Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies

Spring 2013

Lecture 13
Invariant Generation

• Tools such as Dafny enable automated program verification by
 – automatically generating verification conditions and
 – automatically checking validity of the generated VCs.

• The user still needs to provide the invariants.
 – This is often the hardest part.

• Can we generate invariants automatically?
Axiomatic vs. Operational Semantics

\(A \) \(\{A\} P \{B\} \)

semantics

soundness

\(\vdash A \)

completeness

\(\vdash \{A\} P \{B\} \)

theorem proving

\(\vdash \{A\} P \{B\} \)
Programs as Systems of Constraints

1: `assume y ≥ z;
2: while x < y do
 x := x + 1;
3: `assert x ≥ z

\[ρ_1 = \text{move}(ℓ_1, ℓ_2) \land y ≥ z \land \text{skip}(x,y,z) \]
\[ρ_2 = \text{move}(ℓ_2, ℓ_2) \land x < y \land x' = x + 1 \land \text{skip}(y,z) \]
\[ρ_3 = \text{move}(ℓ_2, ℓ_3) \land x ≥ y \land \text{skip}(x,y,z) \]
\[ρ_4 = \text{move}(ℓ_3, ℓ_{\text{err}}) \land x < z \land \text{skip}(x,y,z) \]
\[ρ_5 = \text{move}(ℓ_3, ℓ_{\text{exit}}) \land x ≥ z \land \text{skip}(x,y,z) \]

move(ℓ_1, ℓ_2) = pc = ℓ_1 \land pc' = ℓ_2
skip(x_1, ..., x_n) = x_1' = x_1 \land ... \land x_n' = x_n

- V : finite set of program variables
- \textit{init} : initiation condition given by a formula over V
- R : a finite set of transition constraints
 - transition constraint $\rho \in R$ given by a formula over V and their primed versions V'
 - we often think of R as disjunction of its elements
 $$ R = \rho_1 \lor \ldots \lor \rho_n $$
- \textit{error} : error condition given by a formula over V
Programs as Systems of Constraints

\[P = (V, \text{init}, R, \text{error}) \]
\[V = \{\text{pc}, x, y, z\} \]
\[\text{init} = \text{pc} = \ell_1 \]
\[R = \{\rho_1, \rho_2, \rho_3, \rho_4, \rho_5\} \text{ where} \]
\[\rho_1 = \text{move}(\ell_1, \ell_2) \land y \geq z \land \text{skip}(x,y,z) \]
\[\rho_2 = \text{move}(\ell_2, \ell_2) \land x < y \land x' = x + 1 \land \text{skip}(y,z) \]
\[\rho_3 = \text{move}(\ell_2, \ell_3) \land x \geq y \land \text{skip}(x,y,z) \]
\[\rho_4 = \text{move}(\ell_3, \ell_{\text{err}}) \land x < z \land \text{skip}(x,y,z) \]
\[\rho_5 = \text{move}(\ell_3, \ell_{\text{exit}}) \land x \geq z \land \text{skip}(x,y,z) \]
\[\text{error} = \text{pc} = \ell_{\text{err}} \]
Programs as Transition Systems

- **states** Q are valuations of program variables V
- **initial states** Q_{init} are the states satisfying the initiation condition $init$
 \[Q_{init} = \{ q \in Q \mid q \models init \} \]
- **transition relation** \rightarrow is the relation defined by the transition constraints in R
 \[q_1 \rightarrow q_2 \quad \text{iff} \quad q_1, q_2' \models R \]
- **error states** Q_{err} are the states satisfying the error condition $error$
 \[Q_{err} = \{ q \in Q \mid q \models error \} \]
Partial Correctness of Programs

• a state q is **reachable** in P if it occurs in some computation of P

 \[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \ldots \rightarrow q \quad \text{where } q_0 \in Q_{\text{init}} \]

• denote by Q_{reach} the set of all reachable states of P

• a program P is **safe** if no error state is reachable in P

 \[Q_{\text{reach}} \cap Q_{\text{err}} = \emptyset \]

 or, if Q_{reach} is expressed as a formula $reach$ over V

 \[\models reach \land error \Rightarrow \text{false} \]
Partial Correctness of Programs

