Additional Notes on:
Interfaces & Polymorphism

Further required readings from Liang (Textbook): Chapter 11
(Polymorphism)
Chapter 13 (Interfaces)

Credits: http://www.ldodds.com/



Overview

Interfaces

Static Binding
Dynamic Binding
— Polymorphism
Casting



Interfaces

* Interfaces define a contract
— Contain methods and their signatures
— Can also include static final constants (and comments)
— But no implementation

 \ery similar to abstract classes

« One Interface can extend another, but
— An interface cannot extend a class
— A class cannot extend an interface
— Classes implement an interface



Defining Interfaces

 Usethe interface keyword

public i1nterface Vehicle {
public voild turnLeft ()
public void turnRight();

}

 Like abstract methods, the signature Is
terminated with a semi-colon



Implementing Interfaces

» Usethe implements keyword

public class MotorBike implements Vehicle {
//include methods from Vehicle interface

}
 Class must implement all methods of the interface
— OR declare itself to be abstract

 Classes can implement any number of interfaces

public class MotorBike implements Vehicle, Motorised

 Possible to combine extends and implements

public class MotorBike extends WheeledVehicle
implements Vehicle, Motorised



Benefits of Interfaces

 Cleanly separates implementation of behaviour
from description of the behaviour

— Means the implementation is easily changed
Vehicle vehicle = new MotorBike () ;
// might become..
Vehicle vehicle = new MotorCar () ;

« Many OO systems are defined almost entirely of
Interfaces

— Describes how the system will function
— The actual implementation is introduced later



Overview

o Static Binding



Binding

 Binding Is what happens when a method
Invocation Is bound to an implementation

— Involves lookup of the method in the class, or one or its
parents

— Both method names and parameters are checked
 Binding can happen at two different times

— Compile time == static binding

— Run time == dynamic binding



References Objects

MotorBike bike; ¢

bike = new MotorBike(); Motor
Bike

MotorBike bike2; O

bike2 = bike; O



Static Binding

References have a type
— |l.e. they refer to instances of a particular Java class

Objects have a type

— |l.e. they are instances of a particular Java class
— They are also Instances of their super-class

— Inheritance describes an IsA relationship

— E.g. a MotorBike isA Motor\ehicle

Static binding done by the compiler
— When it can determine the type of an object

Method calls are bound to their implementation
Immediately



Static Binding Example 1

//class definition

public class MotorBike {

public void revEngine () {..}

}

//usage

MotorBike bike = new MotorBike () ;

motorbike.revEngine () ;



Static Binding Example 2

public class MotorVehicle {
public void start () {..}
public void stop() {..}

}

public class MotorBike extends MotorVehicle

{

//overridden
public void start () {..}
public void revEngine () {..}

//usage. Still statically bound
MotorBike bike = new MotorBike () ;

motorbike.start () ;



Dynamic Binding

e Achieved at runtime

— When the class of an object cannot be
determined at compile time

— Means the JVM (not the compiler) must bind a
method call to its implementation

e |nstances of a sub-class can be treated as if
they were an instance of the parent class

— Therefore the compiler doesn’t know its type,
just its base type.



Dynamic Binding Example 1

//reference 1s to base class
MotorVehicle vehicle = new MotorBike () ;

//method is dynamically bound to
MotorBike start method

vehicle.start () ;

//remember all classes derive from Object
Object object = new MotorBike();
object.toString ()



Dynamic Binding Example 2

public interface ElectricalAppliance {
public void turnOn();
public voild turnOff () ;

}

public class RemoteControl () {

public static void
turnApplianceOn (ElectricalAppliance appliance)

{

appliance.turnOn () ;

ElectricalAppliance appliance = ..;
RemoteControl. turnApplianceOn (appliance) ;



Dynamic Binding Example 2

public class HairDryer implements
ElectricalAppliance {

public class Light implements ElectricalAppliance

{
}

FElectricalAppliance appliance = new HairDryer () ;
RemoteControl.turnApplianceOn (appliance);

appliance = new Light();
RemoteControl.turnApplianceOn (appliance) ;



References and Behaviours

 The type of the object determines Its
possible behaviours

— |.e. we define them in the class
* The object reference limits the behaviours

we can Invoke to those defined by the type
of the reference



Dynamic Binding Example 3

public abstract class HairDryer
implements ElectricalAppliance {

//other methods
public void adjustTemperature() ;

J

ElectricalAppliance appllance = new
HalrDryer ()

//following won’t compile
appliance.adjustTemperature() ;



Dynamic Binding Summary

Whenever a reference refers to an interface or a
base class, methods are dynamically bound

Method implementation determined at runtime
Dynamic Binding == Polymorphism
— Very powerful OO feature

Allows the creation of “frameworks”

— Applications that are implemented around interfaces,
but are customised by plugging in different
Implementations of those interfaces

— Very extensible



Overview

 Casting

Credits: http://www.ldodds.com/



Checking an Objects Type

* |ts possible to check the actual type of an
object

— May want to check the real type, if we’ve only
got a reference to an interface or base class

» Use the instanceof operator

— Must be applied to an object, tests whether it
has a given type



Instanceof Example

//class definition
public class MotorBike implements Vehicle, Motorised

{ .}

//code fragment
Vehicle bike = new MotorBike () ;

1f (bike instanceof MotorBike) {
//do something

}

1f (bike instanceof Motorised) {
//do something

}



Casting

» If we know the type, we can then “cast” the object

Vehicle bike = new MotorBike () ;
1f (bike instanceof MotorBike) {
MotoBike bike = (MotorBike)bike;

}

 If the object 1sn’t of that type, then an exception
will be thrown

— Good idea to always check before casting, unless
you’re absolutely sure!



references

Credits: http://www.ldodds.com/



