Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies



Today’s Topics

 The Alloy Analyzer (Ch. 5 of Jackson Book)
— From Alloy models to Analysis Constraints
— Propositional Logic (Ch. 1 of Huth/Ryan Book)
— From Analysis Constraints to Propositional Logic
— Quantifier Elimination
— Alleviating State Space Explosion



Alloy Analyzer (AA)

 Small scope hypothesis: violations of assertions
are witnessed by small counterexamples

— AA exhaustively searches for instances of small scope

* AA can falsify a model but not verify it

— |t can prove that an assertion does not hold for all
instances of a model by finding a counterexample.

— |t cannot prove that an assertion holds in all instances
of a model,

— it can only prove that an assertion holds for all instances
up to a certain size (bounded verification).



Alloy Analyzer (AA)

 Small scope hypothesis: violations of assertions
are witnessed by small counterexamples

— AA exhaustively searches for instances of small scope

* Can we automatically verify Alloy models?

— The answer is no because the verification problem for
Alloy models is undecidable

— i.e., there is no general algorithm to solve this problem.



From Alloy Models to SAT and Back

* AA s actually a compiler

— First, the alloy model is translated to a single Alloy
constraint, which is called the analysis constraint.

— Given the scope of the command to execute, the
analysis constraint is translated into a propositional
constraint.

— AA then uses an off-the-shelf SAT solver to find a
satisfying assignment for the propositional constraint.

— If a satisfying assignment exists, it is translated back
into an instance of the original Alloy model.

* AA reduces the problem of finding instances of
Alloy models to a well-understood problem: SAT



Analysis Constraints

* First, the Alloy model is translated into a single
Alloy constraint: the analysis constraint.

* The analysis constraint is a conjunction of

— fact constraints
* facts that are explicitly declared in the model
* facts that are implicit in the signature declarations

— and a predicate constraint:

* for a run command: the constraint of the predicate that
Is run

* for a check command: the negation of the assertion
that is checked



Analysis Constraints: Example

module addressBook

abstract sig Target {}
sig Addr, Name extends Target {}
sig Book {addr: Name->Target}

fact Acyclic {all b: Book | no ~(b.addr) & iden}

pred add [b, b’: Book, n: Name, t: Target] {
b’ .addr = b.addr + n->t
}

run add for 3 but 2 Book



Implicit Fact Constraint

The implicit fact constraint is the conjunction of the
constraints implicit in the signature declarations:

Example: from the signature declarations
abstract sig Target {}
sig Addr, Name extends Target {}
sig Book {addr: Name->Target}

AA generates the implicit fact constraint:
Name in Target
Addr in Target
no Name & Addr
Target in Name + Addr
no Book & Target



Explicit Fact Constraint

The explicit fact constraint is the conjunction of all
bodies of the declared facts

Example: the fact
fact Acyclic {all b: Book | no ~(b.addr) & iden}

generates the explicit fact constraint:
all b: Book | no ~(b.addr) & iden



Predicate Constraint

The predicate constraint is

— the conjunction of the body of the predicate that is run and the
multiplicity and type constraints of its parameters

— or the negation of the body of the assertion that is checked.

Example: running the predicate
pred add [b, b’: Book, n: Name, t: Target] {
b’ .addr = b.addr + n->t

} t in Target and one t

generates the predicate constraint: .
b: Book and b’: Book and n: Name and |t: Target
b’ .addr = b.addr + n->t




Analysis Constraint for addressBook

Name in Target Implicit fact constraint
Addr in Target Explicit fact constraint

Predicate constraint
no Name & Addr
Target in Name + Addr
no Book & Target
all b: Book | no ~(b.addr) & iden
b: Book and b’ : Book
n: Name and t: Target
b’ .addr = b.addr + n->t



Satisfying Assignment for Analysis Constraint

Satisfying assignment is mapping from constraint vars to
relations of atoms that evaluate the constraint to true.

Target = {(A,), (N,)}

Addr = {(Ao)}

Name = {(N,)}

Book = {(B), (B,)}

addr = {(B,,N,,A,), (B;,Ny,A,)}
b = {(Bo)}

b’ = {(Bl)}

n = {(N,)} e
t= {(Ao)}




From Analysis Constraints to
Propositional Logic

Given the scope of the command to execute, the
analysis constraint is translated into a constraint in
propositional logic.

The translation guarantees a one-to-one
correspondence between satisfying assignments of the
propositional constraint and the analysis constraint.

AA then uses an off-the-shelf SAT solver to find a
satisfying assignment for the propositional constraint.

If a satisfying assignment is found, it is translated back
into an assignment of the analysis constraint which in
turn represents the instance of the original Alloy model.



What is Logic?