- Initial states: Q_{init}
- Reachable states: Q_{reach}
- Error states: Q_{err}
- State space Q
Example: Reachable States of a Program

1: assume $y \geq z$;
2: while $x < y$ do
 $x := x + 1$;
3: assert $x \geq z$

Reachable states

reach = pc = ℓ_1 \lor
 pc = $\ell_2 \land y \geq z$ \lor
 pc = $\ell_3 \land y \geq z \land x \geq y$ \lor
 pc = $\ell_{\text{exit}} \land y \geq z \land x \geq y$

What is the connection with invariants?
Can we compute reach?
Invariants of Programs

• an invariant Q_I of a program P is a superset of its reachable states:
 \[Q_{reach} \subseteq Q_I \]

• an invariant Q_I is safe if it does not contain any error states:
 \[Q_I \land Q_{err} = \emptyset \]
or if Q_I is expressed as a formula I over V
 \[\vdash I \land error \Rightarrow false \]

• $reach$ is the “smallest” invariant of P.
• In particular, if P is safe then so is $reach$.
Partial Correctness of Programs

- Initial states Q_{init}
- Reachable states Q_{reach}
- Safe invariant Q_I
- Error states Q_{err}

State space Q
Strongest Postconditions

• The strongest postcondition \(post(\rho, A) \) holds for any state \(q \) that is a \(\rho \)-successor state of some state satisfying \(A \):

\[
q' \models post(\rho, A) \quad \text{iff} \quad \exists q \in Q. \ q \models A \land q, q' \models \rho
\]

or equivalently

\[
post(\rho, A) = (\exists V. \ A \land \rho) [V/V']
\]

• Compute \(reach \) by applying \(post \) iteratively to \(init \)
Example: Application of post

- \(A = \text{pc} = \ell_2 \land y \geq z \)
- \(\rho = \text{move}(\ell_2, \ell_2) \land x < y \land x' = x + 1 \land \text{skip}(y, z) \)
- \(\text{post}(\rho, A) \)

\[
= (\exists V. A \land \rho) [V/V']
\]

\[
= (\exists \text{pc x y z. pc} = \ell_2 \land y \geq z \land \text{pc} = \ell_2 \land \text{pc'} = \ell_2 \land x < y \land x' = x + 1 \land y' = y \land z' = z) [\text{pc}/\text{pc'}, x/x', y/y', z/z']
\]

\[
= (y' \geq z' \land \text{pc'} = \ell_2 \land x' - 1 < y') [\text{pc}/\text{pc'}, x/x', y/y', z/z']
\]

\[
= y \geq z \land \text{pc} = \ell_2 \land x \leq y
\]
Iterating post

- $reach^i(\rho, A) = \begin{cases} A, & \text{if } i = 0 \\ post(post^{i-1}(\rho, A)) & \text{if } i > 0 \end{cases}$

- $reach = init \lor post(R, init) \lor post(R, post(R, init)) \lor \ldots = \bigvee_{i \geq 0} post^i(R, init)$

- i^{th} disjunct of $reach$ represents all states reachable from Q_{init} in i computation steps.
Finite iteration of $post$ may suffice

• Fixed point is reached after n steps if

$$\forall i \leq n+1 \quad post^i(R, init) \Rightarrow \forall i \leq n \quad post^i(R, init)$$
Example Iteration

\[\rho_1 = \text{move}(\ell_1, \ell_2) \land y \geq z \land \text{skip}(x,y,z) \]
\[\rho_2 = \text{move}(\ell_2, \ell_2) \land x < y \land x' = x + 1 \land \text{skip}(y,z) \]
\[\rho_3 = \text{move}(\ell_2, \ell_3) \land x \geq y \land \text{skip}(x,y,z) \]
\[\rho_4 = \text{move}(\ell_3, \ell_{\text{err}}) \land x < z \land \text{skip}(x,y,z) \]
\[\rho_5 = \text{move}(\ell_3, \ell_{\text{exit}}) \land x \geq z \land \text{skip}(x,y,z) \]

