Today’s Topics

• The Alloy Analyzer (Ch. 5 of Jackson Book)
 – From Alloy models to Analysis Constraints
 – Propositional Logic (Ch. 1 of Huth/Ryan Book)
 – From Analysis Constraints to Propositional Logic
 – Quantifier Elimination
 – Alleviating State Space Explosion
Alloy Analyzer (AA)

- **Small scope hypothesis**: violations of assertions are witnessed by small counterexamples
 - AA exhaustively searches for instances of small scope
- AA can **falsify** a model but not **verify** it
 - It can prove that an assertion does not hold for all instances of a model by finding a counterexample.
 - It cannot prove that an assertion holds in all instances of a model,
 - it can only prove that an assertion holds for all instances up to a certain size (**bounded verification**).
Alloy Analyzer (AA)

- **Small scope hypothesis**: violations of assertions are witnessed by small counterexamples
 - AA exhaustively searches for instances of small scope
- Can we automatically verify Alloy models?
 - The answer is **no** because the verification problem for Alloy models is **undecidable**
 - i.e., there is **no general algorithm** to solve this problem.
From Alloy Models to SAT and Back

• AA is actually a **compiler**
 – First, the alloy model is translated to a single Alloy constraint, which is called the **analysis constraint**.
 – Given the scope of the command to execute, the analysis constraint is translated into a **propositional constraint**.
 – AA then uses an off-the-shelf **SAT solver** to find a **satisfying assignment** for the propositional constraint.
 – If a satisfying assignment exists, it is translated back into an instance of the original Alloy model.

• AA reduces the problem of finding instances of Alloy models to a well-understood problem: **SAT**
Analysis Constraints

• First, the Alloy model is translated into a single Alloy constraint: the **analysis constraint**.

• The analysis constraint is a conjunction of

 – **fact constraints**
 • facts that are explicitly declared in the model
 • facts that are implicit in the signature declarations

 – and a **predicate constraint**:
 • for a **run** command: the constraint of the predicate that is run
 • for a **check** command: the negation of the assertion that is checked
module addressBook

abstract sig Target {}
sig Addr, Name extends Target {}
sig Book {addr: Name->Target}

fact Acyclic {all b: Book | no ^(b.addr) & iden}
pred add [b, b’: Book, n: Name, t: Target] {
 b’.addr = b.addr + n->t
}

run add for 3 but 2 Book
Implicit Fact Constraint

The implicit fact constraint is the conjunction of the constraints implicit in the signature declarations:

Example: from the signature declarations

```
abstract sig Target {}

sig Addr, Name extends Target {}

sig Book {addr: Name->Target}
```

AA generates the implicit fact constraint:

```
Name in Target
Addr in Target
no Name & Addr
Target in Name + Addr
no Book & Target
```
Explicit Fact Constraint

The explicit fact constraint is the conjunction of all bodies of the declared facts.

Example: the fact

\[
\text{fact } \text{Acyclic } \{ \text{all } b: \text{ Book } \mid \text{no } ^{(b.\text{addr})} \& \text{iden} \}
\]

generates the explicit fact constraint:

\[
\text{all } b: \text{ Book } \mid \text{no } ^{(b.\text{addr})} \& \text{iden}
\]
The predicate constraint is
- the conjunction of the body of the predicate that is run and the multiplicity and type constraints of its parameters
- or the negation of the body of the assertion that is checked.

Example: running the predicate

```plaintext
pred add [b, b': Book, n: Name, t: Target] {
    b'.addr = b.addr + n->t
}
```

generates the predicate constraint:

```
b: Book and b': Book and n: Name and t: Target
b'.addr = b.addr + n->t
```
Analysis Constraint for **addressBook**

Name *in* Target

Addr *in* Target

no Name & Addr

Target *in* Name + Addr

no Book & Target

all b: Book | *no* ^(b.addr) & iden

b: Book **and** b’: Book

n: Name **and** t: Target

b’.addr = b.addr + n->t

Implicit fact constraint
Explicit fact constraint
Predicate constraint
Satisfying Assignment for Analysis Constraint

Satisfying assignment is mapping from constraint vars to relations of atoms that evaluate the constraint to true.

Target = \{ (A_0), (N_0) \}
Addr = \{ (A_0) \}
Name = \{ (N_0) \}
Book = \{ (B_0), (B_1) \}
addr = \{ (B_0,N_0,A_0), (B_1,N_0,A_0) \}
b = \{ (B_0) \}
b' = \{ (B_1) \}
n = \{ (N_0) \}
t = \{ (A_0) \}
From Analysis Constraints to Propositional Logic

• Given the scope of the command to execute, the analysis constraint is translated into a constraint in propositional logic.

