
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 12

Axiomatic Semantics

• An axiomatic semantics consists of:
– a language for stating assertions about programs;
– rules for establishing the truth of assertions.

• Some typical kinds of assertions:
– This program terminates.
– If this program terminates, the variables x and y have the

same value throughout the execution of the program.
– The array accesses are within the array bounds.

• Some typical languages of assertions
– First-order logic
– Other logics (temporal, linear)
– Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

• The assertions we make about IMP programs are
of the form:
 {A} c {B}
with the meaning that:
– If A holds in state q and q ! q’
– then B holds in q’

• A is the pre-condition and B is the post-condition
• For example:

 { y ≤ x } z := x; z := z + 1 { y < z }
is a valid assertion

• These are called Hoare triples or Hoare assertions

c

Semantics of Hoare Triples

• Now we can define formally the meaning of a partial
correctness assertion:

² {A} c {B} iff

8q2Q. 8q’2Q. q ² A Æ q ! q’) q’ ² B
• and the meaning of a total correctness assertion:

² [A] c [B] iff

8q2Q. q ² A) 9q’∈Q. q ! q’ Æ q’ ² B

or even better:

 8q2Q. 8q’∈Q. q ² A Æ q ! q’) q’ ² B
Æ
 8q2Q. q ² A) 9q’2Q. q ! q’ Æ q’ ² B

c

c

c

c

Inference Rules for Hoare Triples

• We write ` {A} c {B} when we can derive the
triple using inference rules

• There is one inference rule for each command
in the language.

• Plus, the rule of consequence

 ` A’) A ` {A} c {B} ` B) B’
 ` {A’} c {B’}

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

` {A} skip {A} ` {A[e/x]} x:=e {A}

` {A} if b then c1 else c2 {B}

` {A Æ b} c1 {B} ` {A Æ :b} c2 {B}

` {A} c1; c2 {C}

` {A} c1 {B} ` {B} c2 {C}

` {I} while b do c {I Æ :b}

` {I Æ b} c {I}

Example: A Proof in Hoare Logic

• We want to derive that

{n ¸ 0}

p := 0;

x := 0;

while x < n do

 x := x + 1;

 p := p + m

{p = n * m}

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Only applicable rule (except for rule of consequence):

` {A} c1; c2 {B}

` {A} c1{C} ` {C} c2 {B}

c1 c2 B A

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {I} while b do c {I Æ :b}

` {I Æ b} c {I}

We can match {I} with {C} but we cannot match {I Æ :b} and
{p = n * m} directly. Need to apply the rule of consequence first!

c1 c2 B A

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

B’ A’

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {I} while b do c {I Æ :b}

` {I Æ b} c {I}

` A’) A ` {A} c’ {B} ` B) B’
` {A’} c’ {B’}

Rule of consequence:

c’

c’ A B

I = A = A’ = C

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is I?

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

Let’s keep it as a placeholder for now!

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x := x+1; p:=p+m {I}

Next applicable rule:

` {A} c1; c2 {B}

` {A} c1{C} ` {C} c2 {B}

B A c1 c2

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x := x+1; p:=p+m {I}

B A c1 c2

`{I Æ x<n} x := x+1 {C}

What is C?

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{C} p:=p+m {I}

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

What is C?

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{I[p+m/p} p:=p+m {I}

`{I Æ x<n} x:=x+1; p:=p+m {I}

`{I Æ x<n} x:=x+1 {I[p+m/p]}

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x:=x+1; p:=p+m {I}

`{I Æ x<n} x:=x+1 {I[p+m/p]}

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{I[p+m/p} p:=p+m {I}

Need rule of consequence to match {I Æ x<n} and {I[x+1/x, p+m/p]}

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x:=x+1; p:=p+m {I}

`{I Æ x<n} x:=x+1 {I[p+m/p]} ̀ {I[p+m/p} p:=p+m {I}

` I Æ x < n) I[x+1/x, p+m/p]

`{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}

Let’s just remember the open proof obligations!

