Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies

Today’s Topic:
Automated Test Case Generation

How to Test Effectively?

public class Factorial {
/*@ requires n >= 0;
@ ensures \result > 0;
@*/
public static int factorial (int n) {
int result = n;
while (--n > @) result *= n;
return result;

}

public static void main (String[] param) {
int n = Integer.parselnt(param[0]);
int fact n = factorial(n);
System.out.println("n: " + n + ", nl: " + fact_n);

}
Writing a main method for each test case does not scale.

How to Test Effectively?

Faulty implementation of enqueue on binary heap:

public void enqueue(Comparable o) {

if (numElems >= elems.length) grow();

int pos = numElems++;

int parent = pos / 2;

while (pos > © && elems[parent].compareTo(o) > 0) {
elems[pos] = elems[parent];
pos = parent;
parent = pos / 2;

}

elems[pos] = o;

}

Writing all test cases manually does not scale.

Automated Testing

* Unit Testing: write code to automatically test your code.

e A unit test is a test suite for a unit (class/module) of a
program and consists of

— setup code to initialize the tested class;
(test fixture/preamble)

— tear down code to clean up after testing;

— test cases that call methods of the tested class with
appropriate inputs

— check the result of each call (test oracle)

* Once test suites are written, they are easy to run
repeatedly (regression testing).

Unit Testing in Java: JUnit

* A popular framework for unit testing in Java
— Frameworks are libraries with gaps

— Programmer writes classes following particular
conventions to fill in the gaps

— Result is the complete product
* JUnit automates

— the execution and analysis of unit tests;

— generation of tests cases from parameterized test
oracles and user-provided test data.

JUnit Example

import static org.junit.Assert.*;
import org.junit.*;

public class PriorityQueueTest {
private PriorityQueue pq;

@Before public void setUp () { pg = new Heap(); }
@After public void tearDown () { pa = null; }

@Test public void enqueueTest () {
Integer value = new Integer(5);
pq.enqueue(value);
assertEquals(pg.removeFirst, value);

¥

Drawbacks of JUnit

 Low degree of automation
— Programmer still needs to write all the test cases

* Redundant specification

— Duplication between checks in test oracles and
formal specification
(e.g. provided as JML annotations)

Automated Test Generation

* Black box testing
— Implementation is unknown
— Test data generated from spec (e.g., randomly)
— Does not require source code
— Can generate insufficient/irrelevant test data

* White box testing
— Implementation is analyzed to generate test data for it
— Requires source or byte code

— Can use full information from code

Automated Test Generation Methods

 Methods derived from black box testing

— Generate test cases from analyzing formal
specification or formal model of implementation
under test (IUT)

 Methods derived from white box testing

— Code-based test generation that uses symbolic
execution of IUT

We will focus on black box testing

Specification-Based Test Generation

* Generate test cases from analyzing formal
specification or formal model of implementation
under test (IUT)

— Black box technology with according pros and cons

— Many tools, commercial as well as academic:
JMLUnit, JMLUNitNG, BZ-TT, JML-TT, UniTesK, JTest,
TestEra, Korat, Cow Suite, UTIML, . ..

— Various specification languages:
B, Z, Statecharts, JML, ...

— Detailed formal specification/system model required
(here: JML)

Specification-Based Test Generation

* We use design-by-contract and JML as formal
specification methodology:

— View JML method contract as formal description of
all anticipated runs

Specification-Based Test Generation

* Approach: Look at one method and its JML contract at
a time (unit testing)

1. Specialize JML contract to representative selection of
concrete runs
e concentrate on precondition (requires clause)
e assumes that precondition species all anticipated input

* analysis of implicit and explicit logical disjunctions in
precondition

* choose representative value for each atomic disjunct

2. Turn these representative program runs into executable
test cases

3. Synthesize test oracle from postcondition of contract

Contracts and Test Cases

/*@ public normal_behavior
@ requires Pre;

@ ensures Post;

@*/

public void m() { ... }

* All prerequisites for intended behavior contained in
requires clause

* Unless doing robustness testing, consider behavior
violating preconditions irrelevant

e State at start of IUT execution must make precondition true

Test Case Generation: Example

public class Traffic {
private /*@ spec public @*/ boolean red, green, yellow;
private /*@ spec public @*/ boolean drive, brake, halt;
/*@ public normal_behavior
@ requires red || yellow || green;
@ ensures \old(red) ==> halt &&
@ \old(yellow) ==> brake;
@*/
public boolean setAction() {
// implementation

¥
¥

Which test cases should be generated?