• The translation guarantees a one-to-one correspondence between satisfying assignments of the propositional constraint and the analysis constraint.

• AA then uses an off-the-shelf SAT solver to find a satisfying assignment for the propositional constraint.

• If a satisfying assignment is found, it is translated back into an assignment of the analysis constraint which in turn represents the instance of the original Alloy model.
What is Logic?

• Like a programming language, a logic is defined by its syntax and semantics.

• Syntax:
 – An alphabet is a set of symbols.
 – A finite sequence of symbols is called an expression.
 – A set of rules defines the well-formed expressions.

• Semantics:
 – Gives meaning to well-formed expressions.
 – Formal notions of induction and recursion can be used to give rigorous semantics.
Syntax of Propositional Logic

• Each expression is made of
 – propositional variables: a, b, . . . , p, q, . . .
 – logical constants: T, ⊥
 – logical connectives: ∧, ∨, ⇒, . . .

• Every propositional variable stands for a basic fact
 – Examples:
 I’m hungry, Apples are red, Joe and Jill are married
Syntax of Propositional Logic

- Well-formed expressions are called formulas
- Each propositional variable \((a, b, \ldots, p, q, \ldots)\) is a formula
- Each logical constant \((\top, \bot)\) is a formula
- If \(\phi\) and \(\psi\) are formulas, all of the following are also formulas:
 \[-\phi, \phi \land \psi, \phi \implies \psi, \phi \iff \psi\]
- Nothing else is a formula
Semantics of Propositional Logic

- The meaning (value) of \(\top \) is always \textit{True}. The meaning of \(\bot \) is always \textit{False}.

- The meaning of the other formulas depends on the meaning of the propositional variables.

 - Base cases: Truth Tables

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>\neg P</td>
<td>P \land Q</td>
<td>P \lor Q</td>
<td>P \implies Q</td>
<td>P \iff Q</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

- Non-base cases: Given by reduction to the base cases

Example: the meaning of \((p \lor q) \land r\) is the same as the meaning of \(a \land r\) where \(a\) has the same meaning as \(p \lor q\).
Semantics of Propositional Logic

• An assignment of Boolean values to the propositional variables of a formula is an interpretation of the formula.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>(P ∨ Q) ∧ ¬Q</th>
<th>(P ∨ Q) ∧ ¬Q ⇒ P</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

• Interpretations:
 \{P \mapsto False, Q \mapsto False\}, \{P \mapsto False, Q \mapsto True\}, \ldots

• The semantics of Propositional logic is compositional: the meaning of a formula is defined recursively in terms of the meaning of the formula’s components.
Semantics of Propositional Logic

• Typically, the meaning of a formula depends on its interpretation. Some formulas always have the same meaning.

- (un)satisfiable if it is true in some (no) interpretation,
- valid if it is true in every possible interpretation.

A formula that is valid or unsatisfiable is called a tautology.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(P ∨ Q) ∧ ¬Q</th>
<th>(P ∨ Q) ∧ ¬Q → P</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
The SAT Problem

- The satisfiability problem for propositional logic (SAT) asks whether a given formula ϕ is satisfiable.
- SAT is decidable.
- Hence, so is validity of propositional formulas.
- However, SAT is NP-complete
- Hence, checking validity is co-NP-complete.
The SAT Problem

• Many problems in formal verification can be reduced to checking the satisfiability of a formula in some logic.

• In practice, NP-completeness means the time needed to solve a SAT problem grows exponentially with the number of propositional variables in the formula.

• Despite NP-completeness, many realistic instances (in the order of 100,000 variables) can be checked very efficiently by state-of-the-art SAT solvers.
Translating the Analysis Constraint

Name in Target
Addr in Target
no Name & Addr
Target in Name + Addr
no Book & Target
all b: Book | no ^(b.addr) & iden b: Book and b’: Book
n: Name and t: Target
b’.addr = b.addr + n->t
Characteristic Function of a Relation

Name = \{(N_0),(N_1),(N_2)\}
Addr = \{(A_0),(A_1),(A_2)\}
address = \{(N_0,A_0), (N_1,A_1), (N_2,A_1)\}

Characteristic function of the relation address:

\[\chi_{\text{address}}: \text{Name} \times \text{Addr} \rightarrow \{0,1\}\]

\[\chi_{\text{address}}(N_i,A_j) = 1 \quad \text{iff} \quad (N_i,A_j) \in \text{address}\]
Characteristic Function of a Relation

