Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies

Axiomatic Semantics

e An axiomatic semantics consists of:
— a language for stating assertions about programs;
— rules for establishing the truth of assertions.

* Some typical kinds of assertions:
— This program terminates.

— If this program terminates, the variables x and y have the
same value throughout the execution of the program.

— The array accesses are within the array bounds.
 Some typical languages of assertions

— First-order logic

— Other logics (temporal, linear)

— Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

The assertions we make about IMP programs are
of the form:

1A} c 1B}

with the meaning that:

— If A holds in state g and g — ¢’
— then B holds in g’

A is the pre-condition and B is the post-condition

For example:
{y<x}zi=xz=z+1{y<z}
is a valid assertion

These are called Hoare triples or Hoare assertions

Semantics of Hoare Triples

* Now we can define formally the meaning of a partial
correctness assertion:

F {A} c {B} iff
VgeQ. Vg’ ceQ.gEANG g = q FB
* and the meaning of a total correctness assertion:
~ [A] c [B] iff
VgeQ. gEA=39’€Q.g > g’ Nq’EB
or even better:

VqEQ.Vq’EQ.th/\q%q’:Mﬂ:B
A\
VgeQ.gEA=39’cQ.9g > g’ A g’ EB

Inference Rules for Hoare Triples

 We write - {A} c {B} when we can derive the
triple using inference rules

e There is one inference rule for each command
in the language.

* Plus, the rule of consequence

A=A F{Alc{B} FB=P
- {A'}c B’}

Inference Rules for Hoare Logic

* One rule for each syntactic construct:

—{A} skip {A} — {Ale/x]} x:=e {A}

~{A}c,{B} F{B}c,{C}
~ {A}cy; ¢, {C}

~{ANb}c,{B} F{AA-b}c,{B}
—{A}1f b thenc, elsec, {B}

—{I A b} c {I}
~{I}while bdoc{I A —b}

Example: A Proof in Hoare Logic

 We want to derive that
{n >0}
p:=0;
x:=0;
while x<ndo
X =x+1;
p:=p+m

{p=n%*m}

Example: A Proof in Hoare Logic

Only applicable rule (except for rule of consequence):
= {A}c,{C} F{C}c,{B}
= {A}cy; ¢, {B}

—{n > 0} p:=0; x:=0 {C} HF{C} while x< ndo (x:=x+1; p:=p+m) {p = n * m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}
|)\ J\ J | J

Y Y Y Y
A Cq C, B

Example: A Proof in Hoare Logic

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
- {I A b} c {I}
—F{I}while bdoc{I N —b}

We can match {I} with {C} but we cannot match {I A\ —b} and
{p =n * m}directly. Need to apply the rule of consequence first!

—{n > 0} p:=0; x:=0 {C} HF{C} while x< ndo (x:=x+1; p:=p+m) {p = n * m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}
|)\ J\ J | J

Y Y Y Y
A Cq C, B

Example: A Proof in Hoare Logic

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
- {I A b} c {I}
- \{I}l\\/\lhile bdoc{I N b}

Rule of consequence:

A c’ B
FA'=A F{A}c’{B} FB=D"H
I:A:A’:C l_{Ai}C/{B;}
A c’ B
- : | L

[
—{n > 0} p:=0; x:=0 {C} HF{C} while x< ndo (x:=x+1; p:=p+m) {p = n * m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: A Proof in Hoare Logic

What is I? Let’s keep it as a placeholder for now!

