
§1. What is a Finite Precision Line? Lecture 5 Page 1

Lecture 5

GEOMETRIC APPROACHES

We look at some geometric approaches to nonrobustness. An intriguing idea here is the notion
of “fixed precision geometry”. After all, if nonrobustness is a geometric phenomenon, it makes
sense to modify the geometry to reflect the fixed precision we find in numbers. There are many
ways to create such ersatz geometries, which in various ways try to recover the basic properties
of standard Euclidean geometry. We illustrate several such geometries through a discussion of
“fixed precision lines”.

§1. What is a Finite Precision Line?

Since qualitative errors is geometric in nature, we may attempt to modify the underlying geometry to
be achieve robust behavior. E.g., with finite precision arithmetic, it seems reasonable to replace standard
Euclidean geometry by some finite precision geometry. We have already met such a geometry in Chapter
1: we interpreted the standard epsilon-tweaking trick as manipulating new kinds of “points” and “lines”,
namely, fat points and fat lines.

There are many potential candidates for finite-precision geometries, even for the simple concept of lines.
We give some common answers [26]. to the question “what is a finite precision line?” Each answer can be
viewed as representative of a general approach to finite precision geometry.

(a) fat line (b) polyline

(c) rounded parameter lines (d) digital line

Figure 1: Finite Precision Line Geometry
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• Interval Geometry: We use the term “interval geometry” to refer any approach which replaces standard
geometric objects by “fat geometric objects”. A “fat point” can be a disc, but it can be generally be any
simply-connected bounded region. A “fat line” can be any region bounded by two infinite polygonal
paths; the region is retractable to a continuous curve that separates the plane. Such a fatline is
illustrated in Figure 1(a), generalizing the concept in Lecture 1. This is the geometric analogue of
interval arithmetic, and has been proposed in many different settings, e.g., [19, 12]. Guibas and Stolfi
[6] investigated a form of such geometry (“ε-geometry”) by focusing on geometric ε-predicates that
can have yes/no/uncertain values. Interval geometry is also attractive from another viewpoint: in the
field of mechanical design and manufacture, the tolerancing of geometric objects [25, 13] is a critical
problem. The computational aspects of this field is being pursued under the name of computational
metrology [9, 27, 14].

• Topologically Consistent Geometry: A line can be distorted into a curve, which in practice would
become a polyline, i.e., a polygonal line that separates the plane into two components. This is
illustrated in Figure 1(b). The goal of distortion is to preserve some desired topological property of
the original lines. Such polylines arise when computing the arrangements of lines in which intersection
points must be rounded to grid points. Consider the following grid model studied by Greene and Yao
[4]. Let G be a grid, typically G = Z×Z. Assume the input are segments whose end points lie on this
grid. For each input pair (s, s′) of intersecting line segments, we move the intersecting point to a close
grid point p ∈ G. The segment s, s′ are now converted into polysegments (a polygonal path) with the
same end points as before, but now passing through p. Greene and Yao require the transition from s
into a polysegment not to cross any gridpoint, leading to polysegments with continued fraction type
properties.

Sugihara and Iri [23, 24] propose topological consistency as a fundamental principle for achieving
robustness.

• Rounded Parametric Geometry: Assume our geometric objects live in some parametric space. For
instance, lines can be represented in the form L = Line(a, b, c) as in Chapter 1. This corresponds to
the Euclidean line with equation aX + bY + c = 0. We want to round the line parameters (a, b, c) to
some (a′, b′, c′) where a′, b′, c′ comes from some finite set of representable values (say L-bit integers).
We call Line(a′, b′, c′) a rounded line. This approach was introduced by Sugihara [20] who discussed
several approaches to rounding lines. For instance, we might like to restrict |a′|, |b′|, |c′| to lie in the
range [0, 2L). Suppose L = 1, then a′, b′, c′ comes from the set {−2,−1, 0, 1, 2}. In Figure 1(c), we
show all 8 lines for the case L = 1 in which c′ = 0.

Figure 2: All 40 parametric lines with L = 1.

In Figure 2, we show all the 40 possible lines for the case L = 1. You will note a somewhat uneven
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distribution of lines; Sugihara suggested that we get a nicer class of rounded lines if we let allow |c′| to
be in the larger range [0, 4L).