Name = \{ (N_0), (N_1), (N_2) \}
Addr = \{ (A_0), (A_1), (A_2) \}
address = \{ (N_0, A_0), (N_1, A_1), (N_2, A_1) \}

Characteristic function of the relation **address**:

<table>
<thead>
<tr>
<th>(\chi_{\text{address}})</th>
<th>(N_0)</th>
<th>(N_1)</th>
<th>(N_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_0)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(A_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Propositional Encoding of Relations

<table>
<thead>
<tr>
<th>χ_{address}</th>
<th>N_0</th>
<th>N_1</th>
<th>N_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Introduce a propositional variable X_{ij} for every A_i and N_j:

<table>
<thead>
<tr>
<th>χ_{address}</th>
<th>N_0</th>
<th>N_1</th>
<th>N_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>X_{00}</td>
<td>X_{01}</td>
<td>X_{02}</td>
</tr>
<tr>
<td>A_1</td>
<td>X_{10}</td>
<td>X_{11}</td>
<td>X_{12}</td>
</tr>
<tr>
<td>A_2</td>
<td>X_{20}</td>
<td>X_{21}</td>
<td>X_{22}</td>
</tr>
</tbody>
</table>
Propositional Encoding of Relations

Introduce a propositional variable X_{ij} for every A_i and N_j:

<table>
<thead>
<tr>
<th>χ_{address}</th>
<th>N_0</th>
<th>N_1</th>
<th>N_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>X_{00}</td>
<td>X_{01}</td>
<td>X_{02}</td>
</tr>
<tr>
<td>A_1</td>
<td>X_{10}</td>
<td>X_{11}</td>
<td>X_{12}</td>
</tr>
<tr>
<td>A_2</td>
<td>X_{20}</td>
<td>X_{21}</td>
<td>X_{22}</td>
</tr>
</tbody>
</table>

Each assignment to the propositional variables X_{ij} corresponds to one possible function χ_{address} and thus one possible interpretation of the relation address.
Translating Relational Operations

- All relational operations in an Alloy constraint are encoded as propositional formulas.
- The propositional variables in the formulas describe the characteristic functions of the relational variables in the Alloy constraint.

<table>
<thead>
<tr>
<th>χ_{addr}</th>
<th>N_0</th>
<th>N_1</th>
<th>N_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>X_{00}</td>
<td>X_{01}</td>
<td>X_{02}</td>
</tr>
<tr>
<td>A_1</td>
<td>X_{10}</td>
<td>X_{11}</td>
<td>X_{12}</td>
</tr>
<tr>
<td>A_2</td>
<td>X_{20}</td>
<td>X_{21}</td>
<td>X_{22}</td>
</tr>
</tbody>
</table>
Propositional Translation: Example

Analysis constraint (scope 3):

Addr in Target

Propositional variables for characteristic functions:

Addr: A_0, A_1, A_2
Target: T_0, T_1, T_2

Propositional encoding of analysis constraint:

$A_0 \Rightarrow T_0 \land A_1 \Rightarrow T_1 \land A_2 \Rightarrow T_2$
Propositional Translation: Example

Analysis constraint (scope 3):

\[\text{address}' = \text{address} + n \rightarrow t \]

Flatten analysis constraint by introducing fresh variables for non-trivial subexpressions.

Flattened analysis constraint:

\[\text{address}' = \text{address} + e \]
\[e = n \rightarrow t \]
Propositional Translation: Example

Flattened analysis constraint (scope 3):

```
address’ = address + e
e = n->t
```

Propositional variables for characteristic functions:

```
address’: A’\_00, A’\_01, A’\_02, A’\_10, A’\_11, A’\_12, A’\_20, A’\_21, A’\_22
address: A\_00, A\_01, A\_02, A\_10, A\_11, A\_12, A\_20, A\_21, A\_22
e: E\_00, E\_01, E\_02, E\_10, E\_11, E\_12, E\_20, E\_21, E\_22
n: N\_0, N\_1, N\_2
t: T\_0, T\_1, T\_2
```
Propositional Translation: Example

Flattened analysis constraint (scope 3):
\[e = n \rightarrow t \]

Propositional variables for characteristic functions:
- \(e: E_{00}, E_{01}, E_{02}, E_{10}, E_{11}, E_{12}, E_{20}, E_{21}, E_{22} \)
- \(n: N_0, N_1, N_2 \)
- \(t: T_0, T_1, T_2 \)

