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It is better to solve the right problem the wrong way than to solve the wrong problem the right
way.

The purpose of computing is insight, not numbers.

– Richard Wesley Hamming (1915–1998)

Lecture 2

MODES OF NUMERICAL COMPUTATION

To understand numerical nonrobustness, we need to understand computer arithmetic. But
there are several distinctive modes of numerical computation: symbolic mode, floating point (FP)
mode, arbitrary precision mode, etc. Numbers are remarkably complex objects in computing,
embodying two distinct sets of properties: quantitative properties and algebraic properties. Each
mode has its distinctive number representations which reflect the properties needed for computing
in that mode. Our main focus is on the FP mode that is dominant in scientific and engineering
computing, and in the corresponding representation popularly known as the IEEE Standard.

§1. Diversity of Numbers

Numerical computing involves numbers. For our purposes, numbers are elements of the set C of complex
numbers. But in each area of application, we are only interested in some subset of C. This subset may
be N as in number theory and cryptographic applications. The subset may be R as in most scientific and
engineering computations. In algebraic computations, the subset might be Q or its algebraic closure Q.

These examples show that “numbers”, despite their simple unity as elements of C, can be very diverse in
manifestation. Numbers have two complementary sets of properties: quantitative (“numerical”) properties
and algebraic properties. It is not practical to provide a single representation of numbers to cover the
full range of these properties. Otherwise, computer systems might as well provide a single number type,
“the” complex number type. Depending on the application, different aspects of quantitative properties or
algebraic properties would be emphasized or supported. Over the years, different computing fields have
developed suitable number representation to provide just the needed properties. Corresponding to these
number representations, there also evolved corresponding modes of numerical computation. We briefly
review a few of these modes:

• The symbolic mode is best represented by computer algebra systems such as Macsyma, Maple or
Mathematica. In the present context of numerical computing, perhaps the most important subclass
of C in the symbolic mode is the algebraic numbers Q. A simple example of an algebraic number
is
√

2. Here, there are two common representations. A number α ∈ Q[β] ⊆ Q can be represented
by a polynomial A(X) ∈ Q[X] modulo B(X) where B(X) is the minimal polynomial of β. This
representation is useful if we are only interested in the algebraic properties of numbers. It is sufficient
to model the field operations and to check for equality. When α is real, and we are interested in the
quantitative properties of numbers, then the polynomial A(X) is inadequate. Instead, α can use the
isolated interval representation, comprising of a polynomial-interval pair (A(X), I) where α is the
only root of A(X) inside the interval I. For instance, if α =

√
2 then we could choose A(X) = X2 − 2
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and I = [1, 2]. We can perform the arithmetic operations on such isolated interval representations. The
quantitative properties of numbers are captured by the interval I, which can of course be arbitrarily
narrowed. Both representations are exact.

• The unquestioned form of numerical computing in most scientific and engineering applications involves
machine floating point numbers. We refer to this as the FP mode for “floating point” and “fixed
precision”, both of which are characteristic of this mode. Thus,

√
2 is typically represented by 64

bits in some floating point format, and converts to the printed decimal value of 1.4142135623731. In
modern hardware, this format invariably conforms to the IEEE Standard [16]. The FP mode is very
fast because of such hardware support. It is the “gold standard” whereby other numerical modes are
measured against. One goal of numerical algorithm design in the FP mode is to achieve the highest
numerical accuracy possible using machine arithmetic directly on the number representation alone
(perhaps after some re-arrangement of computation steps). Over the last 50 years, numerical analysts
have developed great insights into the FP mode of computation.

The characterization “fixed precision” needs clarification since all FP algorithms can be regarded as
parametrized by a precision number θ (0 ≤ θ < 1). Most algorithms will produce answers that converge
to the exact answer as θ → 0 (see Chaitin-Chatelin and Frayssé [7, p. 9]). In practice, FP algorithms
are “precision oblivious” in the sense that their operations do not adapt to the θ parameter.

• The arbitrary precision mode is characterized by its use of Big Number types. The precision of such
number types is not fixed. Because of applications such as cryptography, such number types are now
fairly common. Thus the Java language comes with standard Big Number libraries. Other well-known
libraries include the GNU Multiprecision Package gmp, the MP Multiprecision Package of Brent [5], the
MPFun Library of Bailey [3], and NTL from Shoup. Surveys of Big Numbers may be found in [11, 37].

The capabilities of Big Number packages can be extended in various ways. Algebraic roots are not
normally found in Big Number packages, but the PRECISE Library [21] provides such an extension.
Arbitrary precision arithmetic need not be viewed as monolithic operations, but can be performed
incrementally. This gives rise to the lazy evaluation mode [24, 4]. The iRRAM Package of Müller
[26] has the interesting ability to compute limits of its functions. The ability to reiterate an arbitrary
precision computation can be codified into programming constructs, such as the precision begin-end
blocks of the Numerical Turing language [15].

• The validated mode refers to a computational mode in which computed values are represented by
intervals which contain the “true value”. Properties of the exact answer can often be inferred from
such intervals. For instance, if the interval does not contain 0, then we can infer the exact sign of the
true value. This mode often goes by the name of interval arithmetic. It is orthogonal to the FP
mode and arbitrary precision mode, and thus can be combined with either one. For instance, the Big
Float numbers in Real/Expr [37] and also in PRECISE are really intervals. This amounts to automatic
error tracking, or significance arithmetic.

• The guaranteed precision mode is increasingly used by computational geometers working on robust
computation [36]. It is encoded in software libraries such as LEDA, CGAL and Core Library. In this
mode, the user can freely specify an á priori precision bound for each computational variable; the
associated library will then compute a numerical value that is guaranteed to to this precision. In its
simplest form, one simply requires the correct sign – this amounts to specifying one relative-bit of
precision [35]. Guaranteed sign computation is enough to achieve robustness for most basic geometric
problems. This mode is stronger than the validated mode because the precision delivered by a validated
computation is an á posteriori one, obtained by forward propagation of error bounds.

In this Chapter, we focus on the FP mode and briefly touch on arbitrary precision mode and validated
mode. The symbolic mode will be treated in depth in a later Chapter.

§2. Floating Point Arithmetic

It is important to understand some basic properties of machine arithmetic, as this is ultimately the
basis of most numerical computation, including arbitrary precision arithmetic. As machine floating-point
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arithmetic is highly optimized, we can exploit them in our solutions to nonrobustness; this remark will
become clear when we treat filters in a later chapter. An excellent introduction to numerical floating point
computation and the IEEE Standard is Overton [27].

We use the term fixed precision arithmetic to mean any arithmetic system that operates on numbers
that have a fixed budget of bits to represent their numbers. Typically, the number is represented by a fixed
number of “components”. For instance, a floating point number has two such components: the mantissa and
the exponent. Each component is described by a natural number. The standard representation of natural
numbers uses the well-known positional number system in some radix β ≥ 2. An alternative name for radix
is “base”. Here β is a natural number and the digits in radix β are elements of the set {0, 1, . . . , β − 1}. A
positional number in radix β ≥ 2 is represented by a finite sequence of such digits. For instance, humans
communicate with each other using β = 10, but most computers use β = 2. There are two main forms of
machine numbers: fixed point or floating point.

Fixed Point Systems. A fixed point system of numbers with parameters m,n, β ∈ N comprises all
numbers of the form

±d1d2 . . . dn.f1f2 . . . fm (1)

and di, fj ∈ {0, 1, . . . , β − 1} are digits in base β. Typically, β = 2, 10 or 16. Fixed point systems are not
much used today, except for the special case of m = 0 (i.e., integer arithmetic).

It is instructive to briefly look at another class of fixed-precision arithmetic, based on rational numbers.
Matula and Kornerup [22] gave a study of such systems. In analogy to fixed point and floating point numbers,
we also fixed-slash and floating-slash rational numbers. In the fixed-slash system, we consider the set of
rational numbers of the form ±p/q where 0 ≤ p, q ≤ n for some n. The representable numbers in this system
is the well-known Farey Series Fn of number theory. In the floating-slash system, we allow the number of
bits allocated to the numerator and denominator to vary. If L bits are used to represent a number, then we
need about lg L bits to indicate this allocation of bits (i.e., the position of the floating slash). Matula and
Kornerup address questions of naturalness, complexity and accuracy of fixed-precision rational arithmetic in
their paper. Other proposed number system include Hensel’s p-adic numbers (e.g., [13, 20]) and continued
fractions (e.g., [6]). Note that in p-adic numbers and continued fractions, the number of components is
unbounded. For general information about about number systems, see Knuth [19].

All these alternative number systems ultimately need a representation of the natural numbers N. Besides
the standard β-ary representation of N, we mention an alternative1 called β-adic numbers. A digit in
β-adic number is an element of {1, 2, . . . , β}, and a sequence of such digits dndn−1, . . . , d1d0 represents the
number

∑n
i=0 diβ

i. This equation is identical to the one for β-ary numbers; but since the di’s are non-zero,
every natural number has a unique β-adic representation. In particular, 0 is represented by the empty
sequence. In contrast to β-adic numbers, the usual β-ary numbers are non-unique: .1 = 0.100 = 00.1.

Floating Point Systems. Given natural numbers β ≥ 2 and t ≥ 1, the floating point system F (β, t)
comprises all numbers of the form

r = m× βe−t+1 =
m

βt−1
βe (2)

where m, e ∈ Z and |m| < βt. We call β the base and t the significance of the system. The pair (m, e) is
a representation of the number r, where m is the mantissa and e the exponent of the representation.
When exponents are restricted to lie in the range

emin ≤ e ≤ emax,

we denote the corresponding subsystem of F (β, t) by

F (β, t, emin, emax). (3)

Note that F (β, t) is essentially the system F (β, t,−∞,+∞). When r is represented by (m, e), we may write

float(m, e) = r.

1There is a conflict in terminology here when numbers of the form m2n (m, n ∈ Z) are called dyadic numbers. Such
numbers are also known as binary floating point numbers.
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For instance, float(2t−1, 0) = 1 and float(2t−1, 2) = 4 in F (2, t).
Sometimes, e is called the biased exponent in (2) because we might justifiably2 call e − t + 1 the

“exponent”. Using the biased exponent will facilitate the description of the IEEE Standard, to be discussed
shortly. Another advantage of using a biased exponent is that the role of the t parameter (which controls
precision) and the role of emin, emax (which controls range) are clearly separated. The expression m/βt−1 in
(2) can be written as ±d1.d2d3 · · · dt where m is a t-digit number m = ±d1d2 · · · dt in β-ary notation. As
usual, di ∈ {0, 1, . . . , β − 1} are β-ary digits. The equation (2) then becomes

r = ±βe × d1.d2d3 · · · dt = float(m, e). (4)

In this context, d1 and dt are (respectively) called the leading and trailing digits of m. The number
±d1.d2d3 · · · dt = m/βt−1 is also called the significand of r.

In modern computers, β is invariably 2. We might make a case for β = 10 and some older computers do
use this base. In any case, all our examples will assume β = 2.

We classify the representations (m, e) into three mutually disjoint types:
(i) If |m| ≥ βt−1 or if (m, e) = (0, 0), then (m, e) is a normal representation. When m = 0, we just have
a representation of zero. Thus, the normal representation of non-zero numbers amounts to requiring d1 6= 0
in (4).
(ii) If e = emin and 0 < |m| < βt−1 then (m, e) is a subnormal representation. Note that when
emin = −∞, there are no subnormal representations since e and m are finite values (by assumption).
(iii) All other (m, e) are denormalized representations.