• Digital Geometry: This is well-known in computer graphics: a line is a suitable set of pixels on a finite
screen. In contrast to the previous rounding in parameter space, in digital geometry we discretize
the underlying Euclidean space where the geometric object lives. Figure 1(d) illustrates a digital line
represented as a set of darkened pixels. This is known as a Bresenham line in computer graphics. In the
field of image processing, an area called “digital geometry” investigates properties of such discretized
representation of objects.

¶1. Software and Language Support. In the previous Lecture, we noted the available software and
language support for the arithmetic approaches to non-robustness. For geometric approaches, we need
higher level software support. There are well-known numerical libraries such as LAPACK which users can use
to implement robust geometric primitives. Newer efforts such as LEDA and CGAL aim to directly provide
robust geometric primitives, and basic algorithms and data structures as building blocks for large-scale
geometric applications. Important primitives that ought to be supported by languages or libraries include
scalar product [16] and accurate determinant evaluation. More generally, we could extend programming
languages to support geometric objects and their manipulation [18].

Exercises

Exercise 1.1: Consider lines with integer parameters (a, b, c) representing the line with equation aX +bY +
c = 0. Let L(A,B,C) denote the set of lines (a, b, c) where |a| < A, |b| < B, |c| < C.
(i) Draw the set L(2L, 2L, 2L) where L = 3.
(ii) Draw the same set with L(2L, 2L, 4L) where L = 3.
(iii) Why did Sugihara suggest that L(2L, 2L, 4L) is superior to L(2L, 2L, 2L)? ♦

End Exercises

§2. Robust Line Segment Intersection

We consider another fundamental problem in computational geometry: given a set S of line segments
(or “segments” for short) in the plane, we want to compute their arrangement. This is a very basic problem
that arises in VLSI circuit design, hidden line elimination, clipping and windowing, physical simulations, etc.
The arrangement of S is a 1-skeleton (or network) determined by the segments and their intersections: a
1-skeleton is basically a graph that is embedded in the plane: its vertices are the endpoints of segments and
the intersection points. Its edges are the open portions of segments bounded by two vertices. Figure 3(a)
illustrates the 1-skeleton of a set {s1, . . . , s7} of segments.

There are several algorithms for this problem. The asyptotically best algorithm is from Chazelle and
Edelsbrunner, with running time O(k + n log n) where k is the number of intersection points and n is the
number of segments. Here k is the output parameter and ranges from 0 to n2. More practical algorithms
based on randomization have been given Clarkson and also Mulmuley. Algorithms that takes into account
robustness issues have been studied by Greene and Yao [4], Milenkovic [15], and Sugihara [21]. The approach
of Hobby [7], Guibas and Marimont [5] and Goodrich, et al [3] are based on the concept of “snap rounding”,
which we will treat in detail.

Recently, Preparata et al considered another issue, namely modifying the primitives using in these algo-
rithms so that the algebraic degree is as small as possible. Although this clearly can help FP computations,
it is useful even in AP computation.

¶2. Bentley-Ottman Algorithm. The classic algorithm for computing the 1-skeleton of a set of segments
is from Bentley and Ottmann. This algorithm takes time O((n+k) log n) where n is the number of segments
and k the number of pairwise intersections. It is quite easy to describe. Later we will implement Hobby’s
snap rounding using this algorithm as its basis [7].

Let us briefly review the Bentley-Ottmann algorithm. We assume a vertical sweepline L parametrized by
a real number t: let L(t) denote the sweepline at time t, when it has the equation x = t. See Figure 3(b)
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(a) 1-Skeleton of 7 segments
(b) Sweepline events
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Figure 3: (a) 1-Skeleton, (b) Sweepline events.

where the position of the sweeplines at times t = t1, . . . , t5 are shown. The line sweeps from left to right (so
time t increases from −∞ to +∞). We will need two data structures Q and T :

• We need a min-priority queue Q, the event queue, initialized to store the events. Intuitively, the end
points of each input segment represents an event. Each event has an associated point p = (p.x, p.y)
which is used as the priority of the event. We compare points p, q using their lexicographic ordering
≤LEX:

p ≤LEX q

iff p.x < q.x or (p.x = q.x and p.y ≤ q.y). If the endpoints of a segment s are p and q, and p <LEX q,
then we call p the start point and q the stop point of s. Initially, all the events in Q are either start
events or stop events, corresponding to the leftmost or rightmost endpoints of a segment. Later we
introduce a third kind of event, intersection events.