Propositional encoding of analysis constraint:
\[\bigwedge_{0 \leq i,j \leq 2} E_{ij} \Leftrightarrow N_i \land T_j \]
Propositional Translation: Example

Flattened analysis constraint (scope 3):
addr' = addr + e

Propositional variables for characteristic functions:
address': A'_{00}, A'_{01}, A'_{02}, A'_{10}, A'_{11}, A'_{12}, A'_{20}, A'_{21}, A'_{22}
address: A_{00}, A_{01}, A_{02}, A_{10}, A_{11}, A_{12}, A_{20}, A_{21}, A_{22}
e: E_{00}, E_{01}, E_{02}, E_{10}, E_{11}, E_{12}, E_{20}, E_{21}, E_{22}

Propositional encoding of analysis constraint:
\[\bigwedge_{0 \leq i,j \leq 2} A'_{ij} \iff A_{ij} \lor E_{ij}\]
Quantifier Elimination

• Universal and existential quantification over finite sets can be eliminated using finite conjunctions, respectively, disjunctions.

• Example: Replace universal quantifier
 \[
 \text{all } x: S \mid F
 \]
 where \(S = \{s_0, \ldots, s_n\} \) with conjunction
 \[
 F[s_0/x] \text{ and } \ldots \text{ and } F[s_n/x]
 \]
Quantifier Elimination

- Quantifier elimination can be encoded directly in the propositional constraint.
- Example: The universal quantifier
 \[\text{all } x: \text{Alias} \mid x.\text{addr in Addr} \]
 can be encoded by the propositional formula

 \[\bigwedge_{0 \leq i,j < n} A_i \land R_{ij} \Rightarrow D_j \]

 assuming the scope is \(n \) and the propositional variables are \(A_i \) for \(\text{Alias} \), \(D_i \) for \(\text{Addr} \), and \(R_{ij} \) for \(\text{addr} \).
Skolemization

• Existential quantifiers can be treated more effectively using Skolemization
 – Replace top-level existential quantifiers of the form \(\text{some} \ x : S \mid F \)
 with
 \[
 (xs : S) \land F[xs/x]
 \]
 where \(xs \) is a fresh variable

• Advantage: witness for \(x \) is made explicit in generated instances
Skolemization

- Skolemization also works for existential quantifiers that appear below universal quantifiers:
 - replace
 \[
 \text{all } x: S \mid \text{some } y: T \mid F
 \]
 with
 \[
 (sy: S\rightarrow \text{one } T) \text{ and all } x: S \mid F[x.sy/y]
 \]
 where \(sy \) is a fresh analysis variable
Symmetries in Satisfying Assignments

Permuting the names of the propositional variables for each characteristic function in a satisfying assignment yields again a satisfying assignment.
Symmetries in Satisfying Assignments

Target = \{(A_0), (N_0)\}
Addr = \{(A_0)\}
Name = \{(N_0)\}
Book = \{(B_0), (B_1)\}
addr = \{(B_0,N_0,A_0), (B_1,N_0,A_0)\}
b = \{(B_0)\}
b' = \{(B_1)\}
n = \{(N_0)\}
t = \{(A_0)\}

Exchanging the roles of B_0 and B_1 gives a symmetric satisfying assignment.
Symmetries can lead to an exponential blow-up in the number of possible instances.

This state space explosion problem makes it hard for the SAT solver to solve the propositional constraints.

Ideally, the SAT solver only has to consider one assignment per equivalence class of symmetric assignments.
Symmetry Reduction

• To reduce the number of symmetries, Alloy adds *symmetry breaking constraints* to the propositional constraint.

• Example:

 \texttt{util/ordering [Data]}
 \begin{itemize}
 \item all orderings on \texttt{Data} atoms \texttt{Data0}, \texttt{Data1}, \texttt{Data2}, \ldots are symmetric.
 \item \texttt{util/ordering} enforces one particular ordering on \texttt{Data}, namely the lexicographic ordering on atom names:
 \[
 \texttt{Data0} < \texttt{Data1} < \texttt{Data2} < \ldots
 \]
 \end{itemize}
Alleviating State Space Explosion

- Often careful modeling can help to reduce symmetries
- Example: use partial instances when possible

left and right are partial functions instead of total functions
Next Week: Design by Contract

• Alloy provides a means for expressing properties of designs
 – Early design refinement saves time
 – Ultimately, we want this effort to impact the quality of implementations

• How can we transition design information to the code?
 – State information (multiplicities, invariants, …)
 – Operations info (pre, post, frame conditions, …)