\[\text{post}^0(R, \text{init}) = \text{init} = \text{pc} = \ell_1 \]
Example Iteration

\[\rho_1 = \text{move}(\ell_1, \ell_2) \wedge y \geq z \wedge \text{skip}(x, y, z)\]
\[\rho_2 = \text{move}(\ell_2, \ell_2) \wedge x < y \wedge x' = x + 1 \wedge \text{skip}(y, z)\]
\[\rho_3 = \text{move}(\ell_2, \ell_3) \wedge x \geq y \wedge \text{skip}(x, y, z)\]
\[\rho_4 = \text{move}(\ell_3, \ell_{\text{err}}) \wedge x < z \wedge \text{skip}(x, y, z)\]
\[\rho_5 = \text{move}(\ell_3, \ell_{\text{exit}}) \wedge x \geq z \wedge \text{skip}(x, y, z)\]

\[\text{post}^2(R, \text{init}) = \text{post}(\rho_2, \text{post}(R, \text{init})) \lor \text{post}(\rho_3, \text{post}(R, \text{init}))\]
\[= \text{pc} = \ell_2 \wedge y \geq z \wedge x \leq y \lor \text{pc} = \ell_3 \wedge y \geq z \wedge x \geq y\]

\[\text{post}^3(R, \text{init}) = \text{post}(\rho_2, \text{post}^2(R, \text{init})) \lor \text{post}(\rho_3, \text{post}^2(R, \text{init})) \lor \text{post}(\rho_4, \text{post}^2(R, \text{init})) \lor \text{post}(\rho_5, \text{post}^2(R, \text{init}))\]
\[= \text{pc} = \ell_2 \wedge y \geq z \wedge x \leq y \lor \text{pc} = \ell_3 \wedge y \geq z \wedge x = y \lor \text{pc} = \ell_{\text{exit}} \wedge y \geq z \wedge x \leq y \lor \text{false}\]
Example Iteration

\[\text{post}^3(R, \text{init}) = \]
\[= \text{pc} = \ell_2 \land y \geq z \land x \leq y \lor \text{pc} = \ell_3 \land y \geq z \land x \geq y \lor \]
\[\text{pc} = \ell_{\text{exit}} \land y \geq z \land x \leq y \]
\[\text{post}^4(R, \text{init}) = \text{post}^3(R, \text{init}) \]

Fixed point:

\[\text{reach} \]
\[= \text{post}^0(R, \text{init}) \lor \text{post}^1(R, \text{init}) \lor \text{post}^2(R, \text{init}) \lor \text{post}^3(R, \text{init}) \]
\[= \text{pc} = \ell_1 \lor \]
\[\text{pc} = \ell_2 \land y \geq z \lor \]
\[\text{pc} = \ell_3 \land y \geq z \land x \geq y \lor \]
\[\text{pc} = \ell_{\text{exit}} \land y \geq z \land x \leq y \]
Checking Safety

• An inductive invariant I contains the initial states and is closed under successors:
 $$\models init \Rightarrow I \quad \text{and} \quad \models post(R, I) \Rightarrow I$$

• A program is safe if there exists a safe inductive invariant.

• $reach$ is the strongest inductive invariant.
Inductive Invariants for Example Program

• weakest inductive invariant: true
 – set of all states
 – contains error states
• strongest inductive invariant: *reach*
 \[pc = \ell_1 \lor pc = \ell_2 \land y \geq z \lor \]
 \[pc = \ell_3 \land y \geq z \land x \geq y \lor pc = \ell_{exit} \land y \geq z \land x \geq y \]
• slightly weaker inductive invariant:
 \[pc = \ell_1 \lor pc = \ell_2 \land y \geq z \lor \]
 \[pc = \ell_3 \land y \geq z \land x \geq y \lor pc = \ell_{exit} \]
• Can we drop another conjunct in one of the disjuncts?
Inductive Invariants for Example Program