See Figure 3(b) which illustrates the various kinds of events. More precisely, an event is a point p with
some associated segments: a start (resp., stop) event is e = (p, s) where p is the start (resp., stop)
point of s, and an intersection event is e = (p, s, s′) where p = s ∩ s′, and p is in the relative interior
of s or the relative interior of s′. We call p the event point and p.x the event time of e. Any given
point p may be associated with more than one event (e.g., the blue point in Figure 3).

In the following, we shall assume that each point is as-
sociated with a unique event. The general case will be
addressed in the Exercises.

• As L sweeps from left to right, we pause at each event time. Suppose all the event points are globally
sorted as p1 <LEX p2 <LEX · · · . Thus, we obtain

x1 ≤ x2 ≤ · · ·

where xi = pi.x is the ith event time. By our assumption, there is a unique event ei whose event point
is pi. However, this does not rule out the possibility that xi = xi+1. Of course, this global information
is not known in advance. Nevertheless, we will have “just in time” information: our algorithm ensures
that, after ei has been processed, then the minimum priority event in Q will be ei+1.

Conceptually, at any moment t, we keep track of the set S(t) of segments that intersect L(t). The set
S(t) for t = xi is in transition, and so we only focus on the time between two consecutive event times,
xi < t < xi+1. These segments in S(t) are sorted by the y-coordinates of their intersection with L(t).
Although the actual y-coordinate depend on the value of t, their relative ordering is invariant between
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two events. Suppose S(t) = {s1, . . . , sk} for some k = k(t), and let segment sj intersect the line L(t)
at the y-coordinate yj(t). We sort the yj(t)’s so that

y1(t) < y2(t) < · · · yk(t). (1)

Clearly, k(t) and the set S(t) is invariant for all t ∈ (xi, xi+1). Therefore, we may write ki and Si for
k(t) and S(t). Likewise, the ordering (1) is invariant and it induces an ordering on the set Si, which
we denote by

s1 <i s2 <i · · · <i sk. (2)

• This total ordering (2) is maintained by our second data structure T , which is a balanced binary tree.
The following invariant will be observed for T :

INV ARIANT : (3)

For each pair adjacent segments sj < sj+1 in T (t), if sj , sj+1 properly intersect at a
point q to the right of L(t), then the intersection event (q, sj , sj+1) is in Q(t).

• Here is how we update T and Q with each event e:

– If e = (q, sj) is a stop event, we delete sj from T .

To maintain the invariant (3): if sj is not the first or last segment in T , then there are two
segments sj−1, sj+1 in T that are now adjacent after we delete sj . We check if they intersect at
some point q′ to the right of the line L(q.x); if so, put a new intersection event (q′, si−1, si+1) into
Q.

– If e = (q, s) is start event, we insert s into T .

To maintain the invariant (3): suppose s is inserted between sj and sj+1. Then we must check
if (sj , s) and (s, sj+1) generates any intersection events to the right of L(q.x). If so, these are
inserted into Q.

– If e = (q, sj , sj+1) is an intersection event, then we can swap the relative ordering of sj and sj+1

in T .

To maintain the invariant (3): If j > 1, then we must check if (sj−1, sj+1) generates an intersection
event to the right of L(q.x). If so, we insert it into Q. If j + 1 < k, then we must similarly check
if (sj , sj+2) generates an intersection event to the right of L(q.x). If so, we insert it into Q.

This completes our algorithm. In the exercises, we ask you to work our the primitives that must be
implemented, the degeneracies, and also the possibly errors that can occur because of numerical errors.

¶3. Snap Rounding on a Grid. We consider the following finite-precision model of geometry. We first
begin with 1-dimension: any finite sequence (or set) of numbers

G : a0 < a1 < · · · < am

is called a 1-grid on the interval [a0, am], also known as the domain of G. Each ai is a grid point, and
#(G) := m is the size of G. In the simplest case, we have the uniform grid of width w > 0, where
ai − ai−1 = w for i = 1, . . . ,m. In illustrations, we always use uniform grids. A finite integer grid is the case
where w = 1. However, a very important non-uniform example is where G = F (2, t) ∩ [a0, am] is a set of
floating point numbers.

