paradigm

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

Objectives

❖ Introducing the concepts of Encapsulation and Inheritance

❖ Learning the Super keyword, superclass methods and data fields

❖ Introducing the concept of polymorphism

❖ Learning how to use interfaces and abstract classes in Java

❖ Introducing the comparable java interface

❖ Introducing casting and instance of

❖ Understanding where to use an interface or an abstract class

2

Main Pillars of OOP

3

Review Summary on OOP

❖ Object-oriented Design: A problem-solving methodology that produces a solution to a problem in terms
of self-contained entities called objects

❖ Object: A thing or entity that makes sense within the context of the problem

❖Class: A class is a blueprint or template or set of instructions to build a specific type of object. Every
object is built from a class.

4

Encapsulation

❖Encapsulation means that all data members (fields) of a class are declared private. Some
methods may be private, too.

❖The class interacts with other classes (called the clients of this class) only through the class’s
constructors and public methods.

❖Constructors and public methods of a class serve as the interface to class’s clients.

❖Hides the fine detail of the inner workings of the class

❖The implementation is hidden

❖Often called "information hiding"

❖Part of the class is visible

❖The necessary controls for the class are left visible

❖The class interface is made visible

❖The programmer is given only enough information to use the class

5

Encapsulation

❖Access to instance variables (aka member variables, class variable)

❖private does not expose the dot operator (object.variable)

❖Protect private instances variables (Getters and Setters)

❖Setters can validate parameters:

void setSize(int a){

if (a > 0)

size = a;

else

size = 0;

}

❖Getters can protect and modify data if necessary:

String getSocialSecurityNumber(){

return “XXX-XX-” + ssn.substring(5); } 6

Encapsulation
❖ Changes in the code create software maintenance problems

❖ Usually, the structure of a class (as defined by its fields) changes more often than the class’s
constructors and methods

7

Inheritance
❖Inheritance allows a software developer to derive a new class from an existing one

❖The existing class is called the parent class, or superclass, or base class

❖The derived class is called the child class or subclass

❖As the name implies, the child inherits characteristics of the parent That is, the child class inherits
the methods and data defined by the parent class

❖A class can extend another class, inheriting all its data members and methods while redefining
some of them and/or adding its own.

❖Inheritance represents the is a relationship between data types

8

Inheritance
❖A programmer can tailor a derived class as needed by adding new variables or

methods, or by modifying the inherited ones

❖Software reuse is a fundamental benefit of inheritance

❖By using existing software components to create new ones, we capitalize on all
the effort that went into the design, implementation, and testing of the existing
software

9

Inheritance – SoccerPlayer example

Class Goalkeeper extends SoccerPlayer {......}

…

Inheritance – Person example

Inheritance – Circle-Cylinder example

Inheritance – 2D/3D point example

Inheritance - example

1-15

The super Reference

▪ Constructors are not inherited, even though they have public visibility

▪ Yet we often want to use the parent's constructor to set up the
“parent's part” of the object

▪ The super reference can be used to refer to the parent class, and often
is used to invoke the parent's constructor

Inheritance – Circle-Cylinder example

Inheritance: Super keyword

❖The keyword “super” is used to access superclass constructors, methods, and data
fields

❖Examples:

super(); invokes the default constructor of the superclass.

This call can be made only from within a constructor of a subclass

❖super(paramList);

Invokes the constructor with parameters of the superclass (assuming it exists).
This call can only be made from within a constructor of a subclass.

Inheritance: Super keyword

❖super.methodName(paramList);

Invokes a method of the superclass. This call can be made from anywhere in the
subclass.

❖super.dataField;

Accesses a data Field of the superclass. This call can be made from anywhere in the
subclass.

Inheritance: Superclass methods and data fields

A subclass inherits all public and protected methods and data fields of its superclass.

As a result, a subclass can use the methods and data fields it inherits without defining them.

Remember that there are 4 types of java access modifiers:

• Private: The private access modifier is accessible only within class.