1: assume $y \geq z$;
2: while $x < y$ do
 $x := x + 1$;
3: assert $x \geq z$

Safe inductive invariant:
$$pc = \ell_1$$
$$pc = \ell_2 \land y \geq z$$
$$pc = \ell_3 \land y \geq z \land x \geq y$$
$$pc = \ell_{exit}$$
Computing Inductive Invariants

- We can compute the strongest inductive invariants by iterating \textit{post} on \textit{init}.
- Can we ensure that this process terminates?
- In general no: checking safety of programs is undecidable.
- But we can compute weaker inductive invariants
 - conservatively abstract the behavior of the program
 - iterate an abstraction of \textit{post} that is guaranteed to terminate.
Abstracting \textit{post}

• instead of iteratively applying post, use over-approximation \textit{post}^# such that always

\[
\text{post}(\rho, F) \models \text{post}^#(\rho, F)
\]

• decompose computation of \textit{post}^# into two steps:
 – first, apply \textit{post} and
 – then, over-approximate the result

• define abstraction function \(\alpha \) such that

\[
F \models \alpha(F)
\]

• for a given abstraction function \(\alpha \) define

\[
\text{post}^#(\rho, F) = \alpha(\text{post}(\rho, F))
\]
Abstracting \textit{reach} by \textit{reach\#}

- instead of computing \textit{reach}, compute \textit{reach\#} such that
 \[
 \text{reach} \models \text{reach\#}
 \]
- check whether \textit{reach\#} contains an error state
 if \(\models \text{reach\#} \land \text{error} \Rightarrow \text{false} \) then
 \(\models \text{reach} \land \text{error} \Rightarrow \text{false} \), i.e. program is safe
- compute \textit{reach\#} by applying iteration
 \[
 \text{reach\#} = \alpha(\text{init}) \lor \text{post\#}(R, \alpha(\text{init})) \lor \text{post\#}(R, \text{post\#}(R, \alpha(\text{init}))) \lor \ldots
 \]
 \[
 = \bigvee_{i \geq 0} (\text{post\#})^i(R, \text{init})
 \]
- consequence: \(\text{reach} \models \text{reach\#} \)
Predicate Abstraction

• construct abstraction α using a given set of building blocks, so-called predicates
• predicate = formula over program variables V
• fix finite set of predicates $Preds = \{p_1, ..., p_n\}$
• over-approximate F by conjunction of predicates in $Preds$

$$\alpha(F) = \bigwedge\{ p \in Preds \mid F \models p \}$$

• computation of $\alpha(F)$ requires n theorem prover calls ($n =$ number of predicates)
Predicate Abstraction

\[p_1 \equiv x \leq 0 \quad p_2 \equiv y > 0 \quad \ldots \]

reachable states
reach

\[p_1 \wedge p_2 \wedge \ldots \]
\[x:0, y:5 \]
\[x:-1, y:3 \]

invariant
reach\#

\[x:0, y:3 \]
\[x:1, y:5 \]
\[\neg p_1 \wedge p_2 \wedge \ldots \]

state space \(Q \)

error states
error
Example: compute
\[\alpha(\text{pc} = \ell_2 \land y \geq z \land x + 1 \leq y) \]

- \(Preds = \{\text{pc} = \ell_1, \ldots, \text{pc} = \ell_{\text{err}}, y \geq z, x \leq y\} \)

<table>
<thead>
<tr>
<th></th>
<th>pc = \ell_1</th>
<th>pc = \ell_2</th>
<th>pc = \ell_3</th>
<th>pc = \ell_{\text{exit}}</th>
<th>pc = \ell_{\text{err}}</th>
<th>y \geq z</th>
<th>x \leq y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pc = \ell_2 \land y \geq z \land x + 1 \leq y)</td>
<td>(\not\models)</td>
<td>(\models)</td>
<td>(\not\models)</td>
<td>(\not\models)</td>
<td>(\not\models)</td>
<td>(\models)</td>
<td>(\models)</td>
</tr>
</tbody>
</table>

