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Today’s Topics 

• Advanced Alloy language 
features (Ch. 3 and 4) 
– Cardinality Constraints 

– Integers 

– Modules and Polymorphism 

 

• Advanced Alloy examples 
– Address book model (Ch. 2) 

– Memory model (Ch. 6) 



Cardinality Constraints 

• The cardinality operator # applied to a relation 
gives the size of the relation 

• Examples: 

name = {(N0),(N1),(N2)} 

address = {(N0,A0), (G0,A0), (G0,A2), (N1, A1)} 

#name = 3 #address = 4 
 

Groups contain at least two elements: 

all g : Group | #g.address > 1 

 



Cardinality Operator: Exercise 

• Does the following constraint hold for all sets  
A: set univ and B: set univ? 
       # (A + B) = #A + #B 
No, because A and B are not necessarily disjoint, but we 
have: 
  # (A + B) <= #A + #B 

 
• How can one use the cardinality operator to 

express that the function f: univ->univ is 
bijective? 

 #dom[f] = #ran[f] 



Integers 

• Alloy supports integers and they can be embedded into 
relations of type Int 
– Int[i] converts integer i to Int atom 
– int[a] retrieves embedded integer from Int atom a 

 
• Example: a graph with weighted edges and a constraint 

that self-edges have zero weight 
sig Node { adj: Node ->lone Int } 
fact { 
  all n: Node | 
    let w = n.adj[n] | some w => int[w]=0 
} 



Integer Operators 

a + b  a.add[b] addition  
a - b  a.sub[b] subtraction 
       a.mul[b] multiplication 
       a.div[b] division  
       a.rem[b] remainder 
- a    negation      
  

a = b   equal 
a != b    not equal 
a < b    less than 
a > b    greater than 
a <= b    less than or equal to   
a >= b    greater than or equal to 
  

a << b    left-shift 
a >> b    sign-extended right-shift 
a >>> b  zero-extended right-shift 

add, sub, mul, div, and 
rem require 
open util/integers 



Sum Expressions 

• sum x: e | ie 

– denotes the integer obtained by summing the values of 
the integer expression ie for all values of the scalar x 
drawn from the set e. 

• Example: The size of a group is the sum of the sizes 
of its subgroups 
address: Group->Addr  //maps groups to their addresses 

split: Group->Group //partitions groups into disjoint subgroups 

all g: split.Group |  
 #g.address = (sum g’: g.split | #g’.address) 



Modules and Polymorphism 

Alloy has a simple module system that allows to 
split a model among several modules. 
 

• The first line of every module is a module header 
module modulePathName 
 

• Every module that is used must be explicitly 
imported using an open statement 
open modulePathName 
 

• Modules can extend signatures that are declared 
in imported modules. 



Modules: Example 

A module that defines a predicate true of relations 
that are acyclic 
  module library/graphs 

  pred Acyclic [r: univ->univ] {no ^r & iden} 
 

and a use of this module in a model of a family 

  module family 

  open library/graphs 

  sig Person {parents: set Person} 

  fact {Acyclic [parents]} 



Modules and Namespaces 

• Modules have their own namespaces. 
• Name clashes can be resolved by referring to 

components with qualified names. 
• A signature, predicate, or function X in a module 

of path name p has qualified name p/X 
• Example: 

module family 
open library/graphs 
sig Person {parents: set Person} 
pred Acyclic []  
  {library/graphs/Acyclic [parents]} 



Namespace Aliases 

• Module path names can be abbreviated using 
aliases. 

 

• Example: 

module family 

open library/graphs as g 

sig Person {parents: set Person} 

pred Acyclic [] {g/Acyclic [parents]} 



Parametric Modules 

• A module can be parameterized by one or more 
signature parameters. 

• Example: A parameterized module 
module library/graphs [t] 

pred Acyclic [r: t->t] {no ^r & iden} 
 

and a module that uses it 
module family 

open library/graphs [Person] 

sig Person {parents: set Person 

fact {Acyclic [parents]} 



Predefined Modules 

• Alloy comes with many predefined modules 
that are useful when developing your own 
models. 

 

• See, e.g., the modules in “util” when using 
“Open Sample Models…”  



Advanced Examples 



Hierarchical Address Book 

Target 

Name Addr 

Group Alias 

addr 
extends 

extends 



How can we avoid empty groups? 

Friends 

Family 

addr 

Pa Mom 

addr addr 

ted@gmail.com linda@gmx.com 

School 

addr 

addr addr 



Invariant Properties 

• The non-emptiness property does not follow 
from the facts of our address book model. 

 

• We do not want to assume a priori that all 
groups of the address book are non-empty. 

 

• Rather, we want this property to be invariant 
under all address book operations. 



Invariants and Traces 

• A trace of a model is the consecutive 
sequence of states obtained by the execution 
of a sequence of operations of a model 
starting from an initial state. 

• An invariant of a model is a property that 
holds for all states of all traces of a model. 