Next applicable rule:
~{A}c,{C} F{C}c,{B}
= {A} cy; ¢, {B}

A Cq C, B
A 1 1]

I—{{I A X< n\}'x = x+1;'p:=p+m‘ {I}
H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: A Proof in Hoare Logic

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):

- {Ale/x]} x:=e {A}

; ‘1 “ B
(| f \ r y
H{I A x<n}x:=x+1 {C} —{C} p:=p+m {I}
H{I A x<n}x:=x+1; p:=p+m {I}
H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m

~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: A Proof in Hoare Logic

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):

- {Ale/x]} x:=e {A}

H{I A x<n}x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {1}
H{I A x<n}x:=x+1; p:=p+m {I}

H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: A Proof in Hoare Logic

Only applicable rule (except for rule of consequence):
- {Ale/x]} x:=e {A}

Need rule of consequence to match {I A x<n}and {I[x+1/x, p+m/p]}

H{I A x<n}x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {1}
H{I A x<n}x:=x+1; p:=p+m {I}

H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: A Proof in Hoare Logic

Let’s just remember the open proof obligations!

H{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}
FIAXx<n= I[x+1/x, p+m/p]
H{I A x<n}x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {1}
H{I A x<n}x:=x+1; p:=p+m {I}

H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: A Proof in Hoare Logic

Let’s just remember the open proof obligations!
FIAXx<n= I[x+1/x, p+m/p]

FIAX>n=p=n*m

Continue with the remaining part of the proof tree, as before.

- n > 0= I[0/p, 0/X] Now we only need to solve the
- {1[0/p, 0/x]} p:=0 {I[0/x]} remaining constraints!

= {n > 0} p:=0 {I[0/x]}
~{I[0/x]} x:=0 {1}
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: A Proof in Hoare Logic

Find I such that all constraints are simultaneously valid:
=n>0= I[0/p, 0/x]

FIAXx<n= I[x+1/x, p+m/p]
FIAX>n=p=n*m

I=p=x*mAx<n

FNn>0=0=0*mMA0<n
Fp=x*mAX<nAX<n= ptm=(x+1) * m A x+1 <n
Fp=x*mAx<nAX>n=p=n*m

All constraints are valid!

Using Hoare Rules

* Hoare rules are mostly syntax directed

* There are three obstacles to automation of Hoare logic
proofs:
— When to apply the rule of consequence?
— What invariant to use for while?

— How do you prove the implications involved in the rule of
consequence?

 The last one is how theorem proving gets in the picture

— This turns out to be doable!
— The loop invariants turn out to be the hardest problem!

— Should the programmer give them?

Hoare Logic: Summary

 We have a language for asserting properties of programs.
* We know when such an assertion is true.
* We also have a symbolic method for deriving assertions.

semantics

/ \,

{A} P {B} = {A} P {B}

soundness
theorem prowk jompleteness

—{A} P {B}

Verification Conditions

Goal: given a Hoare triple {A} P {B}, derive a single assertion
VC(A,P,B) such that F VC(A,PB) iff F {A}P {B}

VC(A,P,B) is called verification condition.
Verification condition generation factors out the hard work

— Finding loop invariants
— Finding function specifications

Assume programs are annotated with such specifications

— We will assume that the new form of the while construct includes
an invariant:

{I}whilebdoc
— The invariant formula I must hold every time before b is evaluated.

Verification Condition Generation

* |dea for VC generation: propagate the post-
condition backwards through the program:
— From {A} P {B}
— generate A = F(P, B)

* This backwards propagation F(P, B) can be formalized
in terms of weakest preconditions.

Weakest Preconditions

* The weakest precondition WP(c,B) holds for any state
g whose c-successor states all satisfy B:

g EWP(c,B) iff Vg’cQ.q & q’=q’EB

e Compute WP(P,B) recursively according to the
structure of the program P.

Loop-Free Guarded Commands

* Introduce loop-free guarded commands as an
intermediate representation of the verification

condition

e c::= assumeb
assert b
havoc x
C.; G
c,Uc,

From Programs to Guarded Commands

 GC(skip) =
assume true
GC(x:=e) =
assume tmp = x; havoc x; assume (x = e[tmp/x])

GC(c,; ¢,)) = where tmp is fresh
GC(c,) ; GC(c,)
GC(if b thenc, elsec,)) =

GC({I}whilebdoc)="

From Programs to Guarded Commands

 GC(skip) =
assume true
GC(x:=e) =
assume tmp = x; havoc x; assume (x = e[tmp/x])