- result of abstraction = conjunction of implied predicates

\[\alpha(\text{pc} = \ell_2 \land y \geq z \land x + 1 \leq y) = \text{pc} = \ell_2 \land y \geq z \land x \leq y \]
Trivial Abstraction

• Result of applying predicate abstraction is \textit{true} if none of the predicates is implied by \(F \)
 \[\alpha(F) = true \]
 “predicates are too specific”

• This is always the case if \(\text{Preds} = \emptyset \)
Algorithm AbstReach

begin
 $\alpha := \lambda F. \land \{ p \in Preds | \models F \Rightarrow p \}$
 $post^# := \lambda \rho F. \alpha(post (\rho, F))$
 $reach^# := \alpha(init)$
 $Tree := \emptyset$
 $Worklist := \{reach^#\}$

 while $Worklist \neq \emptyset$ do
 $F := \text{choose from} Worklist$
 $Worklist := Worklist \setminus \{F\}$
 for each $\rho \in R$ do
 $F' := post^#(\rho, F)$
 if $F' \not\models reach^#$ then
 $reach^# := reach^# \lor F'$
 $Worklist := Worklist \cup \{F'\}$
 $Tree := Tree \cup \{(F', \rho, F)\}$
 end
 end
 end

return $(reach^#, Tree)$
end
Abstract Reachability Graph

- \(Perts = \{false, \text{pc} = \ell_1, ..., \text{pc} = \ell_{\text{err}}, y \geq z, x \leq y\} \)
- nodes \(F_1, ..., F_4 \in Q^\#_{\text{reach}} \)
- labeled edges \(\in Tree \)
- dotted edge: entailment relation (here: \(post^\#(\rho_2, F_2) \models F_2 \))

\(F_1: \text{pc} = \ell_1 \)

\(F_2: \text{pc} = \ell_2 \land y \geq z \)

\(F_3: \text{pc} = \ell_3 \land y \geq z \land x \geq y \)

\(F_4: \text{pc} = \ell_{\text{exit}} \land y \geq z \land x \geq y \)

\(F_1 = \alpha(\text{init}) \)

\(F_2 = post^\#(\rho_1, F_1) \)

\(post^\#(\rho_2, F_2) \models F_2 \)

\(F_3 = post^\#(\rho_3, F_2) \)

\(F_4 = post^\#(\rho_5, F_3) \)
Abstract Reachability Graph

\[p_1 \equiv x \leq 0 \quad p_2 \equiv y > 0 \quad \ldots \]

reachable states

reach

\[p_1 \land p_2 \land \ldots \]

invariant

\[\text{reach}^# \]

\[x:0, y:5 \]

\[x := x + 1 \]

\[x:1, y:5 \]

\[\neg p_1 \land p_2 \land \ldots \]

state space \(Q \)

error states

error
Example: Computing \(reach^\# \)

- \(Preds = \{ \text{false}, \ pc = \ell_1, \ldots, \ pc = \ell_{\text{err}}, \ y \geq z, \ x \leq y \} \)

- over-approximation of the set of initial states \(init \):
 \[
 F_1 = \alpha(init) = pc = \ell_1
 \]

- apply \(post^\# \) on \(F_1 \) and each program transition \(\rho_i \):
 \[
 F_2 = post^\#(\rho_1, F_1) = \alpha(pc = \ell_2 \land y \geq z) = pc = \ell_2 \land y \geq z
 \]
 \[
 post(\rho_1, F_1)
 \]
 \[
 post^\#(\rho_2, F_1) = \ldots = post^\#(\rho_5, F_1) = \bigwedge\{\text{false}, \ldots\} = \text{false}
 \]
Example: Computing \({\text{reach}}^\# \)

- application of \(\rho_1, \rho_4, \text{and} \rho_5 \) on \(F_2 \) results in \text{false} (since \(\rho_1, \rho_4, \rho_5 \) are applicable only if \(\text{pc} = \ell_1 \text{ or } \text{pc} = \ell_3 \) holds)