...

Example: A Proof in Hoare Logic

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

` I Æ x < n) I[x+1/x, p+m/p]

Let’s just remember the open proof obligations!

...
Continue with the remaining part of the proof tree, as before.

` {I[0/x]} x:=0 {I}

` {n ¸ 0} p:=0 {I[0/x]}

` {I[0/p, 0/x]} p:=0 {I[0/x]}

` n ¸ 0) I[0/p, 0/x] Now we only need to solve the
remaining constraints!

Example: A Proof in Hoare Logic

` I Æ x ¸ n) p = n * m

` I Æ x < n) I[x+1/x, p+m/p]

Find I such that all constraints are simultaneously valid:

` n ¸ 0) I[0/p, 0/x]

I ´ p = x * m Æ x · n

` p = x * m Æ x · n Æ x ¸ n) p = n * m

` p = x * m Æ x · n Æ x < n) p+m = (x+1) * m Æ x+1 · n

` n ¸ 0) 0 = 0 * m Æ 0 · n

All constraints are valid!

Example: A Proof in Hoare Logic

Using Hoare Rules

• Hoare rules are mostly syntax directed

• There are three obstacles to automation of Hoare logic
proofs:
– When to apply the rule of consequence?

– What invariant to use for while?

– How do you prove the implications involved in the rule of
consequence?

• The last one is how theorem proving gets in the picture
– This turns out to be doable!

– The loop invariants turn out to be the hardest problem!

– Should the programmer give them?

Hoare Logic: Summary

• We have a language for asserting properties of programs.

• We know when such an assertion is true.

• We also have a symbolic method for deriving assertions.

A
{A} P {B}

² A
² {A} P {B}

` A

` {A} P {B}

semantics

soundness

completeness theorem proving

Verification Conditions

• Goal: given a Hoare triple {A} P {B}, derive a single assertion
VC(A,P,B) such that ² VC(A,P,B) iff ² {A} P {B}

• VC(A,P,B) is called verification condition.

• Verification condition generation factors out the hard work
– Finding loop invariants

– Finding function specifications

• Assume programs are annotated with such specifications
– We will assume that the new form of the while construct includes

an invariant:
 {I} while b do c

– The invariant formula I must hold every time before b is evaluated.

Verification Condition Generation

• Idea for VC generation: propagate the post-
condition backwards through the program:

– From {A} P {B}

– generate A) F(P, B)

• This backwards propagation F(P, B) can be formalized
in terms of weakest preconditions.

Weakest Preconditions

• The weakest precondition WP(c,B) holds for any state
q whose c-successor states all satisfy B:

q ² WP(c,B) iff 8q’2Q. q ! q’) q’ ² B

• Compute WP(P,B) recursively according to the
structure of the program P.

B WP(c,B)

q q’ q’’

c
c

c

c

Loop-Free Guarded Commands

• Introduce loop-free guarded commands as an
intermediate representation of the verification
condition

• c ::= assume b
 | assert b
 | havoc x
 | c1 ; c2
 | c1  c2

From Programs to Guarded Commands

• GC(skip) =
 assume true

• GC(x := e) =
 assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) =
 GC(c1) ; GC(c2)

• GC(if b then c1 else c2) = ?
 (assume b; GC(c1))  (assume :b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh

From Programs to Guarded Commands

• GC(skip) =
 assume true

• GC(x := e) =
 assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) =
 GC(c1) ; GC(c2)

• GC(if b then c1 else c2) =
 (assume b; GC(c1))  (assume :b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh

Guarded Commands for Loops

• GC({I} while b do c) =
 assert I;
 havoc x1; ...; havoc xn;
 assume I;
 (assume b; GC(c); assert I; assume false) 
 assume :b

where x1, ..., xn are the variables modified in c

Computing Weakest Preconditions

• WP(assume b, B) = b) B

• WP(assert b, B) = b Æ B

• WP(havoc x, B) = B[a/x] (a fresh in B)