• Default: If you don't use any modifier, it is treated as default bydefault. The default modifier is accessible
only within package.

• Protected: The protected access modifier is accessible within package and outside the package but through
inheritance only. The protected access modifier can be applied on the data member, method and constructor.
It can't be applied on the class.

• Public: The public access modifier is accessible everywhere. It has the widest scope among all other
modifiers.

Inheritance: Superclass Example 1

public class C1{

protected int x;

public void setX (int x) {

this.x = x;

}

//the rest of the class definition

}

public class C2 extends C1{

protected float c;

public C2 (float c, int x) {

this.c = c;

setX(x);

}

//the rest of the class definition

}

Inheritance: Superclass Example 1 (cont’d)

In this example, the class C2 can access the data field “x” and the method “setX()”
without defining them because they are inherited from C1.

Inheritance: Superclass Example 2

In the following example, the keyword “protected” is used to indicate data fields and
methods that are accessible only from within the class and those that inherit from it.

One can use the “super” keyword to indicate the inherited methods but it isn’t
necessary, unless the methods are overridden. The class C2 from Example 1 can be
rewritten as shown in Example 2.

Superclass Example 2

public class C2 extends C1 {

protected float c;

public C2 (float c, int x) {

this.c=c;

super.setX(x);

}

//the rest of class definition

}

Inheritance: Constructors and Inheritance

Constructors of the superclass are not inherited by its subclass. They can be invoked
using the super keyword within the subclass constructors.

Inheritance:
Constructors and Inheritance Example

public class C1 {

public C1 (int c) [//do something]

//class definition

}

public class C2 extends C1{

public C2 (int c, int x) {

super(c);

//do something

}

//class definition

}

Inheritance: Constructors and Inheritance Example
(cont’d)
In this example, an object of the C2 class can be used with two parameter
constructors, BUT NOT one parameter constructor or the default constructor.

C2 object1 = new C2(3,5); //is valid

C2 object2 = new C2(3); //is NOT valid

C2 object3 = new C2(); //is NOT valid

Inheritance: Constructors and Inheritance

Constructor Chaining: constructing an instance of a class invokes the constructors
of ALL the superclasses along the inheritance chain.

A constructor may:

• Invoke and overloaded constructor (of its own class), or

• Invoke its superclass constructor (this has to be done in the first line of the
constructor).

If neither of these happens, the java compiler adds super() as the first statement in the
constructor.

Inheritance: Overriding methods of the superclass

❖Overriding is redefining a method of a superclass in a subclass.

❖The overridden method has to have the same name, parameter list, and return type
as the method in the superclass.

Inheritance: Overriding methods of the superclass
Example
public class C1 {

public void sayHi() {

System.out.println("C1 says hi");

}

//rest of class definition

}

public class C2 extends C1 {

@Override

public void sayHi() {

super.sayHi();

System.out.println("C2 says hi");

}

//rest of class definition

}

Inheritance: Overriding methods of the
superclass

❖The class C2 overrides the inherited method sayHi() and uses the super keyword to
access the overridden method (in this case the keyword super is not optional).

❖An overridden method of a superclass can be accessed using the super keyword.

❖Static methods of the superclass are not overridden.

❖Use the override annotation, @Override, when declaring methods that override
methods of the superclass. This way, the java compiler double checks that our
method truly overrides the method of the superclass.

Inheritance: Overriding vs Overloading

The method in a subclass does not match the method of its superclass exactly in its
parameter list, then it only overloads the method of the superclass.

• See Example on next slide

Inheritance: Overriding vs Overloading

Object Class and its Methods

▪ Every class in Java inherits automatically from the Object class.

