
Additional Notes on: 

Interfaces & Polymorphism
Further required readings from Liang (Textbook): Chapter 11 

(Polymorphism)

Chapter 13 (Interfaces)

Credits: http://www.ldodds.com/



Overview

• Interfaces

• Static Binding

• Dynamic Binding

– Polymorphism

• Casting



Interfaces

• Interfaces define a contract

– Contain methods and their signatures

– Can also include static final constants (and comments)

– But no implementation

• Very similar to abstract classes

• One interface can extend another, but

– An interface cannot extend a class

– A class cannot extend an interface

– Classes implement an interface



Defining Interfaces

• Use the interface keyword
public interface Vehicle {

public void turnLeft();

public void turnRight();

} 

• Like abstract methods, the signature is 

terminated with a semi-colon



Implementing Interfaces

• Use the implements keyword
public class MotorBike implements Vehicle {

//include methods from Vehicle interface

}

• Class must implement all methods of the interface
– OR declare itself to be abstract

• Classes can implement any number of interfaces
public class MotorBike implements Vehicle, Motorised

• Possible to combine extends and implements
public class MotorBike extends WheeledVehicle 

implements Vehicle, Motorised



Benefits of Interfaces

• Cleanly separates implementation of behaviour 
from description of the behaviour

– Means the implementation is easily changed
Vehicle vehicle = new MotorBike();

// might become…

Vehicle vehicle = new MotorCar();

• Many OO systems are defined almost entirely of 
interfaces

– Describes how the system will function

– The actual implementation is introduced later



Overview

• Interfaces

• Static Binding

• Dynamic Binding

– Polymorphism

• Casting



Binding

• Binding is what happens when a method 

invocation is bound to an implementation

– Involves lookup of the method in the class, or one or its 

parents

– Both method names and parameters are checked

• Binding can happen at two different times

– Compile time == static binding

– Run time == dynamic binding



Motor

Bike

MotorBike bike;

References Objects

bike = new MotorBike();

MotorBike bike2;

bike2 = bike;



Static Binding

• References have a type

– I.e. they refer to instances of a particular Java class

• Objects have a type

– I.e. they are instances of a particular Java class

– They are also instances of their super-class

– Inheritance describes an isA relationship

– E.g. a MotorBike isA MotorVehicle

• Static binding done by the compiler

– When it can determine the type of an object

• Method calls are bound to their implementation 
immediately



Static Binding Example 1

//class definition

public class MotorBike {

public void revEngine() {…}

}

//usage

MotorBike bike = new MotorBike();

motorbike.revEngine();



Static Binding Example 2

public class MotorVehicle {

public void start() {…}

public void stop() {…}

}

public class MotorBike extends MotorVehicle

{

//overridden

public void start() {…}

public void revEngine() {…}

}

//usage. Still statically bound

MotorBike bike = new MotorBike();

motorbike.start();



Dynamic Binding

• Achieved at runtime

– When the class of an object cannot be 
determined at compile time

– Means the JVM (not the compiler) must bind a 
method call to its implementation

• Instances of a sub-class can be treated as if 
they were an instance of the parent class

– Therefore the compiler doesn’t know its type, 
just its base type.



Dynamic Binding Example 1

//reference is to base class

MotorVehicle vehicle = new MotorBike();

//method is dynamically bound to 

MotorBike start method

vehicle.start();

//remember all classes derive from Object

Object object = new MotorBike();

object.toString();



Dynamic Binding Example 2
public interface ElectricalAppliance {

public void turnOn();

public void turnOff();

}

public class RemoteControl() {

public static void 

turnApplianceOn(ElectricalAppliance appliance)

{

appliance.turnOn();

}

}

ElectricalAppliance appliance = …;

RemoteControl.turnApplianceOn(appliance);



Dynamic Binding Example 2

public class HairDryer implements 

ElectricalAppliance {

}

public class Light implements ElectricalAppliance 

{

}

ElectricalAppliance appliance = new HairDryer();

RemoteControl.turnApplianceOn(appliance);

appliance = new Light();

RemoteControl.turnApplianceOn(appliance);



References and Behaviours

• The type of the object determines its 

possible behaviours

– I.e. we define them in the class

• The object reference limits the behaviours 

we can invoke to those defined by the type 

of the reference



Dynamic Binding Example 3

public abstract class HairDryer

implements ElectricalAppliance {

//other methods

public void adjustTemperature();

}

ElectricalAppliance appliance = new 

HairDryer();

//following won’t compile

appliance.adjustTemperature();



Dynamic Binding Summary

• Whenever a reference refers to an interface or a 
base class, methods are dynamically bound

• Method implementation determined at runtime

• Dynamic Binding == Polymorphism

– Very powerful OO feature

• Allows the creation of “frameworks”

– Applications that are implemented around interfaces, 
but are customised by plugging in different 
implementations of those interfaces

– Very extensible



Overview

• Interfaces

• Static Binding

• Dynamic Binding

– Polymorphism

• Casting

Credits: http://www.ldodds.com/



Checking an Objects Type

• Its possible to check the actual type of an 

object

– May want to check the real type, if we’ve only 

got a reference to an interface or base class

• Use the instanceof operator

– Must be applied to an object, tests whether it 

has a given type



Instanceof Example

//class definition

public class MotorBike implements Vehicle, Motorised 

{ … }

//code fragment

Vehicle bike = new MotorBike();

if (bike instanceof MotorBike) {

//do something

}

if (bike instanceof Motorised) {

//do something

}



Casting

• If we know the type, we can then “cast” the object

Vehicle bike = new MotorBike();

if (bike instanceof MotorBike) {

MotoBike bike = (MotorBike)bike;

}

• If the object isn’t of that type, then an exception 

will be thrown

– Good idea to always check before casting, unless 

you’re absolutely sure!



references

Credits: http://www.ldodds.com/