In the following discussion, we assume some F = F (β, t, emin, emax). Numbers in F are said to be
representable or floats. Normal and subnormal numbers refers to numbers with (respectively) normal
and subnormal representations.

We claim that every representable number is either normal or subnormal, but not both. In proof, first
note that the normal numbers and subnormal numbers are different: assuming emin > −∞, the smallest
non-zero normal number is float(βt−1, emin) = βemin , which is larger than the largest subnormal number
float(βt−1− 1, emin). Next, consider any denormalized representation (m, e). There are two possibilities: (a)
If m = 0 then float(m, e) = 0 which is normal. (b) If m 6= 0 then |m| < βt−1. So the leading digit of m is
0. Let di = 0 for i = 1, . . . , k and dk+1 6= 0 for some k ≥ 1. Consider the representation (mβℓ, e− ℓ) where
ℓ = min{k, e − emin}. It is easy to see that this is either normal (ℓ = k) or subnormal (ℓ < k). This shows
that float(m, e) is either normal or subnormal, as claimed. The transformation

(m, e) −→ (mβℓ, e− ℓ), (5)

which is used in the above proof, is called normalization (even though the result might actually be sub-
normal).

We claim that normal and subnormal representations are unique and they can easily be compared. Sub-
normal representations are clearly unique. They are also smaller than normal numbers. To compare two
subnormal representations, we just compare their mantissas. Next consider two normal representations,
(m, e) 6= (m′, e′). We may assume that mm′ > 0 since otherwise the comparison can be based on the signs
of m and m′ alone. If e = e′ then clearly the comparison is reduced to comparing m with m′. Otherwise,
say e > e′. If m > 0 then we conclude that float(m, e) > float(m′, e′) as shown in the following:

float(m, e) =
m

βt−1
βe ≥ βe ≥ βe′+1 >

m′

βt−1
βe′

= float(m′, e′).

If m < 0, we similarly conclude that float(m, e) < float(m′, e′).

Resolution and Range. In the system F = F (β, t, emin, emax), there are two related measures of the
“finest resolution possible”. One is the machine epsilon, εM := β1−t, which may be defined to be be the
distance from 1.0 and the next larger representable number, i.e., float(βt−1 +1, 0). More important for error
analysis is the unit roundoff, defined as

u := εM/2 =
1

2
β1−t. (6)

2It is less clear why we use “e− t+1” instead of “e− t”. Mathematically, “e− t” seems preferable but “e− t+1” is a better
fit for the IEEE standard.
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We wish to define the “range of F”. If y is normal then

βemin ≤ |y| ≤ βemax
(
β − β1−t

)
.

Thus we define the normal range of F to be

(−β1+emax ,−βemin ] ∪ [βemin , β1+emax).

The subnormal range is the open interval (−βemin , βemin). Note that 0 is normal but lies in the subnormal
range. The range of F is the union of the normal and subnormal ranges of S.

A striking feature of F is the non-uniform distribution of its numbers. Informally, the numbers in F
becomes more and more sparse as we move away from the origin. This non-uniformity is both a strength
and weakness of F . It is a strength because the range of F is exponentially larger than could be expected
from a uniformly distributed number system with the same budget of bits. It is a weakness to the extent
that algorithms and error analysis based on F are harder to understand.

To understand this non-uniform distribution, we need only consider the non-negative portion of the range
of F , [0, β1+emax). Subdivide this into half-open intervals of the form Ie := [βe, βe+1) for e ∈ [emin, emax],

[0, βemax) = I−∞ ⊎ Iemin
⊎ Iemin+1 ⊎ · · · ⊎ Iemax

where ⊎ denotes disjoint union and I−∞ is defined to be [0, βemin). Note that except for 0, the representable
numbers in I−∞ are precisely the subnormal numbers.

0.25 0.5 1.0 2.0 4.00

I−1 I0 I1
I∞ I−2

Figure 1: Non-uniform intervals in F (2, 3,−2, 1): normal numbers.

For the example in Figure 1, each interval Ie (for e ≥ emin) has exactly 4 normal numbers. In general,
each interval Ie contains all the normal representations of the form (m, e), with βt−1 ≤ m < βt. There are
exactly βt−1(β − 1) numbers in Ie (this is because in (4), there are β − 1 choices for d1 and β choices for
d2, . . . , dt). The numbers in interval Ie are uniformly spaced βe−t+1 apart; multiplying this by the number
of normal numbers in Ie, we obtain βe(β − 1), which is the width of the interval Ie.

Rounding. It is interesting to note that the set of integers of size at most βL − 1 is also a floating point
system, F (β, 1, 0, L). We are familiar with the concept of rounding to the nearest integer: for any real x, we
can round down to ⌊x⌋ (floor function) or round up to ⌈x⌉ (ceiling function).

To discuss rounding in general, we must first generalize the ceiling and floor functions so that the role
played by integers can be played by any floating point system F = F (β, t, emin, emax). Then we define ⌊x⌋
and ⌈x⌉ to be unique closest values in F that satisfy the following conditions

⌊x⌋ ≤ x ≤ ⌈x⌉ . (7)

To explicitly indicate that we are taking ceilings and floors relative to F , we may write ⌊x⌋F and ⌈x⌉F .
There are 7 major “rounding modes”. Each mode is identified by a particular rounding function,

fl : R→ F . We have the general requirement that all rounding functions satisfy

fl(x) ∈ {⌈x⌉ , ⌊x⌋} ⊆ F ∪ {±∞}.

We have already seen the two rounding functions:

fl1(x) = ⌊x⌋ (8)

fl2(x) = ⌈x⌉ (9)
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Let us describe the remaining 5 rounding functions. The next two rounding modes are round towards
zero and round away from zero. These corresponds to the rounding functions

fl3(x) =

{
⌊x⌋ if x ≥ 0
⌈x⌉ if x < 0

. (10)

fl4(x) =

{
⌈x⌉ if x ≥ 0
⌊x⌋ if x < 0

. (11)

(12)

Another two rounding modes are round to even and round to odd, respectively. They depend on an
additional structure of F : each number y ∈ F is classified as even or odd, called the parity of y. Moreover,
two consecutive numbers in F have opposite parity. By convention, the parity of 0 is even, and this uniquely
fixes the parity of each number in F . This notion of parity generalizes the usual notion of even or odd
integers. Now we may define the corresponding rounding functions

fl5(x) =

{
x if x ∈ F
the value in {⌊x⌋ , ⌈x⌉} with odd parity

(13)

fl6(x) =

{
x if x ∈ F
the value in {⌊x⌋ , ⌈x⌉} with even parity

(14)

The last rounding mode is rounding to nearest, with rounding function denoted fl∗(x) or ⌊x⌉. This is
intuitively clear: we choose fl∗(x) to satisfy the equation

|fl∗(x)− x| = min {x− ⌊x⌋ , ⌈x⌉ − x} .

Unfortunately, this rule in incomplete because of the possibility of ties. So we invoke one of the other six
rounding modes to break ties! Write fl∗

i (x) (for i = 1, . . . , 6) for the rounding function where tie-breaking is
determined by fli(x). Empirically, the variant fl∗

6 has superior computational properties, and is the default
in the IEEE standard. Hence it will be our default rule, and the notation “⌊x⌉” will refer to this variant.
Thus, ⌊1.5⌉ = 2 and ⌊2.5⌉ = 2. Call this the round to nearest/even function.

Parity Again. We give an alternative and more useful computational characteri-
zation of parity. Recall that each number in F has a unique normal or subnormal
representation (m, e); we say float(m, e) is even iff m is even. Let us prove this
notion of parity has our originally stated properties. Clearly, 0 is even by this defi-
nition. The most basic is: there is a unique even number in the set {⌊x⌋ , ⌈x⌉} when
x 6∈ F . Without loss of generality, assume 0 ≤ ⌊x⌋ < ⌈x where ⌊x⌋ = float(m, e)
and ⌈x⌉ = float(m′, e′). If e = e′ then clearly m is even iff m′ is odd. If e = e′ − 1
then m = βt − 1 and m′ = βt−1. Again, m is even iff m′ is odd. There are two
other possibilities: ⌊x⌋ = −∞ or ⌈x⌉ = +∞. To handle them, we declare ±∞ to
be even iff β is even.

Let fl(x) be any rounding function relative to some floating point system F . Let us prove a basic result
about fl:

Theorem 1. Assume x ∈ R lies in the range of F and fl(x) is finite.
(i) Then

fl(x) = x(1 + δ), |δ| < 2u (15)

and
fl(x) =

x

1 + δ′
, |δ′| < 2u. (16)

(ii) If fl(x) is rounding to nearest, then we have

fl(x) = x(1 + δ), |δ| < u (17)

and
fl(x) =

x

1 + δ′
, |δ′| ≤ u. (18)

c© Mehlhorn/Yap Draft January 28, 2009



§2. Floating Point Arithmetic Lecture 2 Page 7

Proof. (i) Suppose x ∈ Ie for some e. If x = βe then fl(x) = x and the theorem is clearly true. So assume
|x| > βe. The space between consecutive representable numbers in Ie is βe−t+1. Writing ∆ = fl(x)− x, we
obtain fl(x) = x + ∆ = x(1 + ∆/x) = x(1 + δ) where

|δ| =
∣∣∣∣
∆

x

∣∣∣∣ <
βe−t+1

|x| < β−t+1. (19)

This proves (15) since u = β1−t/2. Note this bound holds even if fl(x) is the right endpoint of the interval
Ie. Similarly, if ∆′ = x− fl(x) then x = fl(x) + ∆′ = fl(x)(1 + ∆′/fl(x)) = x(1 + δ′) where

|δ′| =
∣∣∣∣

∆′

fl(x)

∣∣∣∣ <
βe−t+1

|fl(x)| ≤ β−t+1. (20)

(ii) This is similar to (i) applies except that |∆| ≤ u (not strict inequality). The analogue of (19) is |δ| < u,
but the analogue of (20) is |δ′| ≤ u (not strict inequality). Q.E.D.

Example 1 (The IEEE Floating Point Systems).
The IEEE single precision numbers is essentially3 the system

F (β, t, emin, emax) = F (2, 24,−127, 127)

with range 10±38. The IEEE double precision numbers is essentially the system

F (β, t, emin, emax) = F (2, 53,−1023, 1023)

with range is 10±308. Note that emin = −emax in both systems. The unit roundoffs for these two systems
are

u = 2−24 ≈ 5.96× 10−8(single); (21)

u = 2−53 ≈ 1.11× 10−16(double). (22)

The formats (i.e., the bit representation) of numbers in these two systems are quite interesting because it is
carefully optimized. The number of bits used to represent the single and double precision numbers are 32 and
64 bits, respectively. In the double precision format, 53 bits are dedicated to the mantissa (“significand”)
and 11 bits for the exponent. In single precision, these are 24 and 8 bits, respectively. We will return later
to discuss how this bit budget is used to achieve the representation of F (2, t, emin, emax) and other features
of the IEEE standard.