Data-Driven Test Case Generation

* Generate a test case for each possible value of each
input variable

— Combinatorial explosion
(already 2°cases for our simple example)

— Infinitely many test cases for unbounded data structures

— Some resulting test cases unrelated to specification or
IUT

* Restriction to test cases that satisfy precondition?
* Insufficient (still too many), but gives the right clue!

Coverage Criteria for
Specification-Based Testing

Example
requires red || yellow || green;

is true even for red=yellow=green=true

How many different test cases to generate?
Create test cases that make parts of precondition true:
* At least one test per spec case (Decision Coverage)

* One for each disjunct in precondition
(Disjunctive Coverage)

e All disjunctive combinations (Multiple Condition Coverage)
* Criteria based on making predicates true/false, etc.

Disjunctive Coverage

/*@ public normal_behavior
@ requires red || yellow || green;
@ ensures \old(red) ==> halt &&
@ \old(yellow) ==> brake;
@*/

Disjunctive analysis of precondition suggests
minimum of three test cases that relate to
precondition.

Disjunctive Coverage

e Definition (Disjunctive Normal Form (DNF))
A requires clause of a JML contract is in DNF when it
has the form
D, [[D, || ... [] D,
where each D, does not contain an explicit or implicit
disjunction.

* Disjunctive Coverage:
For each disjunct D of precondition in DNF

— create a test case whose initial state makes D true
and as many other disjuncts as possible false

Disjunctive Coverage

Example:
@ requires red || yellow || green;

gives rise to three test cases

* red=true; yellow=green=false
 yellow=true; red=green=false
* green=true; red=yellow=false

Importance of Establishing DNF Syntactically

* Implicit logical disjunctions must be made explicit by
computing DNF: e.g. replace A ==> B with !A || B, etc.

Dealing with Existential Quantification

Example (Square root)

/*@ public normal_ behavior

@ requires n>=0 && (\exists int r; r >= 0 && r*r
== n);

@ ensures ... @*/
public static final int sqrt(int n) { ... }

Where is the disjunction in the precondition?

Existential quantifier as disjunction:

* Existentially quantified expression (\exists int r; P(r))
 Rewrite as: P(MIN _VALUE)|| ... || P(O)| | ... || P(MAX_ VALUE)
e Get rid of those P(i) that are false: P(O)| | ... | | P(46340)

e Still too many cases. ..

Partitioning of Large Input Domains

Partition large/infinite domains in finitely many equivalence
classes

MIN VALUE negative values . positive values MAX_VALUE

-231 -17 0) 42 231-1
Partitioning tries to achieve that the same computation path is
taken for all input values within a potential equivalence class.
Then, one value from each class is sufficient to check for defects.

As we don't know the IUT, correct partitioning is in general
unattainable.

Judicious selection and good heuristics can make it work in
practice.

Boundary Values

Example (Square)
/*@ public normal_behavior
@ requires n>=0 && n*n >= 0;

@ ensures \result >=0 && \result == n*n;
@*/
public static final int square(int n) { ... }

Include boundary values of ordered domains as class
representatives.

Which are suitable boundary values for n in this example?

Implicit Disjunctions, Part |

Example (Binary search, target not found)

/*@ public normal_behavior
@ requires (\forall int i; @ < 1 & & i < array.length;

@ array[i-1] <= array[i]);
@ (\forall int i; © <= 1 & & 1 < array.length;
@ array[i] != target);
@ ensures \result == -1;
@*/
int search(int array[], int target) { ... }

No disjunction in precondition!?

We can freely choose array, length, and target in
precondition!

Free Variables

* Free variables:

— Values of variables without explicit quantification can
be freely chosen

— Amounts to implicit existential quantification over
possible values

* How choose representatives from types of free
variables?

— There are infinitely many different arrays . ..

— Before defining equivalence classes, need to
enumerate all values

Data Generation for Free Variables

Systematic enumeration of values by data generation principle

Assume declaration: int[]| ar;, thenthe array ar is
1. eitherthenull array: int[] ar = null;
2. ortheempty intarray: int[] ar=new int[0];
3. oran int array with one element
a. int[] ar = { MIN_VALUE };

b. int[] ar = { MIN_VALUE + 1 };
C.