* Like a programming language, a logic is defined by
its syntax and semantics.
* Syntax:
— An alphabet is a set of symbols.
— A finite sequence of symbols is called an expression.
— A set of rules defines the well-formed expressions.

* Semantics:
— Gives meaning to well-formed expressions.

— Formal notions of induction and recursion can be used
to give rigorous semantics.



Syntax of Propositional Logic

* Each expression is made of
— propositional variables:a, b, ..., p,q, ...
— logical constants:T, L
— logical connectives: A, V, =, ...

* Every propositional variable stands for a basic
fact

— Examples:
I'm hungry, Apples are red, Joe and Jill are married



Syntax of Propositional Logic

Well-formed expressions are called formulas

Each propositional variable (a, b,..., p,q,...)
is a formula

Each logical constant (T, 1) is a formula

If  and 1) are formulas, all of the following are
also formulas

0 Ny o=
(@) oVY o=y

Nothing else is a formula



Semantics of Propositional Logic

 The meaning (value) of T is always True. The meaning
of L is always False.

 The meaning of the other formulas depends on the
meaning of the propositional variables.

— Base cases: Truth Tables

Q= Paa | Pvalp—alrea

False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

— Non-base cases: Given by reduction to the base cases

Example: the meaning of (p VV q) A ris the same as the
meaning of a A r where a has the same meaningasp V q.



Semantics of Propositional Logic

* An assignment of Boolean values to the propositional
variables of a formula is an interpretation of the

formula.

P Q| PVQ(PVQA-Q] PVQAIAQ=P_

False False False False True
False True  True False True
True False  True True True
True True  True False True

* Interpretations:
{P — False, Q> False}, {P +— False, Q> True}, ...

 The semantics of Propositional logic is compositional:
the meaning of a formula is defined recursively in terms

of the meaning of the formula’s components.



Semantics of Propositional Logic

* Typically, the meaning of a formula depends on its
interpretation.
Some formulas always have the same meaning.

P Q |PVQ (PVQA-Q] (PVQIA-Q=P_

False False False False True
False True  True False True
True False  True True True
True True  True False True

 Aformulais
— (un)satisfiable if it is true in some (no) interpretation,
— valid if it is true in every possible interpretation.

A formula thatis valid or unsatisfiable is called a
tautology.



The SAT Problem

* The satisfiability problem for propositional logic
(SAT) asks whether a given formula ¢ is

satisfiable.
* SAT is decidable.
* Hence, so is validity of propositional formulas.
 However, SAT is NP-complete

* Hence, checking validity is co-NP-complete.



The SAT Problem

* Many problems in formal verification can be
reduced to checking the satisfiability of a formula
in some logic.

* |n practice, NP-completeness means the time
needed to solve a SAT problem grows
exponentially with the number of propositional
variables in the formula.

* Despite NP-completeness, many realistic instances
(in the order of 100,000 variables) can be checked
very efficiently by state-of-the-art SAT solvers.



Translating the Analysis Constraint

Name in Target

Addr 1in Target

no Name & Addr

Target in Name + Addr

no Book & Target

all b: Book | no ~(b.addr) & iden
b: Book and b’: Book

n: Name and t: Target

b’ .addr = b.addr + n->t



Characteristic Function of a Relation

Name = {(No)r(N1)r(N2)}
Addr = {(AO)i(Al)I(AZ)}
address = {(N,,A,), (N, A;), (N,,A,)}

Characteristic function of the relation address:
Xaddress: Name x Addr — {0,1}

Xaddress(Ni'Aj) =1 iff (NirAj) € address



Characteristic Function of a Relation

Name = {(No);(Nl)I(NZ)}
Addr = {(AO)i(Al)I(AZ)}
address = {(N,,A,), (N, A;), (N,,A,)}

Characteristic function of the relation address:

Xaddress| N, N, N,
A, 1 0 0
A, 0 1 1
A, 0 0 0




Propositional Encoding of Relations

Xaddress NO Nl N2
A, 1 0 0
A, 0 1 1
A, 0 0 0
Introduce a propositional variable X; for every A;and N;:
Xaddress NO Nl N2
Aol Xoo Xo1 Xo2
Al XlO Xll X12
AZ XZO X21 X22




Propositional Encoding of Relations

X addracc Ng N, N,

Each assignment to the propositional variables X;
corresponds to one possible function x_44ress aNd thus

one possible interpretation of the relation address.

A, U U U

Introduce a propositional variable X; for every A;and N;:

Xaddress No N, N,
AO XOO XOl X02
Al XlO Xll X12
AZ XZO X21 X22




Translating Relational Operations

* All relational operations in an Alloy constraint are
encoded as propositional formulas.

* The propositional variables in the formulas describe
the characteristic functions of the relational variables
in the Alloy constraint.