Floating Point Arithmetic. Let ◦ be any basic floating point operation (usually, this refers to the 4
arithmetic operations, although square-root is sometimes included). Let ◦′ be the corresponding operation
for the numbers in F . The fundamental property of fixed precision floating point arithmetic is this: if
x, y ∈ F then

x ◦′ y = fl(x ◦ y). (23)

This assumes ◦ is binary, but the same principle applies for unary operations. Let us call any model of
machine arithmetic that satisfies (23) the strict model Thus, the strict model together with Theorem 1
implies the following property

x ◦′ y =

{
(x ◦ y)(1 + δ), |δ| < u,
(x◦y)
(1+δ′) , |δ′| ≤ u,

(24)

where u is the unit roundoff (see (6) and (21)). Any model of machine arithmetic that satisfies (24) is called
a standard model (with unit roundoff u). Note that if x◦y ∈ F , then the strict model requires that δ = 0;
but this is not required by the standard model. All our error analysis will be conducted under the standard

3The next section will clarify why we say this correspondence is only in “essence”, not in full detail.
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model. NOTATION: As an alternative4 to the notation x ◦′ y, we often prefer to use the bracket notation
“[x ◦ y]”.

We refer to [19, Chapter 4] for the algorithms for arithmetic in floating point systems, and about general
number systems and their history. Here is a brief overview of floating point arithmetic. It involves a generic
3-step process: suppose F = F (β, t) for simplicity, and we want to perform the binary operation x ◦′ y in F ,

1. (Scaling) First “scale” the operands so that they share a common exponent. It makes sense to scale up
the operand with the smaller magnitude to match the exponent of the operand with larger magnitude:
if x = m2e and y = n2f where e ≥ f , then scaling up means y is transformed to (n/2e−f )2e. The
scaled number may no longer be representable. Normally some truncation of bits occur.

2. (Operation) Carry out the desire operation ◦ on the two mantissas. This is essentially integer arith-
metic.

3. (Normalization) Truncate the result of the operation back to t digits of precision. Normalize if necessary.

The Scaling Step is the key to understanding errors in floating point arithmetic: after we scale up the smaller
operand, its mantissa may require much more than t digits. All hardware implementation will simultaneously
truncate the scaled operand. But truncated to what precision? We might guess that truncating to t digits
is sufficient (after all the final result will only have t digits). This is almost right with one exception: in
the case of addition or subtraction, we should truncate to t + 1 digits. This extra digit is called the guard
digit. Without this, the hardware will fail to deliver a standard model (24). This was a standard “bug” in
hardware before the IEEE standard (Exercise).

Lemma 2 (Sterbenz). Let a, b be positive normal numbers, and 1
2 ≤ a

b
≤ 2.

(i) a− b is representable.
(ii) If we perform subtraction of a and b using a guard digit, we get the exact result a− b.

Proof. Note that (ii) implies (i). To show (ii), let the normal representations of a and b be a = a1.a2 · · · at×
2e(a) and b = b1.b2 · · · bt × 2e(b), where a1 = b1 = 1 and e(a) denotes the exponent of the floating point
representation of a. Assume a ≥ b (if a < b, then the operation concerns −(b− a) where the same analysis
applies with a, b interchanged). Our assumption on a/b implies that e(a)− e(b) ∈ {0, 1}. Consider the case
e(a)− e(b) = 1. We execute the 3 steps of scaling, operation and normalization to compute a− b. To scale,
we rewrite b as 0.b1b2 · · · bt × 2e(a). This new representation needs t + 1 bits, but with the guard bit, we do
no truncation. The subtraction operation has the form

a1 . a2 · · · at 0
− 0 . b1 · · · bt−1 bt

c0 . c1 · · · ct−1 ct.
(25)

Thus a − b = c0.c1 · · · ct × 2e(a). It suffices to show that c0 = 0, so that after normalization, the non-zero
bits in c1 · · · ct are preserved. Note that a ≤ 2b; this is equivalent to a1.a2 · · · at ≤ b1.b2 · · · bt. Therefore
c0.c1 · · · ct = a1.a2 · · · at−0.b1b2 · · · bt ≤ 0.b1b2 · · · bt. This proves c0 = 0. Note that a−b might be a subnormal
number. The other possibility is e(a) = e(b). But this case is slightly simpler to analyze. Q.E.D.

Note that we cannot guarantee exact results when forming the sum a + b, under the assumptions of
Sterbenz’s Lemma. Complementing Sterbenz’s lemma is another “exact” result from Dekker (1971): let s̃ be
the floating point result of adding a and b where we make no assumptions about a/b. Dekker shows, in base
β = 2, the sum a + b can be expressed exactly as s̃ + ẽ where ẽ is another floating point number computed
from a, b. See Chapter 4.

Exercises

Exercise 2.1: Unless otherwise noted, assume the F (2, t) system.
(i) Give the normal representations of −1, 0, 1.

4In our notation, “fl(x ◦ y)” is not the same as “[x ◦ y]”. The former is simply applying the rounding operator fl(·) to the
exact value x ◦ y while the [· · · ◦ · · · ] refers to applying the floating point operation ◦

′. The [· · · ◦ · · · ] is attributed to Kahan.
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(ii) Give the representations of the next representable number after 1, and the one just before 1.
(iii) Give the IEEE double formats of the numbers in (i) and (ii).
(iv) Give the binary representation of machine epsilon in the IEEE double format.
(v) True or False: for any x, ⌈x⌉ and ⌊x⌋ are the two closest representable to x. ♦

Exercise 2.2: Determine all the numbers in F = F (2, 3,−1, 2). What are the subnormal numbers? What
is u and the range of F? ♦

Exercise 2.3: Consider arithmetic in the system F (β, t).
(i) Show that the standard model (24) holds for multiplication or division when the scaled operand is
truncated to t digits (just before performing the actual operation).
(ii) Show that the standard model (24) fails for addition or subtraction when we truncate to t digits.
(iii) Give the worst case error bound in (ii).
(iv) Show that the standard model holds for addition and subtraction if we have a guard digit. ♦

Exercise 2.4: (i) Give an actual numerical example to show why the guard digit in the scaled operands is
essential for addition or subtraction.
(ii) State the error bound guaranteed by addition or subtraction when there is no guard bit. This
should be weaker than the standard model. ♦

Exercise 2.5: (Ferguson) Generalize the lemma of Sterbenz so that the hypothesis of the lemma is that
e(a− b) ≤ min{e(a), e(b)} where e(a) denotes the exponent of a in normal representation. ♦

Exercise 2.6: The area of a triangle with side-lengths of a, b, c is given by a formula

∆ =
√

s(s− a)(s− b)(s− c), s = (a + b + c)/2.

This formula was derived in Book I of Metrica, by Heron who lived in Alexandria, Egypt, from ap-
proximately 10 to 75 A.D.. If the triangle is needle-like (say, c is very small compared to a, b) the
straightforward evaluation of this formula using machine arithmetic can be very inaccurate.
(i) Give a straight forward C++ implementation of this formula. Use the input data found in the first
three columns of the following table:

No. a b c Naive Kahan’s

1 10 10 10 43.30127019 43.30127020
2 −3 5 2 2.905 Error
3 100000 99999.99979 0.00029 17.6 9.999999990
4 100000 100000 1.00005 50010.0 50002.50003
5 99999.99996 99999.99994 0.00003 Error 1.118033988
6 99999.99996 0.00003 99999.99994 Error 1.118033988
7 10000 50000.000001 15000 0 612.3724358
8 99999.99999 99999.99999 200000 0 Error
9 5278.64055 94721.35941 99999.99996 Error 0
10 100002 100002 200004 0 0
11 31622.77662 0.000023 31622.77661 0.447 0.327490458
12 31622.77662 0.0155555 31622.77661 246.18 245.9540000

Values in bold font indicate substantial error. Your results should be comparable to the results in the
first 4th column.
(ii) Now implement Kahan’s prescription: first sort the lengths so that a ≥ b ≥ c. If c − (a − b) < 0
then the data is invalid. Otherwise use the following formula

∆ =
1

4

√
(a + (b + c))(c− (a− b))(c + (a− b))(a + (b− c)).

In these formulas, the parenthesis are significant. Compare your results with the 5th column of the
above table.
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(iii) Convert your programs in both parts (i) and (ii) into CORE programs and run at level III, with
guaranteed precision of 64 bits. What conclusions do you draw?

NOTE: This problem is derived from5 Kahan’s paper “Miscalculating Area and Angles of a Needle-like
Triangle”, July 19, 1999. ♦

End Exercises

§3. The IEEE Standard

The official name for this standard is the “IEEE Standard 754 for Binary Floating-Point Arithmetic”
[16, 10]. There is a generalization called the IEEE Standard 854 (1987) which applies to any base and to
any word length. It is important to understand some basic properties of this standard because all modern
computer arithmetic subscribes to it. This standard was precipitated by a growing problem in numerical
computation in the 1980s. As FP computation grew in importance, hardware implementations of floating
point arithmetic began to proliferate. The divergence among these architectures caused confusion in the
computing community, and numerical software became largely non-portable across platforms. In 1985, the
IEEE established the said standard for hardware designers. See the book of Patterson and Hennessy [28]
for some of this history. We should properly understand the true significance of this standard vis-á-vis our
robustness goal.

• It ensures consistent performance across platforms. This is no mean achievement, considering the
confusion preceding its introduction and acceptance.

• Because of its rational design, it can reduce the frequency of nonrobust behavior. But we emphasize
that it does not completely eliminate nonrobustness.

• There are issues beyond the current standard that remain to be addressed. A key problem is high-
level language support for this standard [9]. The IEEE Standard is usually viewed as a hardware
standard. Most programming languages still do not support the IEEE standard in a systematic way,
or consistently across platforms.

In the previous section, we had presented the system F (β, t, emin, emax) that forms the mathematical
foundation of floating point arithmetic. But in an actual computer implementation, we need other features
that goes beyond mathematical properties. The IEEE standard provides for the following:

• Number formats. We already mentioned the single and double formats in the previous section. Another
format that is expected to have growing importance is the quadruple precision floating point
format that uses 128 bits (four computer words).

• Conversions between number formats.

• Subnormal numbers. When a computed value is smaller than the smallest normal number, we say
an underflow has occurred. Using subnormal numbers, a computation is said to achieves a gradual
underflow (see below). The older IEEE term for “subnormal numbers” is “denormal numbers”.

• Special values (NaN, ±∞, ±0). The values ±∞ are produced when an operation produces a result
outside the range of our system. For instance, when we divide a finite value by 0, or when we add
two very large positive values. The condition that produces infinite values is called overflow. But
operations such as 0/0,∞−∞, 0×∞ or

√
−1 result in another kind of special value called NaN (“not-

a-number”). There are two varieties of NaN (quiet and signaling). Roughly speaking, the quiet NaN
represents indeterminate operation which can propagate through the computation (without stopping).
But signaling NaN represents an invalid operation (presumably this condition must be caught by the
program). Similarly, the zero value has two varieties ±0.

5Available from http://cs.berkeley.edu/~wkahan/Triangle.pdf. The CORE version of this program may be found with the
CORE distribution. The above table contains a small correction of the original table in Kahan. The bug was discovered by the
CORE program, and confirmed by Kahan.
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• Unambiguous results of basic operations (+,−,×,÷) as well as more advanced ones (remainder and√
). Transcendental functions are not in the standard per se. The basic rule is simple enough to

understand: if ◦′ is the machine implementation of a binary operation ◦, then let x ◦′ y should return
fl(x ◦ y), i.e., the correctly rounded result of x ◦ y. This applies to unary operations as well.

• Unambiguous results for comparisons. Comparisons of finite values is not an issue. But we need to
carefully define comparisons that involve special values. In particular, +0 = −0 and NaN is non-
comparable. For instance, NaN < x and NaN ≥ x and NaN = x are all false. This means that in
general, not(x < y) and (x ≥ y) are unequal. Comparisons involving ±∞ is straightforward.