• WP(c1;c2, B) = WP(c1, WP(c2, B))

• WP(c1  c2,B) = WP(c1, B) Æ WP(c2, B)

Computing Weakest Preconditions

• WP(assume b, B) = b) B

• WP(assert b, B) = b Æ B

• WP(havoc x, B) = B[a/x] (a fresh in B)

• WP(c1;c2, B) = WP(c1, WP(c2, B))

• WP(c1  c2,B) = WP(c1, B) Æ WP(c2, B)

Putting Everything Together

• Given a Hoare triple H ´ {A} P {B}

• Compute cH = assume A; GC(P); assert B

• Compute VCH = WP(cH, true)

• Infer ` VCH using a theorem prover.

Example: VC Generation

{n ¸ 0}

p := 0;

x := 0;

{p = x * m Æ x · n}

while x < n do

 x := x + 1;

 p := p + m

{p = n * m}

assume n ¸ 0;

GC(p := 0;

 x := 1;

 {p = x * m Æ x · n}

 while x < n do

 x := x + 1;

 p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

 {p = x * m Æ x · n}

 while x < n do

 x := x + 1;

 p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

 while x < n do

 x := x + 1;

 p := p + m);

assert p = n * m

assume n ¸ 0;
assume p0 = p; havoc p; assume p = 0;
assume x0 = x; havoc x; assume x = 0;
assert p = x * m Æ x · n;
havoc x; havoc p; assume p = x * m Æ x · n;
 (assume x < n;
 GC(x := x + 1;
 p := p + m);
 assert p = x * m Æ x · n; assume false)
 assume x ¸ n;
assert p = n * m

assume n ¸ 0;
assume p0 = p; havoc p; assume p = 0;
assume x0 = x; havoc x; assume x = 0;
assert p = x * m Æ x · n;
havoc x; havoc p; assume p = x * m Æ x · n;
 (assume x < n;
 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assume false)
 assume x ¸ n;
assert p = n * m

• Computing the guarded command

Example: VC Generation

WP (assume n ¸ 0;
 assume p0 = p; havoc p; assume p = 0;
 assume x0 = x; havoc x; assume x = 0;
 assert p = x * m Æ x · n;
 havoc x; havoc p; assume p = x * m Æ x · n;
 (assume x < n;
 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assert false)
  assume x ¸ n;
 assert p = n * m, true)

WP (assume n ¸ 0;
 assume p0 = p; havoc p; assume p = 0;
 assume x0 = x; havoc x; assume x = 0;
 assert p = x * m Æ x · n;
 havoc x; havoc p; assume p = x * m Æ x · n;
 (assume x < n;
 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assert false)
  assume x ¸ n,
 assert p = n * m, true)

• Computing the weakest precondition

Example: VC Generation

WP (assume n ¸ 0;
 assume p0 = p; havoc p; assume p = 0;
 assume x0 = x; havoc x; assume x = 0;
 assert p = x * m Æ x · n;
 havoc x; havoc p; assume p = x * m Æ x · n;
 (assume x < n;
 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assert false)
  assume x ¸ n;
 assert p = n * m, true)

WP (assume n ¸ 0;
 assume p0 = p; havoc p; assume p = 0;
 assume x0 = x; havoc x; assume x = 0;
 assert p = x * m Æ x · n;
 havoc x; havoc p; assume p = x * m Æ x · n;
 (assume x < n;
 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assert false)
  assume x ¸ n,
 assert p = n * m, true)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 (assume x < n;

 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assume false)

  assume x ¸ n, p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 (assume x < n;

 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assume false)

  assume x ¸ n, p = n * m)

