
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 3

Today’s Topics

• Advanced Alloy language
features (Ch. 3 and 4)
– Cardinality Constraints

– Integers

– Modules and Polymorphism

• Advanced Alloy examples
– Address book model (Ch. 2)

– Memory model (Ch. 6)

Cardinality Constraints

• The cardinality operator # applied to a relation
gives the size of the relation

• Examples:

name = {(N0),(N1),(N2)}

address = {(N0,A0), (G0,A0), (G0,A2), (N1, A1)}

#name = 3 #address = 4

Groups contain at least two elements:

all g : Group | #g.address > 1

Cardinality Operator: Exercise

• Does the following constraint hold for all sets
A: set univ and B: set univ?
 # (A + B) = #A + #B
No, because A and B are not necessarily disjoint, but we
have:
 # (A + B) <= #A + #B

• How can one use the cardinality operator to

express that the function f: univ->univ is
bijective?

 #dom[f] = #ran[f]

Integers

• Alloy supports integers and they can be embedded into
relations of type Int
– Int[i] converts integer i to Int atom
– int[a] retrieves embedded integer from Int atom a

• Example: a graph with weighted edges and a constraint

that self-edges have zero weight
sig Node { adj: Node ->lone Int }
fact {
 all n: Node |
 let w = n.adj[n] | some w => int[w]=0
}

Integer Operators

a + b a.add[b] addition
a - b a.sub[b] subtraction
 a.mul[b] multiplication
 a.div[b] division
 a.rem[b] remainder
- a negation

a = b equal
a != b not equal
a < b less than
a > b greater than
a <= b less than or equal to
a >= b greater than or equal to

a << b left-shift
a >> b sign-extended right-shift
a >>> b zero-extended right-shift

add, sub, mul, div, and
rem require
open util/integers

Sum Expressions

• sum x: e | ie

– denotes the integer obtained by summing the values of
the integer expression ie for all values of the scalar x
drawn from the set e.

• Example: The size of a group is the sum of the sizes
of its subgroups
address: Group->Addr //maps groups to their addresses

split: Group->Group //partitions groups into disjoint subgroups

all g: split.Group |
 #g.address = (sum g’: g.split | #g’.address)

Modules and Polymorphism

Alloy has a simple module system that allows to
split a model among several modules.

• The first line of every module is a module header
module modulePathName

• Every module that is used must be explicitly
imported using an open statement
open modulePathName

• Modules can extend signatures that are declared
in imported modules.

Modules: Example

A module that defines a predicate true of relations
that are acyclic
 module library/graphs

 pred Acyclic [r: univ->univ] {no ^r & iden}

and a use of this module in a model of a family

 module family

 open library/graphs

 sig Person {parents: set Person}

 fact {Acyclic [parents]}

Modules and Namespaces

• Modules have their own namespaces.
• Name clashes can be resolved by referring to

components with qualified names.
• A signature, predicate, or function X in a module

of path name p has qualified name p/X
• Example:

module family
open library/graphs
sig Person {parents: set Person}
pred Acyclic []
 {library/graphs/Acyclic [parents]}

Namespace Aliases

• Module path names can be abbreviated using
aliases.

• Example:

module family

open library/graphs as g

sig Person {parents: set Person}

pred Acyclic [] {g/Acyclic [parents]}

Parametric Modules

• A module can be parameterized by one or more
signature parameters.

• Example: A parameterized module
module library/graphs [t]

pred Acyclic [r: t->t] {no ^r & iden}

and a module that uses it
module family

open library/graphs [Person]

sig Person {parents: set Person

fact {Acyclic [parents]}

Predefined Modules

• Alloy comes with many predefined modules
that are useful when developing your own
models.

• See, e.g., the modules in “util” when using
“Open Sample Models…”

Advanced Examples

Hierarchical Address Book

Target

Name Addr

Group Alias

addr
extends

extends

How can we avoid empty groups?

Friends

Family

addr

Pa Mom

addr addr

ted@gmail.com linda@gmx.com

School

addr

addr addr

Invariant Properties

• The non-emptiness property does not follow
from the facts of our address book model.

• We do not want to assume a priori that all
groups of the address book are non-empty.

• Rather, we want this property to be invariant
under all address book operations.

Invariants and Traces

• A trace of a model is the consecutive
sequence of states obtained by the execution
of a sequence of operations of a model
starting from an initial state.

• An invariant of a model is a property that
holds for all states of all traces of a model.

Address Book Traces

b1 b2 b3 b4

first last

next next next

add add del

Address book operations define a binary transition
relation on states of the address book.

The transition relation defines the set of traces.

Summary

• We can use Alloy to
– model traces using transition relations of

operations and

– formulate invariants as assertions about traces.

– Counterexamples to such assertions are traces
showing how the invariant is violated.

• Often we have to restrict operations by adding
appropriate preconditions to ensure that all
invariants are preserved.

Operations: Events vs. Predicates

• Sometimes it is more convenient to model
operations as events that are atoms in the
model rather than as predicates.

• This makes it easier to identify which
operations fired in a counterexample trace.

Event-based Address Book Model

abstract sig Event {
 pre, post: Book,
 n: Name, t: Target
}

sig AddEvent extends Event {} {
 t in Addr or some lookup [pre, t]
 post.addr = pre.addr + n->t
}

Example: Memory Model

Next, we will learn

• how to use non-determinism in specifications;

• how to relate models at different levels of
abstractions;

• how to effectively use the module system.

Abstract Memory Model

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

Addr

A

B

C

Data

data

A memory is a partial function between addresses and data.