• 4 Rounding modes: to nearest/even (the default), up, down, to zero. These have been discussed in the
previous section.

• 5 Exceptions and their handling: invalid result, overflow, divide by 0, underflow, inexact result. The
philosophy behind exceptions is that many computation should be allowed to proceed even when they
produce infinities, NaN’s and cause under- or overflows. The special values (±∞ and NaN) can serve
to indicate such conditions in the eventual output. On the other hand, if there is a need to handle
detect and handle such conditions, IEEE provide the means for this. A single arithmetic operation
might cause one or more of the Exceptions to be signals. The program can trap (catch) the signals if
desired. Interestingly, one of the exceptions is “inexact result”, i.e., when the result calls for rounding.

Format and Encoding. Let us focus on the IEEE double precision format: how can we represent the
system F (2, 53,−1023, 1023) using 64 bits? The first decision is to allocate 11 bits for the exponent and 53
bits for the mantissa. To make this allocation concrete, we need to recall that modern computer memory is
divided into 32-bit chunks called (computer) words; this is illustrated in Figure 2.

±

63 62 52 51 32

31 0

f [51 : 32]

f [31 : 0]

e[52 : 62]

Figure 2: Format of a Double Precision IEEE Float

This physical layout will be important to understand if one were to program and manipulate such repre-
sentations; So two consecutive words are used to represent a double precision number. The bits of a floating
point number f are indexed by 0, 1, . . . , 63. The 11 exponent bits are in f [52 : 62]. The remaining bits,
f [0 : 51] and f [63] are allocated to the mantissa. Bit f [63] represents the sign of the mantissa. Although the
sign bit logically belongs to the mantissa, it is thus physically separated from the rest of the mantissa.

We do not allocate any bits for sign in the exponent. So the 11 exponent bits represent an unsigned
integer f between 0 and 2047, but we view f as encoding the signed exponent e = f − 1023 (here 1023 is
called6 the exponent bias). By avoiding a sign for the exponent, we have saved a “half-bit” using this
exponent bias trick (Exercise). So e ranges from −1023 to +1024. We shall reserve the value e = 1024 for
special indications (e.g., representing infinity – see below). Hence emin = −1023 and emax = 1023.

Since one of the 53 bits in the mantissa is used for sign, we have only 52 bits to represent the absolute
value of the mantissa. Here, we use another trick to gain one extra bit: for normal numbers, the leading bit
of a 53-bit mantissa is always 1. So this leading bit does not need to be explicitly represented! But what
about subnormal numbers? In this case we declare the implicit bit to be 0. How shall we know whether
a number is normal or subnormal? IEEE standard declares that this is determined by the exponent e. A
number with exponent e is normal if e > −1023, and it is subnormal if e = −1023.

6This is distinct from the “biased exponent” idea discussed in the representation (m, e) where e is called the biased exponent.
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The preceding discussion can be directly transferred to the representation of F (2, 24,−127, 127) by the
IEEE single precision format: with a 32-bit budget, we allocate 8 bits to the exponent and 24 bits to the
mantissa. The unsigned exponent bits represents a number between 0 and 255. Using an exponent bias
of 127, it encodes an exponent value e between −127 and 128. Again, the exponent e = −127 indicates
subnormal numbers, and the value e = 128 is used for special indication, so emin = −127 and emax = 127.

Let us discuss how the special values are represented in the single or double precision formats. Note
that ±0 is easy enough: the mantissa shows ±0 (this is possible since there is a dedicated bit for sign), and
exponent is 0. The infinite values are represented as (±0, emax) Finally, the NaN values are represented by
(m, emax) where |m| > 0. If |m| ≥ 2t−1 then this is interpreted as a quiet NaN, otherwise it is interpreted as
a signaling NaN.

Let us briefly mention how bits are allocated in quad-precision floating point numbers: 15 bits for the
exponent and 113 bits for the mantissa. is the system F (2, 113,−16382, 16383). The IEEE Standard also
provide for extensions of the above types, but we shall not discuss such extensions.

Is the IEEE doubles really F (2, 53,−1023, 1023)? We had hinted that the IEEE double precision may
not correspond exactly to F (2, 53,−1023, 1023). Indeed, it is only a proper subset of F (2, 53,−1023, 1023).
To see this, we note that there are 253 numbers in F (2, 53,−1023, 1023) with exponent −1023. However,
there are only 252 numbers with exponent −1023 in the IEEE standard. What are the missing numbers?
These are numbers of the form float(m,−1023) where |m| ≥ 2−52. Why are these missing? That is because
of the implicit leading bit of the 53-bit mantissa is 0 when e = −1023. This means m must have the form
m = 0.b1b2 · · · b52. For instance, float(2−52,−1023) = 2−1023 is not representable.

In general, all the normal numbers with exponent emin are necessarily missing using the IEEE’s conven-
tion. This creates an undesirable non-uniformity among the representable numbers; specifically, there is a
conspicuous gap between the normal and subnormal numbers. But consider the alternative, where we get
rid of the special rule concerning the implicit bit in case e = emin. That is, we use the rule that the implicit
is always 1 even when e = emin. The problem is that gap between 0 and the next representable number
is 2emin ; the special rule for implicit leading bit gives us 2−t+1 values to fill this gap. So, this is where the
missing numbers go! This tradeoff is apparently worthwhile, and is known as the graceful degradation
towards 0 feature of IEEE arithmetic.

Exercises

Exercise 3.1:
(i) What are the numbers in in F (2, 24,−127, 127) that are missing from the IEEE single precision
floats?
(ii) In general, what are the missing numbers in the IEEE version of F (2, t, emin, emax)?
(iii) Discuss the pros and cons of this graceful degradation towards 0 policy.
(iv) How would you would design and implementation F (2, t, emin, emax) where no missing numbers?

♦

Exercise 3.2: Refer to the example in Figure 1. The “missing numbers” under the IEEE scheme are those
in the interval I−2. The gradual underflow feature is achieved at the expense of moving these numbers
into the interval I−∞. The result does not look pretty. Work out a scheme for more uniform floating-
point grid near 0: the idea is to distribute 2−t+1 values uniformly in I−∞ ∪ Imin (say, filling in only
the even values) What are the gap sizes in this range? ♦

Exercise 3.3: By using the biased exponent trick instead of allocating a sign bit to the exponent, what
have we gained? ♦

End Exercises

§4. Error Analysis in FP Computation
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The ostensible goal of error analysis is to obtain an error bound. But [14, p. 71] (“The purpose of
rounding error analysis”) notes that the actual bound is often less important than the insights from the
analysis. The quantity denoted u from the previous section will an important parameter in such analysis.
Without the right tool, bounding the error on the simplest computation could be formidable. The art in error
analysis includes maintaining the error bounds in a form that is reasonably tight, yet easy to understand
and manipulate.

Summation Problem. To illustrate this, let us analyze an extremely simple numerical code to sum the
elements of an array x[1..n] of numbers:

s = x[1];
for i = 2 to n do

s← s + x[i]

Let xi be the floating point number in x[i] and si =
∑i

j=1 xi. Also let s̃i be the value of the variable s
after the ith iteration. Thus s̃1 = x1 and for i ≥ 2,

s̃i = [s̃i−1 + xi]

where we use the bracket notation “[a ◦ b]” to indicate the floating operation corresponding to a ◦ b. Under
the standard model, we have

s̃i = (xi + s̃i−1)(1 + δi) (26)

for some δi such that |δi| ≤ u. For instance, s̃2 = (x1 + x2)(1 + δ2) and

s̃3 = ((x1 + x2)(1 + δ2) + x3)(1 + δ3).

One possible goal of error analysis might be to express s̃n as a function of sn, n and u. We shall see to what
extent this is possible.

The following quantity will be generally useful in error analysis. Define for n ≥ 1,

γn :=
nu

1− nu
.

Whenever we use γn, it is assumed that nu < 1 holds. Note that γn < γn+1. The following lemma is from
Higham [14, p. 69]:

Lemma 3. Let |δi| ≤ u and ρi = ±1 for i = 1, . . . , n. If nu < 1 then

n∏

i=1

(1 + δi)
ρi = 1 + θn,

where |θn| ≤ γn.

Proof. We use induction on n. When n = 1, the lemma follows from

(1 + δ1) < 1 +
u

1− u

and
(1 + δ1)

−1 ≤ 1 +
u

1− u
.

Assuming the lemma for n ≥ 1, we will prove it for n + 1. We consider two cases. (1) If ρn+1 = 1, then we
have

(1 + θn)(1 + δn+1) = 1 + θn+1
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or θn+1 = θn + δn+1θn + δn+1. Thus

|θn+1| < γn + uγn + u

=
nu + nu2 + u(1− nu)

1− nu
< γn+1.

(2) If ρn+1 = −1, we have
1 + θn

1 + δn+1
= 1 + θn+1

or θn+1 = θn−δn+1

1+δn+1
. Thus

|θn+1| ≤
θn + u

1− u

=
(n + 1)u

(1− nu)(1− u)
< γn+1.

Q.E.D.

The hypothesis nu < 1 is not too restrictive in typical applications. For instance, with the IEEE single
precision numbers, it means n < 224 which is about 16 billion. If we assume nu < 1/2, then we have the
estimate γn < 2nu. Using this lemma, it is now easy to show:

Lemma 4.
(i) s̃n =

∑n
i=1 xi(1 + θn−i+1) where |θi| ≤ γi.

(ii) If all xi’s have the same sign then s̃n = sn(1 + θ) where |θ| ≤ γn.

Proof. (i) easily follows by induction from (26). To see (ii), we note that when xy ≥ 0 and α ≤ β, then

αx + βy = γ(x + y) (27)

for some α ≤ γ ≤ β. Thus x1(1+θ1)+x2(1+θ2) = (x1 +x2)(1+θ) for some min{θ1, θ2} ≤ θ ≤ max{θ1, θ2}.
The result follows by induction. Q.E.D.

We noted above that the purpose of error analysis is just as important for the insight as for the actual
error bound. In the present case, our proof of Lemma 4(i) shows that the backward error associated with each
xi is proportional to its depth in the expression for sn. We can reduce the error considerably by reorganizing
our computation: In particular, if the summation of the numbers x1, . . . , xn is organized in the form of a
balanced binary tree, then we can improve Lemma 4(i) to

s̃n =

n∑

i=1

xi(1 + θi) (28)

where each |θi| ≤ γ1+⌈lg n⌉. We leave this as an exercise.

Forward and Backward Error Analysis. Let y be a numerical variable. As a general notation, we
like to write ỹ for an approximation to y, and also δy for their absolute difference ỹ − y. Typically, ỹ is
some computed floating point number. There are two main kinds of error measures: absolute or relative.
Absolute error in ỹ as an approximation to y is simply |δy|. Relative error is defined by

ε(ỹ, y) =
|δy|
|y| .