GC(c,; ¢,)) = where tmp is fresh
GC(c,) ; GC(c,)

GC(1if b thenc, elsec,) =
(assume b; GC(c,)) U (assume —b; GC(c,))

GC({I}whilebdoc)="

Guarded Commands for Loops

e GC({I}whilebdoc)-=
assert I;
havoc x,; ...; havoc x,;
assume I;
(assume b; GC(c); assert I; assume false) [
assume —b

where x,, ..., X,, are the variables modified in ¢

Computing Weakest Preconditions

* WP(assume b, B) =
P(assert b, B) =
P(havoc x, B) =
P(cy;€5, B) =

P(c, Uc,,B) =

=S ===

Computing Weakest Preconditions

e WP(assume b,B)=b =B

P(assertb,B)=b A B

P(havoc x, B) = B[a/x] (a fresh in B)
°(cy;¢,, B) = WP(c,, WP(c,, B))

P(c, Uc,,B) =WP(c,, B) A WP(c,, B)

=S ===

Putting Everything Together

Given a Hoare triple H = {A} P {B}
Compute ¢, = assume A; GC(P); assert B
Compute VC, = WP(c,, true)

Infer = VC,, using a theorem prover.

Example: VC Generation

{n > 0}
p:=0;
x:=0;
{b=x*m A x <nj}
while x<ndo
X:=x+1;
p:=p+m
{p=n%*mj

Example: VC Generation

e Computing the guarded command

assume n > 0;

assume p, = p, havoc p; assume p = 0;

assume x, = x; havoc x; assume x = 0;

assertp=x*mAx<n;

havoc x; havoc p; assume p=x*m A x < n;
(assume x < n;

assume x, = X; havoc x; assume x = x, + 1;
assume p, = p; havoc p; assumep =p, + m;
assert p=x*m A x < n; assume false)

0 assume x > n;
assertp=n*m

Example: VC Generation

 Computing the weakest precondition

WP (assumen > 0;
assume p, = p; havoc p; assume p = 0;
assume X, = x; havoc x; assume x = 0;
assertp=x*mAx<n;
havoc x; havoc p; assume p=x*m A x < n;
(assume x < n;

assume x, = x; havoc x; assume x = x, + 1;
assume p, = p; havoc p; assume p =p, + m;
assert p =x*m A\ x < n; assert false)

0 assume x > n,
assert p=n * m, true)

Example: VC Generation

 Computing the weakest precondition
N>0Apy=pApa;=0A xy=x/A\xa;=0=
pa;=xa; *mAxa; < nA
(pba,=xa,*m A xa,<n=
(xa, <n A x;=xa, ANxa,=x;+1A
p,=pa, \Npa,=p,+m)=pa,=xa,*mAxa, <n)
A (xa, > n=pa,=n* m))

Example: VC Generation

* The resulting VC is equivalent to the conjunction of
the following implications

N>0Apy,=pApa;=0A X,=xAxa;=0=
pas;=xa;*mAxa; <n

N>0Apy=pApa;=0A xy=xAxa;=0A pa,=xa,* mA
xXa,<n=

— *
Xa, > nN=pa,=n*m

N>0Apo=pApa;=0A x,=xAxa;=0A pa,=xa,*m A
Xa, <NA X;=xa, A\xa;=x;,+1Ap,=pa, ANpa,=p;+m =
pa,=xa,*mAxa, <n

Example: VC Generation

e simplifying the constraints yields

N>0=0=0"mMANO0<n
X0, <nAxa,>n=xa,*m=n*m

X0, <h=xa,*m+m=(xa,+1)*mAxa,+1<n

* all of these implications are valid, which proves that
the original Hoare triple was valid, too.

The Diamond Problem

assume A;

cld; C d
c’ld’;

assert B , d’

A = WP (c, WP(c’, B) A WP(d’, B)) A
WP (d, WP(c’, B) A WP(d’, B))

* Number of paths through the program can be
exponential in the size of the program.

e Size of weakest precondition can be exponential in the
size of the program.