▪ This class has several methods that every other class inherits, most of which are not
interesting. For more information, see the documentation from Oracle.

https://docs.oracle.com/javase/tutorial/

▪ toString(), a commonly used method, is inherited from the Object class. When you
write your own version of this method, you are overriding the one in the Object
class.

https://docs.oracle.com/javase/tutorial/

Inheritance vs. Composition

▪ There are two ways of reusing existing classes: composition and inheritance

▪ Composition exhibits a "has-a" relationship

▪ Inheritance represents the “is a” relationship between data types

▪ Example: Course (to previous example), a course has a teacher and

students

Inheritance vs. Composition - example

we can re-use the Point class via composition.

We say that "A line is composed of two points", or "A line has two points"

Polymorphism

❖The term polymorphism means “having many forms”

❖A polymorphic reference is a variable that can refer to different types of
objects at different points in time

❖The method invoked through a polymorphic reference can change from one
invocation to the next

❖All object references in Java are potentially polymorphic

❖Polymorphism ensures that the appropriate method is called for an object of
a specific type when the object is disguised as a more general type.

❖Polymorphism is already supported in Java — all you have to do is use it
properly.

Polymorphism

❖Refers to the ability to process objects differently depending on their data type or class. More
specifically, it is the ability to redefine methods for derived classes.

❖Dynamic binding: A method that can be implemented in several classes along the
inheritance chain. The JVM (Java Virtual Machine) decides which method will run at
runtime.

❖A variable has two types associated with it:

Declared type – the type listed in the variable declaration

Actual type - the type of object that variable references

❖The method invoked by a variable at runtime is determined by its actual type. However, the
compiler only determines the appropriateness of method calls based on the declared type.

Polymorphism: Casting and instanceof Operator

Person p = new Student (…);

In this example, we are seeing implicit casting. It is done automatically because an
instance of the class Student is an instance of the class Person.

On the other hand:

Person s = new Student (…);

Student s = p;

This example will cause a compiler error because it only uses the declared type of
variable p. Since Person is not a student, it cannot perform the assignment.

Polymorphism: Casting and instanceof Operator

In this case, p references a Student object, but it might not always be the case (and the
compiler can’t know that). The way around it is through explicit casting:

Person s = new Student (…);

Student s = (Student) p;

The instanceof operator allows you to make sure that the particular variable references
the object that is of a particular type:

refVariable instanceof ClassName

This evaluates to true if refVariable references an instance of class ClassName, and
false otherwise.

Interfaces in Java

▪An interface is a reference type, similar to a class, that can contain only
constants, method signatures, and nested types.

▪There are no method bodies.

▪ Interfaces cannot be instantiated

▪They can only be implemented by classes or extended by other interfaces.

Example

40

Comparable Interface in Java

❖An interface is a class-like construct that contains only constants and abstract
methods.

❖Note that all data fields have to be public static final if you have any in your
interface.

❖All methods have to be public abstract.

❖ Note that you can omit the access modifiers in definitions of interfaces.

❖ Example: Comparable interface provided by Java [1]
A class that implements Comparable interface has to provide compareTo(). Note that this is
the only requirement of the Comparable interface.

Required Reading:
[1] https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html

41

https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html

Comparable Interface in Java

42

// This interface is defined in

// java.lang package

package java.lang;

public interface Comparable<E> {

public int compareTo(E o);

}

Integer and BigInteger Classes

43

 public class Integer extends Number

 implements Comparable<Integer> {

 // class body omitted

 @Override

 public int compareTo(Integer o) {

 // Implementation omitted

 }

}

public class BigInteger extends Number

 implements Comparable<BigInteger> {

 // class body omitted

 @Override

 public int compareTo(BigInteger o) {

 // Implementation omitted

 }

}

 public class String extends Object

 implements Comparable<String> {

 // class body omitted

 @Override

 public int compareTo(String o) {

 // Implementation omitted

 }

}

public class Date extends Object

 implements Comparable<Date> {

 // class body omitted

 @Override

 public int compareTo(Date o) {

 // Implementation omitted

 }

}

String and Date Classes

Example Credits: Liang, Introduction to Java Programming, 10th Edition, Pearson Education

Integer and BigInteger Classes

44
Example Credits: Liang, Introduction to Java Programming, 10th Edition, Pearson Education

Abstract Classes in Java

❖An abstract class contains abstract methods

❖You can think of these as method-placeholders

❖Abstract methods are implemented by concrete subclasses

❖ Reason for using abstract classes:
▪ Provide base/superclass that guarantees that all subclasses provide certain

methods (subclasses) have to implement abstract methods of its superclass

▪ Provides the ability to write more “generic”

Abstract Classes vs. Interfaces in Java

❖ An interface is a class-like construct that contains only constants and
abstract methods.