Let us extend the above definitions to 2-dimensional grids: if Gi is a 1-grid on [ℓi, ui] (for i = 1, 2), then
the set G = G1 ×G2 is a 2-grid on the domain [ℓ1, u1]× [ℓ2, u2] ⊆ R

2. If ai, bi (i = 1, 2) are adjacent points
in Gi then the square [a1, b1] × [a2, b2] is called a grid square. The size of G is #(G) = #(G1)#(G2).
Clearly, we can extend this to an d-grid in R

d (d ≥ 3).
Let us consider the geometry of points and line segments on the 2-grid G. Recall in the introduction to

this Lecture, we discussed digital geometry or the computer graphics viewpoint – a point is a grid square, and

c© Mehlhorn/Yap Draft March 10, 2009



§2. Line Segment Intersection Lecture 5 Page 6

a line is a Bresenham set of grid squares. In the present discussion, especially since grid squares may have
non-uniform sizes, we take a different approach. We assume that “points” are dimensionless, as standard
Euclidean geometry. However, points must be “representable” — this means they must be grid points. Next,
what are “representable” (line) segments? Initially, we may think of segments as defined by pairs to grid
points. But when we consider the 1-skeleton of a set of segments, we see that our concept of segments must
be generalized.

Suppose s = [a, b] and s′ = [a′, b′] are two representable segments. Let s intersect s′ in a point p; say
the intersection is proper, i.e., p is in the relative interior of both s and s′. If p is not a grid point, we will
“round” p to some nearby grid point q. In Lecture 1, we discuss a fundamental identity,

OnLine(Intersect(s, s′), s) ≡ TRUE.

To preserve this identity, we must next replace s (resp., s′) by the “polysegment” s = [a, q, b] (resp., s′ =
[a′, q, b′]).

More generally, a polysegment is a finite polygonal path [q0, q1, . . . , qk] where each qi is a grid point.
We call [qi−1, qi] (i = 1, . . . , k) a subsegment of the polysegment. If a polysegment s = [. . . , qi, qi+1, . . .]
passes sufficiently close to a grid point q in the sense that there is some point p ∈ [qi, qi+1] which can can
round to q, then we may modify s to the polysegment [. . . , qi, q, qi+1, . . .], by inserting q into s. We say that
s is snapped to q. This defines our basic model for segment geometry on the grid. There is also a naive
method to compute the 1-skeleton of a set of segments: we successively find intersection points p between
polysegments, round p to some grid point q, and then snap the underlying polysegments to q. This was first
studied by Greene and Yao, who pointed several issues with the naive solution.

s′
s′′

s p′

p

(a) Unbounded shift of p to p′

p0 p1 p2 p3 p4

(b) Drifting

s3 s5
s4

s1

s2

s

s′
s′′ s′′′

p

(c) Topological inversion of s relative to p

Figure 4: Issues in Snap Rounding

• Unbounded shift: when we snap a polysegment s, its intersection with another polysegment might move
an unbounded distance, even though the snap distance is bounded. This is illustrated in Figure 4(a):
the original intersection p of s and s′′ is moved arbitrarily far to a new position p′.

• Drifting: Each time we modify a polysegment, the result may drift further and further away from its
original position. Is there a bound on this drift? See Figure 4(a) for an illustration of drifting.

• Topological changes: See Figure 4(b) illustrates the possibility of a polysegment moving past an inter-
section point. This is an “inversion”. A milder form of topological change is when two points collapse
into one (this is called “degeneration”).

• Cascaded and new intersections: when we snap a point, we may generate new intersections. If we now
snap these new intersections points, we may obtain other new ones. Thus we have a cascading effect.
How often do we need to do this? Does this terminate?

• Braiding: Two polysegments may intersect in a single connected component which need not be a single
point (this can already happen even for segments). However, if the polysegments intersect in more
than one connected component, we call this “braiding”. Even if there were no inversion, braiding can
happen.

It is instructive to see how braiding arises as we successively snap our intersection points. In Figure 5(a),
we have see two line segments s1, s2. Each si (i = 1, 2) intersects other segments in three other nongrid
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points. In Figure 5(b), we round two of these intersection points and si is snapped to these two rounded
points. As a result of snapping, the third intersection point is shifted slightly; it is then rounded to a
different point qi that it would have originally been rounded to. In Figure 5(c), we further snap si to
qi. The resultant polysegments s1, s2 are now braided: they intersect in two isolated points q1, q2.

s1 s1

s2s2 s2

s1

q1

q2

q1

(a) (b) (c)

Figure 5: Braiding Behavior in Snap Rounding

This list of problems seems formidable [4]. So it is somewhat surprising to see the simple solution
described next.