This is defined to be 0 if y = ỹ = 0 and ∞ if y = 0 6= ỹ. Generally speaking, numerical analysis prefers to
use relative error measures. One reason is that relative error for floating point numbers is built-in; this is
clear from Theorem 1.

c© Mehlhorn/Yap Draft January 28, 2009



§5. Condition Number and Stability Lecture 2 Page 15

In error analysis, we also recognized two kinds of algorithmic errors: forward and backward errors. Let
f : X → Y be a function with X,Y ⊆ C. Suppose ỹ is the computed value of f at x ∈ Y and y = f(x).
How shall we measure the error in this computation? Conceptually, forward error is simple to understand –
it measures how far off our computed value is from the true value. Again, this can be absolute or relative:
so the absolute forward error is |δy| and the relative forward error is ε(ỹ, y). The backward error is
how far is x from the input x̃ for which ỹ is the exact solution. More precisely, the absolute backward
error of ỹ is defined to be the infimum of |δx| = |x̃ − x|, over all x̃ such that ỹ = f(x̃). If there is no such
x̃, then the absolute backward error is defined to be ∞. The relative backward error of ỹ is similarly
defined, except we use ε(x̃, x) instead of |δx|.

In general, X,Y are normed spaces. The forward error is based on the norm in range space Y , while
backward error is based on the norm in domain space X. Consider our analysis of the summation problem,
Lemma 4. The computed function is f : Cn → C. Also, let take the ∞-norm in X = Cn. Part (i) gives us
a relative backward error result: it says that the computed sum s̃n is the correct value of inputs that are
perturbed by at most γn. Part (ii) gives us a forward error result: it says that the relative error ε(s̃n, sn) is
at most γn.

It turns out that backward error is more generally applicable than forward error for standard problems
of numerical analysis. Let us see why. Note that Lemma 4(ii) has an extra hypothesis that the xi’s have
the same sign. How essential is this? In fact, the hypothesis cannot be removed even for n = 2. Suppose we
want to compute the sum x + y where x > 0 and y < 0. Then we do not have the analogue of (27) in case
x + y = 0. Basically, the possibility of cancellation implies that no finite relative error bound is possible.

Less the reader is lulled into thinking that backward error analysis is universally applicable, we consider
the example [14, p. 71] of computing the outer product of two vectors: A = xyT where x, y are n-vectors

and A = (aij)i,j = (xiyj)i,j is a n×n-matrix. Let Ã = (ãij) be the product computed by the obvious trivial
algorithm. The forward analysis is easy because ãij = aij(1 + θ) where |θ| ≤ u. But there is no backwards

error result because Ã cannot be written as x̃ỹT for any choice of x̃, ỹ, since we cannot guarantee that Ã is
a rank-one matrix.

In general, we see that for problems f : X → Y in which the range f(X) is a lower dimensional subset of
Y , no backward error analysis is possible. Standard problems of numerical analysis are usually not of this
type.

There is also a notion of “mixed forward-backward stable” if both ε(x̃, x) and ε(ỹ, y) are “small”. In
Lecture 3, we return to this issue.

Exercises

Exercise 4.1: The inequality |θn| ≤ γn in Lemma 3 is actually strict, with one possible exception. What is
this? ♦

Exercise 4.2: Extend the error analysis for summation to the scalar product problem: s =
∑n

i=1 xiyi. ♦

Exercise 4.3: Write a recursive program for summing the entries in the array x[1..n] so that the error
bound (28) is attained. Also, prove the bound (28) for your scheme. ♦

Exercise 4.4: We have noted that the relative forward error analysis for s =
∑n

i=1 xi is not possible in
general. Do the absolute forward error analysis. ♦

Exercise 4.5: Suppose we introduce a “composite” error combining relative with absolute. More precisely,
let ε(ỹ, y) = min{|y− ỹ|, |y − ỹ|/|y|}. Thus, in the neighborhood around y = 0, it is the absolute error
that takes effect, and in the neighborhood of |y| =∞, the relative error takes effect. Show that we can
how provide a forward error analysis for the general summation problem. ♦

End Exercises

§5. Condition Number and Stability
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Despite its acknowledged importance in numerical analysis, the concept of “stability” has largely remained
an informal notion. The book of Higham [14], for instance, says [14, p. 8] that an algorithm for y = f(x)
is “backward stable” if the backward error ε(x̃, x) is “small” in some context-specific sense. The book
of Trefethen and Bau [33] devoted several chapters to stability, and offers the most explicit definition of
stability. This is reproduced below. Before delving into stability, let us consider the more primitive concept:
the condition number.

Suppose
f : X → Y (29)

where X,Y are normed vector spaces. If we want to emphasize the distinction between these two norms, we
may write ‖ · ‖X and ‖ · ‖Y . But generally, we will omit the subscripts in the norms. For x ∈ X, we again
use our convention of writing x̃ for some approximation to x and

δx := x̃− x.

The condition number of f at x ∈ X is a non-negative number (possibly infinite) that measures the sensitivity
of f(x) to x; a larger condition number means greater sensitivity. Again we have the absolute and relative
versions of condition number.

The absolute condition number is defined as

κ̂f (x) := lim
δ→0

sup
‖δx‖≤δ

‖f(x̃)− f(x)‖
‖δx‖ .

The relative condition number is defined as

κf (x) := lim
δ→0

sup
‖δx‖≤δ

( ‖f(x̃)− f(x)‖
‖f(x)‖

/ ‖δx‖
‖x‖

)

:= lim
δ→0

sup
‖δx‖≤δ

(‖f(x̃)− f(x)‖
‖δx‖ · ‖x‖‖f(x)‖

)
. (30)

Viewing κ̂, κ : X → R≥0 ∪ {∞} as functions, we call these the condition number functions of f . When
f is understood, we may drop the subscripts from the κ-notations. REMARK: we could also consider how
an absolute error in X affects the relative error in Y , or how a relative error in X affects the absolute error
in Y . This gives rise to 2 additional concepts of relative error.

Suppose X ⊆ Cm, Y ⊆ Cn and f = (f1, . . . , fn) is differentiable. Let Jf (x) be the Jacobian of f at x:
this is a n ×m matrix whose (i, j)-th entry given by ∂fi/∂xj . The norm ‖Jf (x)‖ on the Jacobian will be
that induced by the norms in X and Y , namely,

‖Jf (x)‖ = sup
x
‖Jf (x) · x‖Y

where x range over those elements of X satisfying ‖x‖X = 1. Then the absolute and relative condition
numbers are given by

κ̂f (x) = ‖Jf (x)‖ (31)

and

κf (x) =
‖Jf (x)‖ · ‖x‖
‖f(x)‖ . (32)

EXAMPLE 1. Let us give a proof of (32) for the case f : Cm → C. By Taylor’s theorem with remainder,

f(x + δx)− f(x) = Jf (x) ◦ δx + R(x, δx)

where Jf (x) ◦ δx denotes dot product with Jf (x) = [∂f/∂x1, . . . , ∂f/∂xn], and |R(x,δx)|
‖δx‖ → 0 as ‖δx‖ → 0.

Taking absolute values and multiplying by ‖x‖
|f(x)|·‖δx‖ , we get

|f(x + δx)− f(x)|
‖δx‖ · ‖x‖|f(x)| =

‖x‖
|f(x)|

(∣∣∣∣Jf (x) ◦ δx

‖δx‖

∣∣∣∣+
|R(x, δx)|
‖δx‖

)
.
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Taking the limsup of the lefthand side as ‖δx‖ → 0, we obtain κf (x). But the righthand side equals
‖x‖

|f(x)|‖Jf (x)‖, by definition of ‖Jf (x)‖. This completes our demonstration.

EXAMPLE 2. Let us compute these condition numbers for the problem f : C2 → C where f(x) = x1+x2

and x = (x1, x2)
T . The Jacobian is

Jf (x) =

[
∂f

∂x1
,

∂f

∂x2

]
= [1, 1]

Assume the norm on X = C2 is the ∞-norm, so ‖x‖ = max{|x1|, |x2|}. Thus ‖Jf (x)‖ = 2. From (31), we
obtain κ̂f (x) = 2. From (32), we obtain

κ =
2max{|x1|, |x2|}
|x1 + x2|

.

Thus κ =∞ when x1 + x2 = 0.
EXAMPLE 3. Condition numbers of matrix.
EXAMPLE 4. Condition numbers of polynomial root.

Stability of Algorithms. Condition numbers are inherent to a given problem, the concept of stability is a
function of algorithms for the problem. We may view an algorithm for the problem (29) as another function

f̃ : X ′ → Y ′ where X ′ ⊆ X and Y ′ ⊆ Y . In fact, we might as well take X ′ = fl(X) and Y ′ = fl(Y ), i.e., the

representable elements of X,Y . The stability of f̃ is the measure of how much f̃ deviates from f . Intuitively,
we want to define κ̃f (x), the relative condition number of f̃ at x; we need to be careful with this definition
since X ′ = fl(X), Y ′ = fl(Y ) are discrete sets. The stability of an algorithm is clearly limited by the condition
numbers for the problem. Ideally, a stable algorithm should have the property that κ̃f (x) = O(κf (x)).

We now come to the key definition of Trefethen and Bau: an algorithm f̃ for f is stable if there exists
positive constants C0, C1,u0 such that for all u (0 < u < u0) and all x ∈ X, there is some x̃ ∈ X ′ such that

‖x̃− x‖
‖x‖ ≤ C0u, and (33)

‖f̃(x)− f(x̃)‖
‖f(x̃)‖ ≤ C1u. (34)

According to Trefethen and Bau, the constants C0, C1 may not depend on x but may depend on f . In
practice, the requirement that u must be smaller than some u0 is not an issue. To understand this definition
of stability, let us explore some related concepts:

• The requirement (34) is a little subtle: for instance, it might be more obvious to require

‖f̃(x)− f(x)‖
‖f(x)‖ ≤ C1u. (35)

This would not involve x̃, so the requirement (33) can be omitted. Of course, (35) is the relative

forward error in f̃(x); in fact, this constitutes our definition of forward stability.

• If, in the definition of stability above, the constant C1 is chosen to be 0, we say the algorithm f̃ is
backward stable for f . In other words, we can find x̃ subject to (33) and f̃(x) = f(x).

• In contrast to forward or backward stability, the view of (34) is to compare f̃(x) to the “correct solution
f(x̃) of a nearly correct question x̃”. Thus our concept of stability contains a mixture of forward and
backward error concepts.

• We may rewrite equations (33) and (34) using the standard big-Oh notations:

‖x̃− x‖
‖x‖ = O(u),

‖f̃(x)− f(x̃)‖
‖f(x̃)‖ = O(u).
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In the big-Oh notations of equations (33) and (34), we view u as varying and approaching 0. As noted
above, the implicit constants C0, C1 in these big-Oh notations do not depend on x but may depend
on f . Typically, X ⊆ Cm for some fixed m. Thus the implicit constants C0, C1 are allowed to depend
on m. When X = ∪m≥1Cm, then it seems that we should allow the constant C0, C1 to have a weak
dependence of x: in particular, we would like C0, C1 to depend on size(x) where size(x)=m when
x ∈ Cm.

EXAMPLE 5: From theorem 1, we conclude that the standard algorithms for performing arithmetic
operations (+,−,×,÷) are all stable.

EXAMPLE 6: Consider the problem of computing eigenvalues of a matrix A. One algorithm is to
compute the characteristic polynomial P (λ) = det(A−λI), and then find roots of P (λ). Trefethan and Bau
noted that this algorithm is not stable.

There is a rule of thumb in numerical analysis that says

Forward Error ≤ Condition Number × Backward Error.

Here is one precise formulation of this insight.

Theorem 5 ([33, p. 151]). If f̃ is a backward stable algorithm for f then the relative forward error satisfy

‖f̃(x)− f(x)‖
‖f(x)‖ = O(κf (x)u).