- for \(\rho_2 \) we obtain

 \[\text{post}^\# (\rho_2, F_2) = \alpha(\text{pc} = \ell_2 \land y \geq z \land x \leq y) = \text{pc} = \ell_2 \land y \geq z \land x \leq y \]

 result is \(F_2 \), which is already subsumed by \({\text{reach}}^\# \)

- for \(\rho_3 \) we obtain

 \[\text{post}^\# (\rho_3, F_2) = \alpha(\text{pc} = \ell_3 \land y \geq z \land x \geq y) \]

 \[= \text{pc} = \ell_3 \land y \geq z \land x \geq y \]

 \[= F_3 \]

 add new node \(F_3 \) to \({\text{reach}}^\# \), new edge to \(\text{Tree} \)
Example: Computing $reach^#$

- application of ρ_1, ρ_2, and ρ_3 on F_3 results in $false$
- for ρ_5 we obtain

$$post^# (\rho_5, F_3) = \alpha(pc = \ell_{exit} \land y \geq z \land x \geq y)$$

$$= pc = \ell_{exit} \land y \geq z \land x \geq y$$

$$= F_4$$

new node F_4 in $reach^#$, new edge in $Tree$
- for ρ_4 (assertion violation) we obtain

$$post^# (\rho_4, F_3) = \alpha(pc = \ell_{err} \land y \geq z \land x \geq y \land x < z) = false$$

- any further application of program transitions does not compute any additional reachable states
- thus, $reach^# = F_1 \lor F_2 \lor F_3 \lor F_4$
- since $reach^# \land pc = \ell_{err} \models false$ the program is proved safe.
Abstract Reachability Graph

with $Preds = \{false, pc = \ell_1, \ldots, pc = \ell_{err}, y \geq z\}$

\begin{align*}
F_1 & : \quad pc = \ell_1 \\
F_2 & : \quad pc = \ell_2 \land y \geq z \\
F_3 & : \quad pc = \ell_3 \land y \geq z \\
F_4 & : \quad pc = \ell_{err} \land y \geq z \\
F_5 & : \quad pc = \ell_{exit} \land y \geq z
\end{align*}

$F_1 = \alpha(init)$
$F_2 = post^#(\rho_1, F_1)$
$\text{post}^#(\rho_2, F_2) \models F_2$
$F_3 = post^#(\rho_3, F_2)$
$F_4 = post^#(\rho_4, F_3)$
$F_5 = post^#(\rho_5, F_3)$
Too Coarse Abstraction

<table>
<thead>
<tr>
<th>reachable states $reach$</th>
<th>invariant $reach^#$</th>
<th>state space Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>error states error</td>
</tr>
</tbody>
</table>
Finding the Right Predicates

• omitting just one predicate (in the example: \(x \geq y \)) may lead to an over-approximation \(\text{reach}^\# \) such that

\[
\text{reach}^\# \land \text{error} \not\equiv \text{false}
\]

that is, algorithm AbstReach fails to prove safety of the program without the predicate \(x \geq y \).

• How can we find the right predicates?
Counterexample Path

- Tree relation records sequence of transitions leading to F_4
 - apply ρ_1 to F_1 and obtain F_2
 - apply ρ_3 to F_2 and obtain F_3
 - apply ρ_4 to F_3 and obtain F_4
- counterexample path: sequence of transitions ρ_1, ρ_3, ρ_4
- Using this path and the functions α and $\text{post}^\#$ for the current set of predicates we obtain
 $$F_4 = \text{post}^\#(\rho_4, \text{post}^\#(\rho_3, \text{post}^\#(\rho_1, \alpha(\text{init}))))$$
- that is, F_4 is the over-approximation of the post-condition computed along the counterexample path.
Analysis of Counterexample Path

- check if the counterexample path also leads to the error states when no over-approximation is applied
- compute

\[
\text{post}(\rho_4, \text{post}(\rho_3, \text{post}(\rho_1, \text{init})))
\]

\[
= \text{post}(\rho_4, \text{post}(\rho_3, \text{pc} = \ell_2 \land y \geq z))
\]

\[
= \text{post}(\rho_4, \text{pc} = \ell_2 \land y \geq z \land x \geq y)
\]

\[
= \text{false}
\]
- by executing the program transitions ρ_1, ρ_3, and ρ_4 it is not possible to reach any error state.
- conclude that the over-approximation is too coarse when dealing with the above path.
Refinement of Abstraction

• need a more precise over-approximation that will prevent $reach^\#$ from including error states.