Abstract Memory: Operations

• write [m, m’: AbsMemory, a: Addr, d: Data]

– overwrite mapping of address a in m to d

– resulting memory is m’

• read [m: AbsMemory, a: Addr, d: Data]

– read data entry associated with address a in m

– result of read is d

– state of memory m remains unchanged

– if m has no entry for a, result of read can be arbitrary

Cache Memory Model

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

Addr

A

B

C

Data

main

Cache system consists of main memory and cache memory.

cache

Cache Memory: Operations

• write [c, c’: Cachememory, a: Addr, d: Data]

– overwrite mapping of address a in cache of c to d

– resulting memory is c’

– state of main memory of c remains unchanged

• read [c: CacheMemory, a: Addr, d: Data]

– read data entry associated with address a in cache of c

– result of read is d

– state of memory c remains unchanged

– precondition: some entry for a exists in the cache of c

Cache Memory: Operations (contd.)

• load [c, c’: CacheMemory]
– non-deterministically load some data values from the

main memory of c to the cache of c
– resulting memory is c’
– caching policy is unspecified

• flush [c, c’: CacheMemory]
– non-deterministically flush some data values from the

cash of c to the main memory of c
– resulting memory is c’
– caching policy is unspecified

Abstraction and Refinement

It appears that for every trace of the cache memory we
can find a corresponding trace of the abstract memory.

c1 c2 c3 c4

load[] write[3,a] flush[] read[4,b]

a1 a2

write[3,a]

read[4,b]

To prove this property, we have to formally relate
cache memories and abstract memories.

Abstraction Functions [Hoare, 1972]

An abstraction function maps concrete states to corresponding
abstract states.
Suppose our operations are

pred concreteOp [s, s’: ConcreteState] {…}
pred abstractOp [s, s’: AbstractState] {…}

Then we try to find an abstraction function
fun alpha [s: ConcreteState]: AbstractState {…}

that makes this assertion valid:
assert AbstractionRefinement {
 all s, s’: ConcreteState |
 concreteOp [s, s’] =>
 abstractOp [alpha[s], alpha[s’]]
}

c2 c3

write[3,a]

a1 a2

write[3,a]

alpha alpha

Abstraction Functions

For every concrete transition there is a corresponding
abstract transition labeled by the same event.

Abstraction Function for Cache Memory

module memory/checkCache [Addr, Data]
open cacheMemory [Addr, Data] as cache
open abstractMemory [Addr, Data] as amemory

fun alpha [c: CacheMemory]: AbsMemory {
 {m: AbsMemory | m.data = c.main ++ c.cache}
}

assert WriteOK {
 all c,c’: CacheMemory, a:Addr, d:Data, m,m’: AbsMemory |
 cache/write [c, c’ a, d]
 and m = alpha [c] and m’ = alpha [c’]
 => amemory/write [m, m’, a, d]
}

Abstraction Functions and Conformance

• A concrete model C conforms to an abstract model A
if the set of event traces of C is a subset of the set of
event traces of A.
– properties that hold for all event traces of A also hold for

all traces of C.

• Abstraction functions are sound…
– If an abstraction function between C and A exists, then C

conforms to A.

• …but not complete.
– If the non-determinism in the concrete and abstract

models are observed at different points in time then an
abstraction function might not exist.

Soundness of Abstraction

If abstractMemory conforms to cachedMemory then

all m,m': AbsMemory, a: Addr, d1,d2: Data |
 write [m, m', a, d1] and read [m', a, d2]
 => d1 = d2
}

implies

all c,c': CacheMemory, a: Addr, d1,d2: Data |
 write [c, c', a, d1] and read [c', a, d2]
 => d1 = d2
}

Fixed Size Memory Model

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

Addr

A

B

C

Data

data

Initially, all addresses have some arbitrary data value
associated, i.e., data is total.

The only non-determinism is in the choice of the initial
state. Then all operations are deterministic.

c1 c2

write[3,a] read[4,b]

a1 a2

write[3,a]

read[4,b]

The fixes size memory should still conform to the
abstract memory.

alpha alpha

Abstraction Function for
Fixed Size Memory

But there does not seem to be an abstraction function:
How do we distinguish written values from the
arbitrary initial values in concrete memories?

History and Prophecy Variables

• History Variables:
– Augment concrete states with an auxiliary variable
unwritten that keeps track of the addresses not yet
written after initialization.

– unwritten is called a history variable, because it
holds additional history about the behavior.

• Prophecy Variables:
– the dual concept to a history variable is a prophecy

variable; it holds information about the future
behavior of a state.

• Using history and prophecy variables one can
always find an appropriate abstraction function
to prove conformance.

Adding a History Variable

sig FixMemory_H extends FixMemory {
 unwritten: set Addr
}

pred init [m: FixMemory_H] {
 memory/init [m]
 m.unwritten = Addr
}

pred write [m, m': FixMemory_H, a: Addr, d: Data] {
 memory/write [m, m', a, d]
 m'.unwritten = m.unwritten - a
}

Abstraction Function for
Fixed Size Memory

module memory/checkFixedSize [Addr, Data]
open fixedSizeMemory_H [Addr, Data] as fmemory
open abstractMemory [Addr, Data] as amemory

pred alpha [fm: FixMemory_H, am: AbsMemory] {
 am.data = fm.data – (fm.unwritten->Data)
}

assert InitOK {
 all fm: FixMemory_H, am: AbsMemory |
 fmemory/init [fm] and alpha [fm, am]
 => amemory/init [am]
}

Summary

• We can relate models at different levels of
abstraction using abstraction functions.

• Abstract models have more behavior than the
concrete models that refine them and are
typically non-deterministic.

• Abstraction functions allow us to efficiently
check complex properties of concrete models
on simpler abstract models.