4. oran int array with two elements. ..
5.

Combining the Heuristics

Example (Binary search, target found)
requires (\exists int i; @ <= 1 && 1 < array.length
&& array[i] == target) &&
(\forall int i; @ < i & i < array.length;
array[i-1] <= array[i]);

Apply test generation principles:
1. Use data generation for unbound int array

2. Choose equivalence classes and representatives for:
— array: int[] empty, singleton, two elements (usually, need to stop here)
— target: int (include boundaries)

3. Generate test cases that make precondition true

Combining the Heuristics

Example (Binary search, target found)
requires (\exists int i; @ <= 1 & & i < array.length
&& array[i] == target) &&
(\forall int i; @ < i & 1 < array.length;
array[i-1] <= array[i]);

* empty array: precondition cannot be made true, no test case

* singleton array, target must be the only array element
array = { 0 }; target = 0;
array = { 1 }; target = 1;

* two-element sorted array, target occurs in array
array = { 0, 0 }; target = 0;
array = { 0, 1 }; target = 0;
array = { 1, 1 }; target = 1;

Implicit Disjunctions, Part Il

Example (List Copy)

/*@ public normal_behavior
@ requires true; // src, dst non-nullable by default
@ ensures ...

@*/

static void java.util.Collections.copy(List src, List dst)

Aliasing and Exceptions

* InJava object references src, dst can be aliased, i.e., src==dst
— Aliasing usually unintended - exclusion often forgotten in contract

* Preconditions can be (unintentionally) too weak
— Exception thrown when src.length > dst.length

Generate test cases that enforce/prevent aliasing and throwing
exceptions (when not excluded by contract).

The Postcondition as Test Oracle

* Oracle Problem in Automated Testing

— How to determine automatically whether a test
run succeeded?

— The ensures clause of a JML contract provides
verdict on success provided that requires clause
is true for given test case

— Use ensures clauses of contracts (and class
invariant) as test oracles

Executable JML Expressions

* How to determine whether a JML expression
is true in a program state?

* |tis expensive to check whether a JML
expression is true in a state

— Corresponds to first-order model checking,
because JML ~ FOL

— PSPACE-complete problem, efficient solutions
exist only for special cases

— Identify a syntactic fragment of JML that can be
mapped into Java

Executable JML Expressions

Example
\exists int i; @ <= 1 && 1 < ar.length && ar[i] == target

is of the form
\exists int 1i; guard(i) && test(i)

where
* guard() is Java expression with fixed upper/lower bound

* test() is executable Java expression

Guarded existential JML quantifiers as Java (Example)

for (int i = 0; 0 <= 1 && 1 < ar.length; i++) {
if (ar[i] == target) { return true; }

} return false;

Tools for JML-based Test Case Generation

JMLUnit: Unit Testing for JML

JMLUnit is a unit testing framework for JML built on top of JUnit

User:
e writes specifications
e supplies test data of each type

JMLUnit automatically:

e constructs test cases from test data
e assembles test cases into test suites
* executes test suites

e decides success or failure

* reports results

Test Cases and Suites

e A test case (0,x) consists of:
— a non-null receiver object o
— a sequence x of argument objects

e A testsuite for method mis a set of
test cases with:

— receiver of m’s receiver type
— arguments of m’s argument types

Test Suites are Cross Products

* For method enqueue:
{(pq, v) | pg € PriorityQueueTestData, v € IntegerTestData }

e Default is to use all data for all methods
— Filtered automatically by preconditions

— Users can filter manually if desired

* Factory method allows user control of adding
test cases to test suite.

Errors and Meaningless Test Cases

When testing method m:

entry precondition violation
: A
r‘eceiver‘ -m(argl, ...) /' internal precon'fc‘alition violation
, ,
| check m’s precondition :
\ check f’s precondition

X.F(...); | 7{"'}\
/f} —ﬂcheckf’spostcondition

N o \
"3 other violation

check m’s postcondition

Entry precondition violation = test case rejected
Internal or other violation = error reported

Supplying Test Data

Programmer supplies data in form of strategies

A strategy for type T:
— has method that returns iterator yielding T

Strategies allow reuse of test data

JMLUnit provides a framework of built-in
strategies

— Strategies for built-in types

— Allow for easy extension, composition, filtering, etc.