• need a more precise over-approximation that will prevent α from including states that lead to error states along the path ρ_1, ρ_3, ρ_4.

• need a refined abstraction function and a corresponding $post^\#$ such that the execution of AbstReach along the counterexample path does not compute a set of states that contains some error states

$$post^\#(\rho_4, post^\#(\rho_3, post^\#(\rho_1, \alpha(init)))) \land \text{error} \models \text{false}$$
Over-Approximation along Counterexample Path

• goal: \(post^{#}(\rho_4, post^{#}(\rho_3, post^{#}(\rho_1, \alpha(init)))) \) \& error \models false

• find formulas \(F_1, F_2, F_3, F_4 \) such that

\[
\begin{align*}
init & \models F_1 \\
post(\rho_1, F_1) & \models F_2 \\
post(\rho_3, F_2) & \models F_3 \\
post(\rho_4, F_3) & \models F_4 \\
F_4 \& error & \models false
\end{align*}
\]

• thus, \(F_1, \ldots, F_4 \) guarantee that no error state can be reached but may still approximate, i.e., allow additional states

• example choice for \(F_1, \ldots, F_4 \)

\[
\begin{align*}
F_1 &= pc = l_1 \\
F_2 &= pc = l_2 \& y \geq z, \\
F_3 &= pc = l_3 \& x \geq z \\
F_4 &= false
\end{align*}
\]
Refinement of Predicate Abstraction

• given formulas F_1, F_2, F_3, F_4 such that

\[
\begin{align*}
\text{init} & \models F_1 \\
\text{post}(\rho_1, F_1) & \models F_2 \\
\text{post}(\rho_3, F_2) & \models F_3 \\
\text{post}(\rho_4, F_3) & \models F_4 \\
F_4 \land \text{error} & \models \text{false}
\end{align*}
\]

• add atoms of $F_1, ..., F_4$ to Preds.

• refinement guarantees that counterexample path ρ_1, ρ_3, ρ_4 is eliminated.
CEGAR: Counter-Example Guided Abstraction Refinement Loop

function AbstRefineLoop

begin

 Preds := ∅;
 repeat
 (reach#, Tree) := AbstReach(Preds)
 if exists F ∈ reach# such that F ∧ error \not\equiv false then
 path := MakePath(F, Tree)
 if FeasiblePath(path) then
 return "counterexample path: path"
 else
 Preds := Preds ∪ RefinePath(path)
 end
 else
 return "program is safe"
 end
 end
end
Path Computation

function MakePath

input
- F_{err} - reachable abstract error state formula
- Tree – abstract reachability tree

begin
- path := empty sequence
- $F' := F_{err}$
- while exist F and ρ such that $(F, \rho, F') \in Tree$ do
 - path := $\rho \cdot$ path
 - $F' := F$
- return path

end
Feasibility of a Path

function FeasiblePath
 input $\rho_1 \ldots \rho_n$ - path
 begin
 $F := post(\rho_1 \circ \ldots \circ \rho_n, \text{init})$
 if $F \land \text{error} \not\models false$ then
 return true
 else
 return false
 end
 end
Counterexample-Guided
Predicate Discovery

function RefinePath
 input
 $\rho_1 \ldots \rho_n$ – infeasible path
 begin
 F_1, \ldots, F_{n+1} := compute such that
 $init \models F_1$ and
 $post(\rho_1, F_1) \models F_2$ and \ldots $post(\rho_n, F_n \models F_{n+1}$ and
 $F_{n+1} \land error \models false$
 return $\{F_1, \ldots, F_{n+1}\}$
 end

omitted: particular algorithm for finding the F_1, \ldots, F_{n+1}