Xaddr| No N, N,
AO XOO XOl XOZ
Al XlO Xll X12
AZ XZO X21 X22




Propositional Translation: Example

Analysis constraint (scope 3):
Addr in Target

Propositional variables for characteristic functions:
Addr: A, A, A,
Target: T, T, T,

Propositional encoding of analysis constraint:
A =T NA =T, ANA, =T,



Propositional Translation: Example

Analysis constraint (scope 3):
address’ = address + n->t

Flatten analysis constraint by introducing fresh
variables for non-trivial subexpressions.

Flattened analysis constraint:
address’ = address + e
e = n->t



Propositional Translation: Example

Flattened analysis constraint (scope 3):
address’ = address + e
e = n->t

Propositional variables for characteristic functions:
address’: Ay, Ay, Ay Ao Ay Apos ANy Ay Ay
address: Agg, Ao, Aoy Argr Ar1s Arar Agor Agrs Ay
€: Ego, Eo1s Eozr Eqor E11s Eqps Bjgr Eops By
n: Ny, N;, N,

T, T, T,



Propositional Translation: Example

Flattened analysis constraint (scope 3):
e = n->t

Propositional variables for characteristic functions:
€: Egor Eo1s Eopr Eqor E11s E12s Egs Eopy By

n:Ng, N;, N,
T, T, T,

Propositional encoding of analysis constraint:

N E;&NAT

0<ij<2



Propositional Translation: Example

Flattened analysis constraint (scope 3):
addr’ = addr + e

Propositional variables for characteristic functions:
7, ) V4 V4 ) V4 ) ) V4 )
address’: A'go, A'gy, Aoy Asor A'1as Ao Ager Apr Ay
address: Agg, Ao, Aoy Argr Ar1s Arar Agor Agrs Ay

€: Egor Eors Boar B10r E11s B1os Eogs BEjps By
Propositional encoding of analysis constraint:

N\ A, A VE

0<ij<2



Quantifier Elimination

* Universal and existential quantification over finite
sets can be eliminated using finite conjunctions,
respectively, disjunctions.

 Example: Replace universal quantifier
all x: S | F
whereS = {s,, ..., s,} withconjunction
F[se/xX] and ... and F[s /x]



Quantifier Elimination

* Quantifier elimination can be encoded directly
in the propositional constraint.

 Example: The universal quantifier
all x: Alias | x.addr in Addr
can be encoded by the propositional formula
0<ij<n
assuming the scope is n and the propositional

variables are A, for Alias, D, for Addr, and R;
for addr.



Skolemization

* Existential quantifiers can be treated more
effectively using Skolemization

— Replace top-level existential quantifiers of the form
some x: S | F
with
(xs: S) and F[xs/x]
where xs is a fresh variable

* Advantage: witness for x is made explicit in
generated instances



Skolemization

* Skolemization also works for existential quantifiers
that appear below universal quantifiers:

— replace
all x: S | some y: T | F
with
(sy: S->one T) and all x: S | F[x.sy/y]
where sy is a fresh analysis variable



Symmetries in Satisfying Assighments

Permuting the names of the propositional
variables for each characteristic function in a
satisfying assignment yields again a satisfying
assigment.



Symmetries in Satisfying Assignments

Target = {(A,), (N,)}

Addr = {(A,)}

Name = {(N,)}

Book ={(B), (B,)}

addr = {(B,,N,,A,), (B;,Ny,A,)}

b = {(Bo)}
b’ = {(Bl)}
n = {(Ny)} N
t = {(Ag)} i

Exchanging the roles of B, and B, gives a symmetric
satisfying assignment.



State Space Explosion Problem

 Symmetries can lead to an exponential blow-up
in the number of possible instances.

e This state space explosion problem makes it
hard for the SAT solver to solve the
propositional constraints.

* |deally, the SAT solver only has to consider one
assignment per equivalence class of symmetric
assignments.



Symmetry Reduction

* To reduce the number of symmetries, Alloy

adds symmetry breaking constraints to the
propositional constraint.

* Example:
util/ordering [Data]

— all orderings on Data atoms Data0O, Datal, Data2, ...
are symmetric.

—util/ordering enforces one particular ordering

on Data, namely the lexicographic ordering on
atom names:

Data0 < Datal < Data2 < ...



Alleviating State Space Explosion

e Often careful modeling can help to reduce
symmetries

 Example: use partial instances when possible

left right .
instead of

right left

left and right are partial functions
instead of total functions




Next Week: Desigh by Contract

* Alloy provides a means for expressing
properties of designs

— Early design refinement saves time

— Ultimately, we want this effort to impact the
qguality of implementations

* How can we transition design information to
the code?

— State information (multiplicities, invariants, ...)
— Operations info (pre, post, frame conditions, ...)