Avoiding the Exponential Explosion

Defer the work of exploring all paths to the theorem prover:

WP’(assume b, B, C) = (b = B, ()
WP’(assert b, B, C) = (b A\ B, C)
WP’(havoc x, B, C) = (B[a/x], C) (a fresh in B)
WP’(c,;c,, B, C) =
letF,, C, = WP’(c,, B, C) in WP’(c,, F,, G,)
WP’(c,0c,,B, C) =
let X = fresh propositional variable in
let F,, C, = WP’(c,, X, true) and F,, C, = WP’(c,, X, true) in
(F, AF,,CAC,AC,A (X< B))

WP(P, B) =let F, C=WP’(P, B, true) inC=F

Translating Method Calls to GCs

/*@ requires P;
@ assignhable x,;, ..., X,;
@ ensures Q; @*/
Tm(Ty pyy voes Tep) { ovv]

A method call
y = Xem(Ys ooy Yi)s
is desugared into the guarded command

assert P[x/this, y,/p4 .o Yi/ P];
havoc X;; ..., havoc Xx,; havoc y;
assume Q[x/this, y/\result]

Handling More Complex Program State

 When is the following Hoare triple valid?
{A} x.f =5 {x.f +y.f = 10}

A ought to imply “yf=5V x=y”

The IMP Hoare rule for assignment would give us:
(x.f +y.f =10) [5/x.f]
=5+yf=10
=vy.f =5 (we lost one case)

e How come the rule does not work?

Modeling the Heap

e We cannot have side-effects in assertions

— While generating the VC we must remove side-effects!

— But how to do that when lacking precise aliasing
information?

* Important technique: postpone alias analysis to
the theorem prover

* Model the state of the heap as a symbolic
mapping from addresses to values:

— If e denotes an address and h a heap state then:
— sel(h,e) denotes the contents of the memory cell

— upd(h,e,v) denotes a new heap state obtained from h
by writing v at address e

Heap Models

 We allow variables to range over heap states
— So we can quantify over all possible heap states.

 Model 1

— One “heap” for each object

— One index constant for each field.
We postulate f1 # 2.

— rflissel(r,f1) and r.f1 = e is r := upd(r,f1,e)
 Model 2 (Burnstall-Bornat)
— One “heap” for each field

— The object address is the index
— r.flis sel(fl,r) and r.f1 = e is f1 := upd(f1,r,e)

Hoare Rule for Field Writes

 To model writes correctly, we use heap expressions
— A field write changes the heap of that field

{ Blupd(f, e,, e,)/f] } e,.f = e, {B}

* Important technique:
— model heap as a semantic object

— defer reasoning about heap expressions to the theorem
prover with inference rules such as (McCarthy):

I e,ife,=e;
sel(upd(h, e, e,), ;) = -

| sel(h, e;)ife; # e;

Example: Hoare Rule for Field Writes

Consider again: { A} xf=5{xf+y.f=10}
We obtain:

A = (x.f+vy.f = 10)[upd(f, x, 5)/f]

= (sel(f, x) + sel(f, y) = 10)[upd(f, x, 5)/f]

= sel(upd(f x 5) x) + sel(upd(f x5) y) = 10

= 5 + sel(upd(f, x, 5), y) = 10
=ifx=ythen5+5=10else 5 + sel(f, y) = 10
=x=yVyf=5

Theorem generation.

Theorem proving.

Modeling new Statements

* |ntroduce

— a new predicate isAllocated(e, t) denoting that object e is
allocated at allocation time t

— and a new variable allocTime denoting the current allocation
time.

 Add background axioms:
Vx t. isAllocated(x, t) = isAllocated(x, t+1)

* Translate new x.T() to
havoc x;
assume —isAllocated(x, allocTime);
assume Type(x) =T,
assume x = null;
assume isAllocated(x, allocTime + 1);
allocTime := allocTime + 1;
Translation of call to constructor x.T()