Strategies for Test Data

e Standard strategies:

— Immutable: iterate over array of values;
— Cloneable: iterate over array, clone each;
— Other: create objects each time.

* Cloning and creating from scratch can prevent
unwanted interference between tests.

* JMLUNnIt tries to guess appropriate strategy.

Example Strategies

import org.jmlspecs.jmlunit.strategies.*;
import junit.framework.*;

public abstract class Heap JIML TestData extends TestCase {
public IntIterator vCompIter(String methodName, int argNum)
{ return vComparableStrategy.Comparablelterator(); }
private StrategyType vComparableStrategy =
new ImmutableObjectAbstractStrategy() {
protected Object[] addData() {
return new Integer[] {10, -22, 55, 3000};

s

Example Strategies

public IndefinitelIterator vHeapIter (String methodName, int argNum)
{ return vPointStrategy.iterator(); }

private StrategyType vHeapStrategy =
new NewObjectAbstractStrategy() {
protected Object make(int n) {
switch (n) {
case 0: return new Heap();
case 1: return new Heap(new Integer {1, 2, 3});
default: break;
}
throw new NoSuchElementException();
}
¥

Using JMLUnit

JML-compile the class to be tested
jmlc Factorial.java

generate the test suite and test data templates
jmlunit Factorial.java

supply the test data
SEDITOR Factorial_JML TestData.java

compile the test suite
javac Factorial JML Test*.java

execute the test suite
jmlrac Factorial _JML_Test

Drawbacks of JMLUnit

Limited degree of automation:

— only test data for primitive types is generated
automatically

Limited degree of granularity:

— fine-grained filtering of test data for individual methods
is difficult

Limited coverage:

— no guarantee that a certain coverage criterion is
satisfied

Limited relevancy of generated test cases
— black box testing

Some Alternatives to JMLUnit

* JMLUNIING

— similar feature set as JMLUnit, better memory
footprint, improved filtering of test data, ...

* Korat, TestEra, UDITA

— automated generation of test data for complex
data types (use techniques similar to Alloy)

 KeY Unit Test Generator, Java Pathfinder

— based on symbolic execution + constraint solving
(white box testing)

Automated Test Case Generation with Korat

* Provides test case generation for complex data

types.
e Supports checking of JML specifications.

* User provides for each complex data type

— a Java predicate capturing the representation
invariant of the data type;

— a finitization of the data type.

* Korat generates test cases for all instances that
satisfy both the finitization constraints and the
representation predicate (similar to Alloy)

Example: Binary Trees

import java.util.*;
class BinaryTree {
private Node root;
private int size;
static class Node {
private Node left;
private Node right;

}

Representation Predicate for BinaryTree

public boolean repOK() {
if (root == null) return size == 0;
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);

while (!workList.isEmpty()) {
Node current = (Node) workList.removeFirst();

if (current.left != null) {
if (!visited.add(current.left)) return false;

worklist.add(current.left);

}

if (current.right!= null) { ... }
}
return visited.size () == size;

¥

Finitization for BinaryTree

public static Finitization finBinaryTree (int NUM_Node) {
IFinitization f = new Finitization(BinaryTree.class);
I0bjSet nodes = f.createObjSet(Node.class, NUM Node, true);
// #Node = NUM Node

f.set(“root”, nodes); // root in null + Node
IIntSet sizes = f.createIntSet(Num_Node);
f.set(“size”, sizes); // size = NUM _Node

f.set(“Node.left”, nodes); // Node.left in null + Node
f.set(“Node.right”, nodes); // Node.right in null + Node
return f;

Finitization for BinaryTree

Instances generated for finBinaryTree(3)

right right left left left ;< >; right
right right left

Summary

Black box vs. white box testing

Black box testing ~ specification-based test generation
Systematic test case generation from JML contracts guided
by a few heuristics

— Only generate test cases that make precondition true

— Each operation contract and each disjunction in precondition
gives rise to a separate test case

— Choose appropriate coverage criterion, e.g., disjunctive
coverage

— Large/infinite datatypes approximated by class representatives
— Values of free variables supplied by data generation
— Create separate test cases for potential aliases and exceptions

Postconditions of contract and class invariants provide test
oracle

Turn pre- and postconditions into executable Java code