• Computing the weakest precondition

WP (assume n ¸ 0;
 assume p0 = p; havoc p; assume p = 0;
 assume x0 = x; havoc x; assume x = 0;
 assert p = x * m Æ x · n,
 WP(havoc x; havoc p; assume p = x * m Æ x · n;
 (WP((assume x < n;
 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n; assume false)))
 p = n * m)
 Æ (x ¸ n) p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 (WP((assume x < n;

 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n), false) p = n * m)

 Æ (x ¸ n) p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 (WP((assume x < n;

 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p; assume p = p1 + m;
 assert p = x * m Æ x · n), true)

 Æ (x ¸ n) p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 (WP((assume x < n;

 assume x1 = x; havoc x; assume x = x1 + 1;
 assume p1 = p; havoc p;

 p = p1 + m) p = x * m Æ x · n)

 Æ (x ¸ n) p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 (WP((assume x < n;

 assume x1 = x; havoc x; assume x = x1 + 1),
 p1 = p Æ pa1 = p1 + m) pa1 = x * m Æ x · n)

 Æ (x ¸ n) p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 (WP(assume x < n),

 x1 = x Æ xa1 = x1 + 1 Æ
 p1 = p Æ pa1 = p1 + m) pa1 = xa1 * m Æ xa1 · n)

 Æ (x ¸ n) p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 WP(havoc x; havoc p; assume p = x * m Æ x · n;

 ((x < n Æ x1 = x Æ xa1 = x1 + 1 Æ
 p1 = p Æ pa1 = p1 + m)) pa1 = xa1 * m Æ xa1 · n)

 Æ (x ¸ n) p = n * m)

WP (assume n ¸ 0;

 assume p0 = p; havoc p; assume p = 0;

 assume x0 = x; havoc x; assume x = 0;

 assert p = x * m Æ x · n,

 pa2 = xa2 * m Æ xa2 · n)

 ((xa2 < n Æ x1 = xa2 Æ xa1 = x1 + 1 Æ
 p1 = pa2 Æ pa1 = p1 + m)) pa1 = xa1 * m Æ xa1 · n)

 Æ (xa2 ¸ n) pa2 = n * m)

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0)

 pa3 = xa3 * m Æ xa3 · n Æ

 (pa2 = xa2 * m Æ xa2 · n)

 ((xa2 < n Æ x1 = xa2 Æ xa1 = x1 + 1 Æ
 p1 = pa2 Æ pa1 = p1 + m)) pa1 = xa1 * m Æ xa1 · n)

 Æ (xa2 ¸ n) pa2 = n * m))

Example: VC Generation

• The resulting VC is equivalent to the conjunction of
the following implications

Example: VC Generation

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0)

 pa3 = xa3 * m Æ xa3 · n

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0 Æ pa2 = xa2 * m Æ
xa2 · n)

 xa2 ¸ n) pa2 = n * m

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0 Æ pa2 = xa2 * m Æ
xa2 < n Æ x1 = xa2 Æ xa1 = x1 + 1 Æ p1 = pa2 Æ pa1 = p1 + m)

 pa1 = xa1 * m Æ xa1 · n

• simplifying the constraints yields

• all of these implications are valid, which proves that
the original Hoare triple was valid, too.

Example: VC Generation

n ¸ 0) 0 = 0 * m Æ 0 · n

xa2 · n Æ xa2 ¸ n) xa2 * m = n * m

xa2 < n) xa2 * m + m = (xa2 + 1) * m Æ xa2 + 1 · n

The Diamond Problem

assume A;
c  d;
c’  d’;

assert B

A) WP (c, WP(c’, B) Æ WP(d’, B)) Æ

 WP (d, WP(c’, B) Æ WP(d’, B))

• Number of paths through the program can be

exponential in the size of the program.
• Size of weakest precondition can be exponential in the

size of the program.

c

c’

d

d’

Avoiding the Exponential Explosion

Defer the work of exploring all paths to the theorem prover:

• WP’(assume b, B, C) = (b) B, C)
• WP’(assert b, B, C) = (b Æ B, C)
• WP’(havoc x, B, C) = (B[a/x], C) (a fresh in B)
• WP’(c1;c2, B, C) =

 let F2, C2 = WP’(c2, B, C) in WP’(c1, F2, C2)
• WP’(c1  c2,B, C) =

 let X = fresh propositional variable in
 let F1, C1 = WP’(c1, X, true) and F2, C2 = WP’(c2, X, true) in
 (F1 Æ F2, C Æ C1 Æ C2 Æ (X , B))

• WP(P, B) = let F, C = WP’(P, B, true) in C) F

Translating Method Calls to GCs

/*@ requires P;

 @ assignable x1, ..., xn;

 @ ensures Q; @*/

 T m (T1 p1, ..., Tk pk) { ... }

A method call

 y = x.m(y1, ..., yk);

is desugared into the guarded command

 assert P[x/this, y1/p1, ..., yk/pk];

 havoc x1; ..., havoc xn; havoc y;

 assume Q[x/this, y/\result]

Handling More Complex Program State

• When is the following Hoare triple valid?
 {A} x.f = 5 {x.f + y.f = 10}

• A ought to imply “y.f = 5 Ç x = y”

• The IMP Hoare rule for assignment would give us:
 (x.f + y.f = 10) [5/x.f]
 ´ 5 + y.f = 10
 ´ y.f = 5 (we lost one case)

• How come the rule does not work?

Modeling the Heap

• We cannot have side-effects in assertions
– While generating the VC we must remove side-effects!
– But how to do that when lacking precise aliasing

information?

• Important technique: postpone alias analysis to
the theorem prover

• Model the state of the heap as a symbolic
mapping from addresses to values:
– If e denotes an address and h a heap state then:
– sel(h,e) denotes the contents of the memory cell
– upd(h,e,v) denotes a new heap state obtained from h

by writing v at address e

Heap Models

• We allow variables to range over heap states
– So we can quantify over all possible heap states.

• Model 1
– One “heap” for each object
– One index constant for each field.

We postulate f1 ≠ f2.
– r.f1 is sel(r,f1) and r.f1 = e is r := upd(r,f1,e)

• Model 2 (Burnstall-Bornat)
– One “heap” for each field
– The object address is the index
– r.f1 is sel(f1,r) and r.f1 = e is f1 := upd(f1,r,e)

Hoare Rule for Field Writes

• To model writes correctly, we use heap expressions
– A field write changes the heap of that field

 { B[upd(f, e1, e2)/f] } e1.f = e2 {B}

• Important technique:
– model heap as a semantic object
– defer reasoning about heap expressions to the theorem

prover with inference rules such as (McCarthy):

sel(upd(h, e1, e2), e3) =
e2 if e1 = e3

sel(h, e3) if e1 ≠ e3

Example: Hoare Rule for Field Writes

• Consider again: { A } x.f = 5 { x.f + y.f = 10 }

• We obtain:
A ´ (x.f + y.f = 10)[upd(f, x, 5)/f]
´ (sel(f, x) + sel(f, y) = 10)[upd(f, x, 5)/f]
´ sel(upd(f x 5) x) + sel(upd(f x 5) y) = 10
´ 5 + sel(upd(f, x, 5), y) = 10
´ if x = y then 5 + 5 = 10 else 5 + sel(f, y) = 10
´ x = y Ç y.f = 5

• Theorem generation.

• Theorem proving.

Modeling new Statements

• Introduce
– a new predicate isAllocated(e, t) denoting that object e is

allocated at allocation time t
– and a new variable allocTime denoting the current allocation

time.

• Add background axioms:
 8x t. isAllocated(x, t)) isAllocated(x, t+1)

• Translate new x.T() to
 havoc x;
 assume :isAllocated(x, allocTime);
 assume Type(x) = T;
 assume x  null;
 assume isAllocated(x, allocTime + 1);
 allocTime := allocTime + 1;
 Translation of call to constructor x.T()