¶4. What is an acceptable topological change? Topological changes are inevitable in finite precision
computation. But we propose to distinguish between degeneration (which is acceptable) versus inversion
(which is not). We accept degeneration because when we round, we expect to loose details and close features
might be expected to merge. For instance, if an edge in a planar arrangement of segments is collapsed to a
point and it does not affect other relations (except for the obvious ones forced by this collapse), this is an
acceptable “degeneration”. On the other hand, if a vertex inside a cell is modify to lie outside the cell, this
is an unacceptable “inversion”.

In the presence of degeneration, there is a trivial solution for any segment arrangement: collapse every-
thing to a point. So, our requirements ought to be supplemented by some metric properties such as a bound
of the amount of degeneration. Greene and Yao proposed a solution for snap rounding that imposed a very
strong requirement – the transformation from a segment into a polysegment must not cross any grid points.
The resulting polysegments has nice properties related to the continued fraction process. Their method is
elegant but do not extend to non-uniform grids. We will study another approach from Hobby which we
extend to non-uniform grids.

¶5. Hot Point Rounding. Hobby’s proposal for snap rounding is based on the concept of “hot points”.
Given a set of segments, a grid point is hot if it is the rounded value of an endpoint or an intersection point
of the segments. Then we just snap all the segments to these hot points to create our 1-skeleton. This
solution is simple and has many nice properties (avoiding most of the anomalies of arbitrary snap rounding
listed above). For instance, braiding (cf. Figure 5) does not occur in this approach. We show that Hobby’s
method will work on any rounding grids, not just uniform ones.

First, let us make precise the notion of rounding. If G1 is a 1-grid with domain [a0, am] and x ∈ [a0, am],
then the floor of x (mod G1) is the largest grid point ⌊x⌋G that is less than or equal to x. Also, ⌊x⌉G

denotes the grid point that is nearest to x; in case of a tie, we choose ⌊x⌉G := ⌊x⌋G.
We extend these notions to the 2-grid G = G1×G2 with domain D. If p = (x, y) ∈ D, then the rounding

of p is the grid point ⌊p⌉G := (⌊x⌉G1
, ⌊y⌉G2

). If G is understood, we may simply write ⌊p⌉.
Let S be a set of segments, where each pair of segments intersect transversally (we do not allow overlap).

Define H to be the set comprising all the end points of segments in S and also all intersection points. So H
is finite. Let the rounded point set be ⌊H⌉ := {⌊p⌉ : p ∈ H}. Following Hobby, we call the rounded points
the hot points.

¶6. Properties of Hot Point Rounding. So far, we have just described polysegments to be any
polygonal path s = [q0, . . . , qk]. To ensure that polysegments are “generalizations” of segments, we impose a
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Figure 6: Snap Rounding Based on Hot Points

simple restriction: a polysegment must be monotone. This means that either qi−1 < qi for all i = 1, . . . , k,
or qi−1 > qi for all i = 1, . . . , k. Here, “p < q” means p ≤ q and p 6= q, where “p ≤ q” means p.x ≤ q.x and
p.y ≤ q.y. Note that the ≤ ordering is not a total ordering on points, unlike the lexicographic ordering ≤lex

used in our priority queue Q.
As a special case, a staircase is a monotone polysegment s = [q0, . . . , qk] where each [qi−1, qi] (i =

1, . . . , k) is either a vertical or a horizontal segment.
We regard the polysegment [q0, q1, . . . , qk] and [qk, , . . . , q1, q0] as equivalent representations. To make a

canonical choice among these two representations, we assume q0 ≤LEX q1. This means q0.x is minimum among
all the qi’s, and in case of ties, q0.y is minimum. Call this choice of q0 the start point of the polysegment;
then the other end point is the end point. Clearly, our sweepline L will encounter q0 first among all vertices
of the polysegment. However, this does not mean that the sweepline will encounter qi before qi+1 for all
i ≥ 1 (how not?). There are two basic types of monotone polysegments: either the slope is non-decreasing,
or it is non-increasing (or course, a perfectly horizontal polysegment has both classifications).