Proof. By definition of κ = κf (x), for all ε > 0 there exists δ > 0 such that

sup
‖δx‖≤δ

(‖f(x + δ)− f(x)‖
‖δx‖ · ‖x‖‖f(x)‖

)
≤ κ + ε. (36)

By definition of backward stability, for all u < u0 and all x ∈ X, there is δx such that

‖δx‖
‖x‖ = O(u) (37)

and
f̃(x) = f(x + δx). (38)

Plugging (38) into (36), we conclude

‖ ef(x)−f(x)‖
‖δx‖

‖x‖
‖f(x)‖ ≤ κ + ε

‖ ef(x)−f(x)‖
‖f(x)‖ ≤ O(κ)‖δx‖

‖x‖ (choose ε = O(κ))

= O(κu) (by (37)).

Q.E.D.

Corollary 6. If the condition number function of f : X → Y is bounded, and f̃ is a backward stable
algorithm for f , then f̃ is a forward stable algorithm for f .

Exercises

Exercise 5.1: Give the proof (32) in the general case of f : Cm → Cn. ♦

Exercise 5.2: (Trefethan and Bau) Compute κf (x) for the following functions.
(i) f : C→ C where f(x) = x/2.
(ii) f : R→ R where f(x) =

√
x and x > 0.

(iii) f : R→ R where f(x) = tan(x) and x = 10100. ♦

Exercise 5.3: Show that the algorithm for eigenvalues in EXAMPLE 6 is not stable. HINT: it is enough
to show this for the case where A is a 2× 2 matrix: show that the error is Ω(

√
u). ♦
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End Exercises

§6. Arbitrary Precision Computation

In contrast to fixed precision arithmetic, we now consider number types with no á priori bound on its
precision, save for physical limits on computer memory, etc. We call7 this arbitrary precision compu-
tation (or “AP computation”) Arbitrary precision computation is becoming more mainstream, but it is
still a small fraction of scientific computation. Unlike the ubiquitous hardware support for FP computation,
AP computation is only available through software. It is the computational basis for the fields of computer
algebra, computational number theory and cryptographic computations. In our quest for robustness, AP
computation is one of the first steps.

Computer numbers with arbitrary precision are called Big Numbers and the software for manipulating
and performing arithmetic with such numbers are usually called Big Number Packages. There are many
kinds of Big Numbers. The simplest (and the basis for all the other Big Numbers) is the Big Integer. An
obvious way to represent a Big Integer is an array or a linked list of computer words. If each word is L bits, we
can view the list as a number is base 2L (typically, L = 32). The four arithmetic operations on Big Integers
is easily reduced to machine arithmetic on these words. The next kind of Big Number is the Big Rational.
A Big Rational number is represented by a pair of Big Integers (m,n) representing the rational number
m/n. Let us write m : n to suggest that it is the ratio that is represented. The rules for reducing rational
number computation to integer computation is standard. Big Integers are usually represented internally in
some kind of positional representation (so a Big Integer is represented by a sequence of digits a1a2 · · · an

where 0 ≤ ai < β for some natural number β > 1). The third type of Big Number is the Big Float: a Big
Float number can be viewed as a pair of Big Integers (m, e) representing the floating point number

mβe (39)

(where m is called the mantissa and e the exponent and β is the implicit base). In practice, it may be
unnecessary to represent e by a Big Integer; a machine long integer may be sufficient. Note that viewing
(m, e) as the number (39) is at variance with the system F (β, t) introduced in Lecture 2. If we want an
analogous system, we can can proceed as follows: assuming that m is also represented in base β, let us define

µ(m)←
⌈
logβ(|m|)

⌉
.

Then we can alternatively view the pair (m, e) as the number

Float(m, e) := βe−µ(m). (40)

Call this the normalized Big Float value. Since β−1 < mβ−µ(m) ≤ 1, this means the normalized value
lies in the interval (βe−1, βe]. The advantage of normalization is that we can now compare two Big Floats
(of the same sign) by first comparing their exponents; if these are equal, we then compare their mantissas.

Arbitrary precision arithmetic can also be based on Hensel’s p-adic numbers [12, 13, 8], or on continued
fractions.

On Rationals versus Integers versus Big Floats. Conceptually, Big Rationals does not appear to be
different from Big Integers. It is less well-known that from a complexity viewpoint, Big Rational computations
are usually very expensive relative to integer arithmetic, which serves as our base line. One problem with
Big Rational numbers p : q is its non-uniqueness. To get a unique representation, we can compute the
greatest common denominator m = GCD(p, q) and reduce p : q to p′ : q′ where p′ = p/m and q′ = q/m.
Without such reductions, the numbers can quickly grow very large. This is seen in the Euclidean algorithm
for computing the GCD of two integer polynomials, where the phenomenon is called intermediate expression
swell. Karasick et al [18] reported that a straightforward rational implementation of determinants can cause
a slow down of 5 orders of magnitude. In their paper, they describe filtering techniques which finally bring
the slowdown down to a small constant. This is one of the first evidence of the importance of filters in
geometric problems.

7Alternatively, “multi-precision computation” or “any precision”. However, we avoid the term “infinite precision” since it
engenders some confusion.
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On the other hand, Big Float arithmetic is considerably faster than Big Rational arithmetic. Big Floats
recover most of the speed advantages of Big Integer arithmetic while retaining the ability of Big Rationals to
provide a dense approximation of the real numbers. We cannot always replace Big Rationals by Big Floats
since the latter represent a proper subset of the rational numbers. However, if approximate arithmetic can
be used, the advantages of Big Float should be exploited. This is discussed in Lecture 4.

§7. Interval Arithmetic

This leads us to the concept of significance arithmetic. First let us clarify the notion of “significance”.
Assuming the normalized Big Float system (40), we say that the big float number (m, e) has ℓ(m) significant
digits. If we now introduce an uncertainty u ≥ 0 into this representation, then triple (m, e, u) represents the
interval

[float(m− u, e),float(m + u, e)].

In this case, the significance of (m, e, u) is defined to be ℓ(m) − ℓ(u). This means that we can only trust
the first ℓ(m)− ℓ(u) digits of float(m, e). Significance arithmetic is usually traced to the work of Metropolis
[2, 23]. Significant arithmetic can be regarded as a special case of interval arithmetic, where we attempt to
only retain the uncertainty warranted by the input uncertainty. Basically, interval arithmetic [25] replacing
each number x by an interval I = [a, b] that contains x. We can introduce the basic arithmetic operations on
such intervals in the natural way (see below). The development and analysis of techniques for computation
with intervals constitute the field of interval arithmetic. Taking a larger view, the field is also8 known as
validated computation. R.E. Moore [25] is the pioneer of interval arithmetic. The book of Rokne and
Ratschek [29] gives an excellent account of interval functions.

A motivation for interval analysis is the desire to compute error bounds efficiently and automatically. In
[1], this is called the “näıve outlook”; instead, it is suggested that the proper focus of the field ought to be
how to compute with inexact data (e.g., solving a linear system with interval coefficients) and for problems
with exact data, the issues of algorithmic convergence.

¶1. For D ⊆ R, let I(D) denote the set of closed intervals of the form [a, b] ∈ D where a ≤ b. An alternative
notation for I(D) is D. The n-fold Cartesian product of I(D) is I(D)n or ( D)n. For simplicity, we also
write In(D) and nD. Elements of In(D) are called boxes; when n = 1, we prefer to say “intervals” instead
of boxes.

Let ℓ(I) and u(I) denote the lower and upper endpoints of interval I. So I = [ℓ(I), u(I)]. If ℓ(I) < u(I),
we call I a proper interval; otherwise I is improper. Thus R is regarded as contained in I(R) by
identifying elements of R with the improper intervals.

We now extend the basic operations and predicates on real numbers to intervals. But it is useful to
see them as special cases of definitions which apply to arbitrary sets of real numbers. In the following, let
A,B ⊆ R.

1. We can compare A and B in the natural way: we write A ≤ B to mean that the inequality a ≥ b holds
for all a ∈ A, b ∈ B. The relations A ≤ B, A > B and A < B are similarly defined. If A ≤ B or A ≥ B,
we say A and B are comparable; otherwise they are incomparable. In case A,B are intervals, these
relations can be reduced to relations on their endpoints. For instance, A ≤ B iff u(A) ≤ ℓ(B).

2. If ◦ is any of the four arithmetic operations then A ◦ B is defined to be {a ◦ b : a ∈ A, b ∈ B}. It is
assume that in case of division, 0 6∈ B. In case A,B are intervals, it is easy to see that A ◦B would be
intervals. Moreover, A ◦B can be expressed in terms of operations on the endpoints of A and B:

• A + B = [ℓ(A) + ℓ(B), u(A) + u(B)]

• A−B = [ℓ(A)− u(B), u(A)− u(B)]

• A ·B = [minS,max S] where S = {ℓ(A)ℓ(B), ℓ(A)u(B), u(A)ℓ(B), u(A)u(B)}
• 1/B = [1/u(B), 1/ℓ(B)]

8Instead of “validated”, such computations are also described as “certified” or “verified”, and sometimes “guaranteed”. The
error bounds in such computations are á posteriori ones. We prefer to reserve the term “guaranteed” for the stronger notion of
á priori error bounds.
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• A/B = A · (1/B)

3. If f : Rn → R is a real function and A ⊆ Rn, we define f(A) = {f(a) : a ∈ A}. In general, f(A) may
not be an interval even if A is a box. We call a function f of the form

f : nR→ R

a box function for f provided it satisfies two basic properties:
(i) [Inclusion property] For all boxes B ∈ nR, f(B) ⊆ f(B).
(ii) [Convergence property] If Bi ⊆ nR (i ∈ N) is a sequence of boxes that converges to a point p ∈ Rn,
then f(Bi) converges to f(p).

One way to obtain a box function is to define

f(B) = MBB(f(B))

where MBB(S) denotes for the minimum bounding box for set S ⊆ Rn. This box function is clearly
“optimal” but quite impractical. Below we shall discuss practical construction of box functions.

Another commonly satisfied property of box functions is (inclusion) isotony: B ⊆ B′ implies f(B) ⊆
f(B). It is easy to check that the four arithmetic operations implemented in the standard way is

inclusion isotone. It follows that if f is defined by the interval evaluation of any rational expression
defining f .

¶2. Algebraic Properties. The set I(R) under these operations has some of the usual algebraic properties
of real numbers: + and × are both commutative and associative, and have [0, 0] and [1, 1] (respectively) as
their unique identity elements, and there are no zero-divisors. We have distributivity A(B +C) = AB +BC
provided B × C ≥ 0. In general, we have subdistributivity, as expressed by the following lemma:

Lemma 7 (Subdistributivity Property). If A,B,C are intervals, then A(B + C) ⊆ AB + AC.

However, no proper intervals has any inverse under + or ×. A critical property is monotonicity: if
A ⊆ A′ and B ⊆ B′ then A ◦B ⊆ A′ ◦B′. This is also called isotonicity.

¶3. Mid-point Representation. The obvious representation of intervals is the end-point repre-
sentation, i.e., [a, b] is represented by the pair (a, b) of its end-points. It is useful to have notations,
m(I) = (a + b)/2 and w(I) = b − a, to denote the midpoint and width of I = [a, b]. But we can also
have the mid-point representation in which a pair (x, u) of numbers represents the interval [x−u, x+u].
Think of u as the uncertainty (or radius) about the representative value of x. Clearly, the interval
I = [a, b] is represented by (m(I), w(I)/2) in this representation.