❖Note that all data fields have to be public static final if you have any in
your interface.

❖All methods have to be public abstract.

❖ Note that you can omit the access modifiers in definitions of interfaces.
All data fields are public final static and all methods are public abstract in
an interface. For this reason, these modifiers can be omitted, as shown
below

46

 public interface T1 {
 public static final int K = 1;

 public abstract void p();

}

Equivalent

public interface T1 {

 int K = 1;

 void p();

}

Abstract Classes and Abstract Methods

❖ An abstract method cannot be contained in a nonabstract class.

❖ If a subclass of an abstract superclass does not implement all the
abstract methods, the subclass must be defined abstract.

❖In other words, in a nonabstract subclass extended from an abstract
class, all the abstract methods must be implemented, even if they are not
used in the subclass.

❖An abstract class cannot be instantiated using the new operator, but
you can still define its constructors, which are invoked in the
constructors of its subclasses. (example on next slide)

47

Abstract class and constructors

48

 GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

#GeometricObject()

#GeometricObject(color: string,

filled: boolean)

+getColor(): St ring

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled : boolean): void

+getDateCreated(): java.util.Date

+toString(): String

+getArea(): double

+getPerimeter(): double

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: string,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getDiameter(): double

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,

color: string, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

The # sign indicates

protected modifier

Abstract class

Abstract methods

are italicized

Methods getArea and getPerimeter are overridden in

Circle and Rectangle. Superclass methods are generally

omitted in the UML d iagram for subclasses.

Example Credits: Liang, Introduction to Java Programming,

10th Edition, Pearson Education

The constructors of Geometric

Object (abstract class) are invoked

in the Circle class and the

Rectangle class.

Abstract Class as a Data Type

▪You cannot create an instance from an abstract class using the new
operator, but an abstract class can be used as a data type. Therefore, the
following statement, which creates an array whose elements are of
GeometricObject type, is correct.

GeometricObject[] geo = new GeometricObject[10];

49
Example Credits: Liang, Introduction to Java Programming,

10th Edition, Pearson Education

Interfaces vs. Abstract Classes
▪ In an interface, the data must be constants; an abstract class can have all

types of data.

▪Each method in an interface has only a signature without
implementation; an abstract class can have concrete methods.

50
Example Credits: Liang, Introduction to Java Programming, 10th Edition, Pearson Education

Whether to use an interface or a class?

▪ Abstract classes and interfaces can both be used to model common features.

▪ How do you decide whether to use an interface or a class?

▪ In general, a strong is-a relationship that clearly describes a parent-child relationship
should be modeled using classes. For example, a staff member is a person.

▪ So their relationship should be modeled using class inheritance.

▪ A weak is-a relationship, also known as an is-kind-of relationship, indicates that an
object possesses a certain property. A weak is-a relationship can be modeled using
interfaces. For example, all strings are comparable, so the String class implements
the Comparable interface. You can also use interfaces to circumvent single
inheritance restriction if multiple inheritance is desired. In the case of multiple
inheritance, you have to design one as a superclass, and others as interface (Java does
not implement multiple inheritance)

51

Polymorphism Example

Polymorphism Example
(cont’d)

End of Chapter#11: Main Pillars of
the Object Oriented Programming
Paradigm

Anasse Bari, Ph.D.

Courant Institute of Mathematical Sciences
Department of Computer Science
CS101 Introduction to Computer Science