A polysegment s = [. . . , qi, qi+1, . . .] is near a grid point q ∈ G if there some point p ∈ s such that ⌊p⌉G =
q. Provided q is not one of the vertices of s, recall that we can snap s to such a q. If s = [. . . , qi, q, qi+1, . . .],
the result of snapping is s′ = [. . . , qi, q, qi+1, . . .]. Remark: even if p = ⌊p⌉G = q, this snapping operation
is meaningful, and we have extended the length of s by 1. Suppose that we consider the set of all grid
points that s is near to, and snap s to all these points. Let s be the resulting polysegment. This line can be
regarded as the analogue of the Bresenham line.

Let us define a Bresenham path in the 2-grid G = G1 × G2 is a monotone polysegment [q0, . . . , qk]
such that if qi = (ai, bi), then the sequence (a0, . . . , ak) are consecutive grid points of G1 and the sequence
(b0, . . . , bk) are consecutive grid points of G2.

Bresenham paths are generally staircases: this means that for all i = 1, . . . , k, either ai−1 = ai or bi−1 =
bi. However, there are exceptions: we might have ai−1 < ai and bi−1 < bi. In this case, [ai−1, bi−1]× [ai, bi] is
a grid square of G. Thus [qi−1, qi] is a diagonal of this square. Such a situation may arise when the segment
s passes through a midpoint of [ai−1, bi−1] × [ai, bi].

The following lemma is immediate (draw a picture):

Lemma 1. If s is a monotone polysegment, then s is a Bresenham path.

Given a segment s ⊆ R
2, define the set Snap(s) = SnapG(s) of all the segments [a, b] such that there

exists [a′, b′] ⊆ s such that:
(1) ⌊a′⌉ = a, ⌊b′⌉ = b, and
(2) for all c ∈ [a′, b′], ⌊c⌉ ∈ {a, b}.

Note that a, b must be grid points. If [a′, b′] is a maximal segment with this property, we call [a′, b′] the
“preimage” of [a, b]. Hence, each segment in DG(s) has at least one preimage in s. Below we will prove that
these preimages are very well-behaved (in particular, there is a unique preimage for each segment in DG(s)).

REMARK: the rest of this section has not been converted to the non-uniform case. The arguments here
are from John Hobby.
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A collection S of segments are essentially disjoint if any pair are disjoint or intersect at their end points
only. We also write Snap(S) for the set union of Snap(s), ranging over all s ∈ S.

Lemma 2. If S have endpoints in G and are essentially disjoint, then the set SnapG(S) are also essentially
disjoint.

The transformation is a rotation, i.e., detM = 1 and the inverse M−1 is given by its transpose MT .
E.g., if δ = 1, the points (±1, 1) map to (1/

√
2, 0) and (0, 1/

√
2).

Lemma 3. The set of these preimages forms a cover of s. Each segment DT (s) has a unique preimage.

Proof. The fact that they form a cover of s follows from the fact that if any maximal open subsegment
(a, b) ⊆ s that is dijoint from any preimages, then there must be a preimage of the form [b, c] ⊆ s (for some
c). This implies that [a, c] is contained in a preimage, contradicting the assumption that [b, c] is maximal.
Uniqueness is trivial by the maximality requirement. Q.E.D.

Lemma 4. If the endpoints in DT (S) maps to q1 = (ξ1, η1), . . . , qm = (ξm, ηm), and ξ1 < ξ2 < · · · < ξm,
then they describe a monotonic piecewise linear function F on the interval [ξ1, ξm] given by

F (ξ) =
ηi(ξi+1 − ξ) + ηi+1(ξ − ξi)

ξi+1 − ξi

when ξi ≤ ξ ≤ ξi+1.

Proof. This follows from the fact that the preimages of [qi, qi+1] are ordered along the segment s in the
expected way. [Incomplete] Q.E.D.

If s′ ∈ S is a distinct segment, then a similar function F ′ based on DT (s′) can be defined.
Note that the slope of s′ may be different from that of s. This will lead to different coordinate systems

for F and F ′. To fix this, we may first rotate the coordinate system so that s and s′ have both positive
slopes or both negative slopes. It is easy to see this is always possible.