If B ∈ nR where B = I1 × · · · × In, we can also define m(B) = (m(I1), . . . ,m(In)), and w(B) =
maxn

i=1 w(Ii). In case I1 = I2 = · · · = In, we can regard the pair (m(B), w(I1)/2) as a midpoint representa-
tion of B.

What can we gain by using the mid-point representation? If the desired interval is small, then u may need
only a few bits to represent. Then the pair (x, u) may save up to half of the number of bits in the end-point
representation. Rump [30] has pointed out that the midpoint representation is uniformly bounded by a factor
of 1.5 in optimum radius for the 4 basic arithmetic operations as well as for vector and matrix operations
over reals and complex numbers. Moreover, this can take advantage of vector and parallel architectures. We
leave it as an exercise to work out the implementation of arithmetic based on midpoint representations. In
the original Core Library, our BigFloat numbers represent intervals in the midpoint representation.

¶4. Complex Intervals. Most of our discussion concern real intervals. There is the obvious and simple of
interval arithmetic to complex numbers: a pair [a, b] of complex numbers represents the complex “interval”
{z ∈ C : a ≤ z ≤ b} where a ≤ b means that Re(a) ≤ Re(b) and Im(a) ≤ Im(b). Many of our discussions
generalize directly to this setting. One generalization of the midpoint representation to complex numbers
introduces the geometry of balls: given z ∈ C, r ≥ 0, the pair (z, r) can be viewed as representing the ball
{w ∈ Z : |w − z| ≤ r}. We shall not say much more about complex intervals.
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¶5. Box Functions. We consider the problem of constructing box functions. It is easy to see that the
basic arithmetic operations (±,×,÷) defined above are box functions. It follows that if f is any rational
function, and we define f(B) by evaluating a fixed rational expression for f , then the result is a box function
for f . Suppose f is a univariate polynomial, f =

∑m
i=0 aiX

i. Here are some possibilities.

• In most applications, we may restrict ourselves to intervals I ∈ R with a definite sign: i.e., either
I = 0 or I > 0 or I < 0. Let us assume I > 0 in the following; the case I < 0 is treated analogously,
and the case I = 0 is trivial. We write f = f+− f− where f+ is just the sum of those terms of f with
positive coefficients. Then we may define f− := f− − f . If I = [a, b], then define the box function

1f(I) = [f+(a)− f−(b), f+(b)− f−a].

It is not hard to verify that 1f is a box function.

• We can also define box functions by specifying a fully parenthesized expression E for f . For instance,
Horner’s rule for evaluating f gives rise to the expression

E = (· · · ((amX + am−1)X + am−2X + · · ·+ a0).

Now, we can define the box function Ef(I) which returns the interval if we evaluate f on I using the
expression E. For instance, if f = 2X2−3X +4 then Horner’s expression for f is E = ((2X−3)X +4).
If I = [1, 2] then

Ef(I) = ((2I − 3)I + 4) = (([2, 4]− 3)[1, 2] + 4)

= ([−1, 1][1, 2] + 4) = [−2, 2] + 4] = [2, 6].

We will denote the box function by 0f where E is Horner’s expression for f .

• Consider a third way to define box functions, where E is basically the expression given by the standard
power basis of f : namely, we evaluated each term of f , and sum the terms. Call the corresponding
box function 2f . We can show that 2f is the same as 1f . Moreover, for all I ∈ R,

0f(I) ⊆ 1f(I).

This follows from the subdistributivity property of interval arithmetic.

In some applications, box functions suffice. E.g., Plantinga and Vegter (2004) shows that the isotopic
approximation of implicit non-singular surfaces can be achieved using box functions. Sometimes, we want
additional properties. For instance, the ability to specify a precision parameter n > 0 such that

f(B;n) ⊆MBB(f(B)⊕ En)

where ⊕ is Minkowsky sum, En = (In)d where In = [−2−n, 2n].
EXAMPLE 1. Suppose we want to solve the equation AX = B where A = [a, a′] 6= 0. Define χ(A) = a/a′

if |a| ≤ |a′|, and χ(A) = a′/a otherwise. There is a solution interval X ∈ I(R) iff χ(A) ≥ χ(B). Moreover
the solution is unique unless χ(A) = χ(B) ≤ 0.

We introduce the Hausdorff metric on I(R) by defining d(A,B) = max{|a − b|, |a′ − b′|} where A =
[a, a′], B = [b, b′]. This is a metric because d(A,B) ≥ 0 with equality iff A = B, d(A,B) = d(B,A) and
finally d(A,C) ≤ d(A,B) + d(B,C). A sequence of intervals converges to some interval A = [a, a′] iff the
left and right endpoints of the interval sequence converges to a and a′ respectively. Under this metric, we
can define the concept of continuity and show that the four arithmetic operations are continuous.

Let f(x) be a real function. If X ∈ I(R), we define f(x) = [a, a] where a = minx∈X f(x) and a =
maxx∈X f(x). Let E(x), E′(x) be two real expressions which evaluates to f(x) when the input intervals are
improper. The fact that certain laws like commutativity fails for intervals means that E and E′ will in
general obtain different results when we evaluate them at proper intervals.

EXAMPLE 2. Let the function f(x) = x − x2 be computed by the two expressions E(x) = x − x2 and
E′(x) = x(1−x). When x is replaced by the interval X = [0, 1] then f([0, 1]) = {x−x2 : 0 ≤ x ≤ 1} = [0, 1/4].
But E([0, 1]) = [0, 1]− [0, 1]2 = [0, 1]− [0, 1] = [−1, 1] and E′([0, 1]) = [0, 1](1− [0, 1]) = [0, 1][0, 1] = [0, 1].
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In fact, we have the following general inclusion:

f(X) ⊆ E(X)

for all X ∈ I(R). In proof, note that every y ∈ f(X) has the form y = f(x) for some x ∈ X. But it is clear
that the value f(x) belongs to E(X), since it can be obtained by evaluating E(X) when every occurrence of
X in E(X) is replaced by x.

A simpler example is E(x) = x− x and f(x) = x− x. If X = [0, 1] then E(X) = [−1, 1] while f(X) = 0
(in fact, f(Y ) = 0 for any interval Y ).

¶6. Rounding and interval arithmetic. Machine floating point numbers can be used in interval arith-
metic provided we can control the rounding mode. In the following, assume machine numbers are members of
F (β, t) for some base β > 1 and precision t ≥ 1. We need 2 kinds of rounding: for any real number x, let round
up flup(x) and round down fldown(x) be the closest numbers in F (β, t) such that fldown(x) ≤ x ≤ flup(x).
Then A = [a, b] ∈ I(R) can be rounded as fl(A) = [fldown(a),flup(b)]. If we view x ∈ R as an interval, we now
have fl(x) = [fldown(x),flup(x)]. If x ∈ F (β, t) and the exponent of x is e then the width of fl(x) is β−t+e.
Rounding can be extended to the arithmetic operations in the obvious way: if ◦ ∈ {+,−,×,÷} and ◦′ is the
interval analogue, we define A ◦′ B := fl(A ◦ B). Inclusion monotonicity is preserved: If A ⊆ A′, B ⊆ B′

then A ◦′ B ⊆ A′ ◦′ B′.
In practice, it is inconvenient to use two rounding modes within a computation. One trick is to store

the interval A = [a, b] as the pair (−a, b) and use only round up. Then fl(A) is represented by the pair
(flup(−a),flup(b)).

¶7. Machine arithmetic. One class of results in interval analysis addresses the question: suppose we
compute with numbers in F (β, t). This is a form of idealized machine arithmetic in which we ignore issues
of overflow or underflow. How much more accuracy do we gain if we now use numbers in F (β, t′) where
t′ > t? If A = [a, b], let the width of A be w(A) := b − a. w(fl(x)) ≤ βe−t where e is the exponent. Any
real number x can be represented as

x = βe

(
∞∑

i=1

diβ
−i

)

with 0 ≤ di ≤ β−1. This representation is unique provided it is not the case that each digit di = β−1 for all

i beyond some point. Then fldown x = βe
(∑t

i=1 diβ
−i
)

and flup x ≤ fldown(x)+βe−t. Hence w(fl(x)) ≤ βe−t.

The following is a basic result (see [1, theorem 5, p.45]).

Theorem 8. Let an algorithm be executed using machine arithmetic in F (β, t) and also in F (β, t′) for some
t′ > t. Assuming both computations are well-defined, then the relative and absolute error bounds for the
result is reduced by a factor of βt−t′ in the latter case.

¶8. Lipschitz Condition. An interval function f : nD → R is Lipschitz with Lipschitz constant
K > 0 if

w( f(I)) ≤ Kw(I), I ∈ nD.

A box function f is continuous if Bi (i ≥ 0) is a sequence of boxes converging to some B; here convergence
is in the sense that the left (right) endpoints of the Bi’s converges to the left (right) endpoint of B. For real
functions, being Lipschitz is equivalent to being continuous. But this breaks down for box functions:

Lipschitz may not be continuous: suppose δ(x) = 1 if x > 0 and δ(x) = 0 otherwise. Let f : R→ R be
given by f(B) = B + δ(w(B)). Then w( (B)) = w(B). and f is Lipschitz. However, f is not continuous
at 0 since the sequence Bn = [0, 1/n] converges to 0 but the sequence f(Bn) converges to 1.

Continuous functions may not be Lipschitz: With B = [0, 1], let f : I(B) ∈ B be the function f(I) =
[0,
√

w(I)]. Then f is continuous but not Lipschitz in I(B) because the sequence of quotients

w( f(I))/w(I) =
√

w(I)/w(I) = 1/
√

w(I), w(I) 6= 0

is unbounded.
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¶9. Quadratic convergence and centered forms. Given a function f : Rn → R, we want to compute
a box function f : nR → R such that w( f(B)) is “small relative to w(B)”. One interpretation is that
there is a K > 0 such that for all B ⊆ nR,

w( f(B)) ≤ Kw(B). (41)

If we replace (41) by
w( f(B)) ≤ Kw(B)2. (42)

then we say f has quadratic convergence.
Moore originally conjectured that the centered form expansion of f has quadratic convergence. The

idea of centered forms is to use a Taylor expansion about the midpoint m(I) of I. This was first shown
by Hansen and generalized by Nickel and Krawcyk. (SEE STAHL THESIS). Below, we shall reproduce a
simple proof by Stahl [32]. INCOMPLETE.

Let us begin with the simplest case, n = 1 and where f is a polynomial of degree d. Letting c = m(I),
we have

f(x) = f(c) + f ′(c)(x− c) +
1

2
f ′′(c)(x− c)2 + · · ·+ 1

d!
f (d)(c)(x− c)d (43)

= f(c) +

d∑

i=1

f [i](c)(x− c)i (44)

where, for simplicity, we write f [i](x) for 1
i!f

(i)(x), called the normalized ith derivative of f . We define f(I)
to be the interval evaluation of the expression in (43), i.e.,

f(I) = f(c) + f ′(c)(I − c) +
1

2
f ′′(c)(I − c)2 + · · ·+ 1

d!
f (d)(c)(I − c)d. (45)

There are two remarks about this definition of f(I). First, the Taylor expansion depends on the center of
I. Second, the intervals I − c are centered intervals, i.e., intervals of the form [−a, a] for some a ≥ 0. For
simplicity, we shall write [±a] for [−a, a] if a ≥ 0, or [a,−a] if a < 0.

The interval evaluation of (45) can advantage of such centered intervals in implementations. We have
the following elementary properties of interval operations: let a, b, c ∈ R.

• c [±a] = [±|c| · |a|]

• [±a] = a[±1]

• [±a] + [±b] = [±|a|+ |b|]

• [±a]− [±b] = [±|a|+ |b|]

• [±a]× [±b] = [±|a| · |b|]

Basically, such centered intervals are parametrized by one real number, and we need only one arithmetic
operation to carry out any interval arithmetic operation. As consequence of these elementary rules, we see
that the sub-distributive law is really an identity:

[±c]([±a]± [±b]) = [±c][±a]± [±b][±b]

since both sides are equal to
|c|(|a|+ |b|)[±1].

Consider shifts of centered forms, i.e., intervals represented as I = c± [±b]. Of course, this can represent
all intervals, but we are interested in basic properties if I in terms of c, b. In particular, we have m(I) = c.
We will shortly consider division by I, and we need the following property. Clearly,

0 ∈ I ⇔ |c| ≤ |b|.
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Next, assume |c| > |b|. Hence 0 6∈ I and the expression [±a]/(c + [±b]) is well-defined. Then we have

[±a]

c + [±b]
=

[±a]

[c− |b|, c + |b|] =
[±a]

[|c| − |b|] . (46)

It follows that

w

(
[±a]

c + [±b]

)
=

2|a|
|c| − |b| . (47)

We are now ready to evaluate a polynomial expression f(x) =
∑d

i=0 cix
i at a centered interval [±a] where

a > 0. We have

d∑

i=0

ci[±a]i = c0 +

(
d∑

i=1

|ci|ai

)
[±1] (48)

= c0 + [±b] (49)

where b =
∑d

i=1 |ci|ai. Hence the basic algorithm for f([±a]) goes as follows:
1. Compute all the normalized Taylor coefficients at c = m(I), i.e., f [i](c) for i = 0, . . . , d.

2. Compute b =
∑d

i=1 |f [i](c)|ai (note the i in the summation begins with i = 1).
3. Return |f(c)| ± [±b].

Moreover, it is clear that
m( f(I)) = f(c)

and

w( f(x)) = b =

d∑

i=1

|f [i](c)|ai.

Note that we can easily check if 0 ∈ f(I) since this amounts to |f(c)| ≤ b.

¶10. Box Rational Functions. We extend the previous development to rational functions. We begin
with the identity when f(x) = p(x)/q(x):

f(x)− f(c) =
p(x)− p(c)− f(c)(q(x)− q(c))

q(x)
. (50)

Then by Taylor’s expansion,

f(x)− f(c) =

∑
i≥1 p[i](c)(x− c)i − f(c)

∑
i≥1 q[i](c)(x− c)i

∑
i≥0 q[i](c)(x− c)i

=

∑
i≥1(p

[i](c)− q[i](c))(x− c)i

∑
i≥0 q[i](c)(x− c)i

=

∑
i≥1 ti(x− c)i

∑
i≥0 q[i](x− c)i

where
ti := p[i](c)− q[i](c) (51)

This last expression yields our standard center form for rational functions:

f(I) := f(c) +

∑
i≥1 ti(I − c)i

∑
i≥0 q[i](I − c)i

. (52)

Moreover, if c = m(I), then I − c is a centered interval and thus f(I) can be easily evaluated similar to the
polynomial case.
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We can generalize the preceding development as follows: for any k = 1, . . . , n, we generalize (??) and the
subsequent Taylor expansion to obtain:

f(x)−
k−1∑

i=0

f [i](c)(x− c)i =

∑
i≥k tk,i(x− c)i

∑
i≥0 q[i](x− c)i

(53)

where

tk,i = p[i](c)−
k−1∑

j=0

(
i

j

)
f [j](c)q[i−j](c). (54)

Note that (51) is just the case k = 1.
If we replace x by I in the expression (53), we obtain the kth order centered form kf(I). Thus (52)

corresponds to k = 1. As shown in [29, Section 2.4], the higher order centered forms are at least as good
than lower order ones in the sense that

k+1f(I) ⊆ kf(I).

For a polynomial f , this inclusion is always an identity: kf(I) = 1f(I). But for non-polynomial f , the
inclusion is strict for general I.

We can further generalize the above center forms to multivariate rational functions.

¶11. Krawczyk’s Centered Form. The number of arithmetic operations to compute the above centered
forms for f = p/q is Θ(n2), where n = deg(p) + deg(q). Krwaczyk (1983) described another centered form
which uses only Θ(n) arithmetic operations.

Let f = f(X1, . . . ,Xm) be a rational function and B ∈ mR is contained in the domain of f . We call
G ∈ R an interval slope of f in B if

f(x)− f(c) ⊆ G · (x− c), for all x ∈ B

where c = m(B).
We provide a method to compute G from any straightline program S for f . Such a straightline program

is a finite sequence of steps. The ith step (i = 1, 2, . . . m) introduces a brand new variable ui. Each step is
an assignment statement, of one of the following type:

1. ui ← Xj (j = 1, . . . ,m)

2. ui ← c (c ∈ R)

3. ui ← uj ◦ uk (j < i, k < i and ◦ ∈ {±,×,÷})

So each ui represents a rational function in X1, . . . ,Xn. We say S computes the rational function represented
by um, the last variable. We convert S to S′ as follows:

• Gi ← 1 if the ith step is ui ← Xj

• Gi ← 0 if the ith step is ui ← c

• Gi ← Gj ±Gk if the ith step is ui ← uj ± uk

• Gi ← ... if the ith step is ui ← uj × uk

• Gi ← ... if the ith step is ui ← uj/uk

We now prove that Gm is an interval slope for f .

Exercises

Exercise 7.1: Prove the assertions in Example 1. ♦

Exercise 7.2: Provide details of interval arithmetic under the midpoint representation. ♦
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End Exercises

§8. Additional Notes

Until the 1980’s, floating point arithmetic are often implemented in software. Hardware implementation
of floating point arithmetic requires an additional piece of hardware (“co-processor”), considered an option.
Today, floating point processing is so well-established that this co-procesor is accepted as standard computer
hardware. The fact that the floating point numbers is now the dominant machine number representation is,
in retrospect, somewhat surprising. First note some negative properties of FP computation, as compared to
fixed point computation:

(1) Algorithms for FP arithmetic is much more complicated. This fact is very obvious9 at the hardware
level.

(2) The spacing between consecutive representable numbers is non-uniform, in contrast to fixed-point num-
bers.

(3) Error analysis for FP computation is much harder to understand.

Item (1) is an issue for hardware designers. This led the early computer designers (including von Neumann)
to reject it as too complicated. In contrast, fixed point arithmetic is relatively straightforward. Items (2)
and (3) contribute to the many well-known and otherwise pitfalls in FP computation. There are many
anecdotes, examples and lists of numerical pitfalls (sometimes called “abuses”) collected from the early days
of numerical computing. Most of these issues are still relevant today. (e.g., [34, 31]

Despite all this, FP computation has become the de facto standard for computing in scientific and
engineering applications. Wilkinson, especially through his extensive error analysis of floating point compu-
tations, is credited with making floating point arithmetic better understood and accepted in main stream
numerical computing. First, let us note that criterion (1) is no longer an critical issue because the algorithms
and circuit design methodology for FP arithmetic are well-understood and relatively stable. Also, minimizing
hardware size is usually not the bottleneck in today’s world of very large scale integrated (VLSI) circuits.
But what are some advantages of FP computation? The first advantage is range: for a given budget of bits,
the range of numbers which can be approximated by floating point numbers is much larger than, say using
fixed point representation. This was critical in allowing scientific computations in many domains to proceed
(in the days of slower and clumsier hardware, this spell the difference between being able to complete one
computation or not at all). In some domains, this advantage is now less importance with advancing computer
speed and increasing hardware complexity. The second advantage is speed: the comparison here is between
floating point arithmetic with rational arithmetic. Both floating point numbers and rational numbers are
dense in the reals, and are thus useful for approximating real computation. The speed of floating point
arithmetic is reduced to integer arithmetic plus some small overhead (and integer arithmetic is considered to
be fast). In contrast to rational arithmetic is considerably slower than integer arithmetic, and easily suffer
from rapid growth in bit lengths.

§9. APPENDIX: Concepts from Numerical Analysis

We recall some additional concepts from in numerical analysis.

Vector Norms. We assume vectors in x ∈ Cn (or Rn). In order to measure the “size” of x, perhaps to
estimate errors in a computation, we need some formal concept of size. This is captured by the definition of
a norm. A norm on Cn is a function N : Cn → R such that for all x, y ∈ Cn,

• N(x) ≥ 0, with equality iff x = 0.

• N(αx) = |α|N(x) for all α ∈ C.

• N(x + y) ≤ N(x) + N(y)

9An examination of the physical sizes of computer chips for FP arithmetic units and for integer arithmetic units will show
the vast gap in their relative complexity.
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The main example of norms are the p-norms for any positive integer p. This is denoted N(x) = ‖x‖p and
defined as

‖x‖p := p
√
|x1|p + · · · |xn|p

where x = (x1, . . . , xn)T . The special cases of p = 1 and p = 2 are noteworthy. In particular, the 2-norm is
differentiable and invariant under an orthogonal transformation of the space. We can also generalize this to
p =∞ and define

‖x‖∞ := max |x1|, . . . , |xn|.
A fundamental fact is that any two norms N and N ′ are equivalent in the following sense: there exists

positive constants c < C such that for all x ∈ Cn,

c ·N(x) ≤ N ′(x) ≤ C ·N(x).

This notion of equivalence is transitive. Hence, it suffices to show that any norm N is equivalent to the
∞-norm. Write x =

∑n
i=1 xie

i where ei is the ith elementary vector. Then

N(x) ≤
n∑

i=1

|xi|N(ei) ≤ ‖x‖∞
n∑

i=1

N(ei)

so it is sufficient to choose C =
∑n

i=1 N(ei). Now, consider the unit sphere under the ∞-norm, S = {x ∈
Cn : ‖x‖∞ = 1}. Since S is compact, the norm function N : S → R achieves its mininum value at some
x0 ∈ S. Let N(x0) = c. If ‖x‖∞ = b then we have

N(x) ≥ N(b · x
b
) = bN(

x

b
) ≥ b · c = c‖x‖∞.

This completes the proof.
Normwise vs. componentwise norm. |A| = [|aij|]

Distance to the closest singularity. The numerical stabilty of a numerical problem is directly influenced
by its distance to the nearest singularity. We show the following result from Turing (and Banach in the 1920s).
It was first shown by Gastinel for arbitrary norms in 1966 [17]. For a non-singular square matrix A, let

δT (A) := inf
S
{‖S −A‖
‖A‖

where S ranges all singular matrices. Thus δT (A) is the relative distance from A to the nearest singular
matrix S. The subscript refers to Turing.

Theorem 9 (Turing).

δT (A) =
1

‖A−1‖‖A‖ .

Proof. Choose S such that ‖S −A‖ < 1/‖A−1‖. ... Q.E.D.
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163–168, 1983. Trans. from German Wie zuverlässig sind die Ergebnisse unserer Rechenanlagen?

[35] C. K. Yap. On guaranteed accuracy computation. In F. Chen and D. Wang, editors, Geometric
Computation, chapter 12, pages 322–373. World Scientific Publishing Co., Singapore, 2004.

[36] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 41, pages 927–952. Chapman & Hall/CRC, Boca Raton,
FL, 2nd edition, 2004.
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