These functions approximate the lines ℓ and ℓ′ through s and s′ (respectively).
Since s, s′ are essentially disjoint, we may assume THAT IN THE (ξ, η)-coordinate system, wlog that s

is below s′ whenever they intersect a common vertical line ξ = ξ0. So it suffices to show that

F (ξ) ≤ F ′(ξ) (4)

for all ξ ∈ {ξ1, . . . , ξm} ∪ {ξ′1, . . . , ξ′m′}.
Parametrize the lines ℓ so that (ξ, ℓ(ξ)) ∈ ℓ for all ξ. Similarly, assume (ξ, ℓ′(ξ)) ∈ ℓ′. Since the segment

in DT (s) ⊆ sj + R2, and similar for s′, the difference F (ξ)− ℓ(ξ) is limited to the range of the η coordinates
in R2. This ranges over the intervals (− 1

2
, 1

2
) or [− 1

2
, 1

2
). [CHECK]

Then our assumptions that ℓ(ξ) ≤ ℓ′(ξ) for all ξ is the range of interest implies that

F ′(ξi) ≥ ηi, if ℓ′(ξi) ≥ ηi +
1

2
.

Otherwise, ℓ′(ξi) ∈ ηi + R1 and the definition of DT forces F ′(ξi) ≥ ηi. incomplete
Similarly, we argue that F (ξ′j) ≤ η′

j . This proves equation (4).

¶7. Snap Rounding Based on Bentley-Ottmann’s Algorithm. For simplicity, we may assume that
the input segments are already representable.

STEP 1. We modify the Bentley-Ottman algorithm as follows. We first run the original algorithm as a
“first pass”. The intersection points are symbolically represented (by the pair of defining segments). Let H
be the set of all endpoints and the intersection points found in this way.

STEP 2. Compute the set of hot points: ⌊H⌉.
STEP 3. Now we want to snap each segment s ∈ S to all the hot points p that it is near to. More

precisely, for each s we compute a set of pairs {(qi, pi) : i = 1, . . . , k} (for some k) such that pi is a hot
point that s is near to, and qi is the point in s closest to pi. Then we snap qi to pi, in an natural order
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determined by the qi’s along s. But how do we detect these pi’s? We can do this by modifying the same
sweepline algorithm of Bentley-Ottman: for each hot point p, we add the four unit segments corresponding
to the boundary of p + R2 to the input set. Thus the segment s is near to p iff it intersects one of these unit
segments of p.

We can take advantage of the fact that these unit segments are horizontal or vertical and in special
positions relative to the grid G2. An efficient implementation (using the idea of batching, and keeping the
unit segments separate from the original segments) is given in the original paper of Hobby.

Exercises

Exercise 2.1: Consider the Bentley-Ottmann’s algorithm.
(i) Show examples where the algorithm will fail because of numerical errors.
(ii) Give details of the primitives in this algorithm.
(iii) Implement the algorithm. ♦

Exercise 2.2: Implement Hobby’s hot snap rounding algorithm using the IEEE floating point grid. ♦

End Exercises

§3. Consistency Approach

A general approach to robust algorithms can be formulated around the concept of consistency. Consis-
tency in its most general form is a purely logical concept; in the context of geometric algorithms, consistency
is often called “topological consistency” [22]. The rationale for this is clear – topological properties are
abstractions of the specific geometry that arises from specific numerical data. For instance, the Voronoi dia-
grams of a planar point set is combinatorially a planar graph. Then we define a Voronoi diagram algorithm
to be “consistent” if its output a Voronoi diagram is a planar graph. But it is clear that consistency alone
is not enough: imagine an algorithm that ignores the actual input but always output the correct answer
to some pre-selected input. This algorithm is surely consistent. But how shall we require the algorithm to
depend on the input? For instance, we would like the output to be not only self-consistent, but consistent
for some ε-perturbation of the input. This is a form of backward-error analysis. We could proceed as follows.
Fortune defines a parsimonious program as one that never makes a comparison if the outcome of that
comparison can be logically deduced from the outcomes of previous comparisons. A parsimonious algorithm
that ignores its input can simply toss a coin at each comparison and use this as the result of the comparison.
To ensure that the algorithm depends on the input, we can require the algorithm to give the correct result
to a comparison x : y whenever |x − y| > ε. The attractiveness of this view is that it is a widely applicable
paradigm, independent of the underlying geometry or topology.

In this section, we examine the ideas of Schorn [17] for consistent computation.
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