Address Book Traces 

b1 b2 b3 b4 

first last 

next next next 

add add del 

Address book operations define a binary transition 
relation on states of the address book. 
 
The transition relation defines the set of traces. 



Summary 

• We can use Alloy to   
– model traces using transition relations of 

operations and 

– formulate invariants as assertions about traces. 

– Counterexamples to such assertions are traces 
showing how the invariant is violated. 
 

• Often we have to restrict operations by adding 
appropriate preconditions to ensure that all 
invariants are preserved. 



Operations: Events vs. Predicates 

• Sometimes it is more convenient to model 
operations as events that are atoms in the 
model rather than as predicates. 

• This makes it easier to identify which 
operations fired in a counterexample trace. 



Event-based Address Book Model 

abstract sig Event { 
  pre, post: Book, 
  n: Name, t: Target 
} 
 
sig AddEvent extends Event {} { 
  t in Addr or some lookup [pre, t] 
  post.addr = pre.addr + n->t 
} 



Example: Memory Model 

Next, we will learn 

• how to use non-determinism in specifications; 

• how to relate models at different levels of 
abstractions; 

• how to effectively use the module system. 



Abstract Memory Model 

0x00000000 

0x00000001 

0x00000002 

0x00000003 

0x00000004 

Addr 

A 

B 

C 

Data 

data 

A memory is a partial function between addresses and data.  



Abstract Memory: Operations 

• write [m, m’: AbsMemory, a: Addr, d: Data] 

– overwrite mapping of address a in m to d 

– resulting memory is m’ 
 

• read [m: AbsMemory, a: Addr, d: Data] 

– read data entry associated with address a in m 

– result of read is d 

– state of memory m remains unchanged 

– if m has no entry for a, result of read can be arbitrary 



Cache Memory Model 

0x00000000 

0x00000001 

0x00000002 

0x00000003 

0x00000004 

Addr 

A 

B 

C 

Data 

main 

Cache system consists of main memory and cache memory. 

cache 



Cache Memory: Operations 

• write [c, c’: Cachememory, a: Addr, d: Data] 

– overwrite mapping of address a in cache of c to d 

– resulting memory is c’ 

– state of main memory of c remains unchanged 
 

• read [c: CacheMemory, a: Addr, d: Data] 

– read data entry associated with address a in cache of c 

– result of read is d 

– state of memory c remains unchanged 

– precondition: some entry for a exists in the cache of c 



Cache Memory: Operations (contd.) 

• load [c, c’: CacheMemory] 
– non-deterministically load some data values from the 

main memory of c to the cache of c 
– resulting memory is c’ 
– caching policy is unspecified 
 

• flush [c, c’: CacheMemory] 
– non-deterministically flush some data values from the 

cash of c to the main memory of c 
– resulting memory is c’ 
– caching policy is unspecified 



Abstraction and Refinement 

It appears that for every trace of the cache memory we 
can find a corresponding trace of the abstract memory. 

c1 c2 c3 c4 

load[] write[3,a] flush[] read[4,b] 

a1 a2 

write[3,a] 

read[4,b] 

To prove this property, we have to formally relate 
cache memories and abstract memories. 



Abstraction Functions [Hoare, 1972] 

An abstraction function maps concrete states to corresponding 
abstract states.   
Suppose our operations are 

pred concreteOp [s, s’: ConcreteState] {…} 
pred abstractOp [s, s’: AbstractState] {…} 
 

Then we try to find an abstraction function 
fun alpha [s: ConcreteState]: AbstractState {…} 
 

that makes this assertion valid: 
assert AbstractionRefinement { 
  all s, s’: ConcreteState | 
 concreteOp [s, s’] =>  
   abstractOp [alpha[s], alpha[s’]] 
} 



c2 c3 

write[3,a] 

a1 a2 

write[3,a] 

alpha alpha 

Abstraction Functions 

For every concrete transition there is a corresponding 
abstract transition labeled by the same event. 



Abstraction Function for Cache Memory 

module memory/checkCache [Addr, Data] 
open cacheMemory [Addr, Data] as cache 
open abstractMemory [Addr, Data] as amemory 
 
fun alpha [c: CacheMemory]: AbsMemory { 
  {m: AbsMemory | m.data = c.main ++ c.cache} 
} 
 
assert WriteOK { 
  all c,c’: CacheMemory, a:Addr, d:Data, m,m’: AbsMemory | 
    cache/write [c, c’ a, d]  
    and m = alpha [c] and m’ = alpha [c’]  
 => amemory/write [m, m’, a, d] 
} 



Abstraction Functions and Conformance 

• A concrete model C conforms to an abstract model A  
if the set of event traces of C is a subset of the set of 
event traces of A. 
– properties that hold for all event traces of A also hold for 

all traces of C. 

• Abstraction functions are sound… 
– If an abstraction function between C and A exists, then C 

conforms to A. 

• …but not complete. 
– If the non-determinism in the concrete and abstract 

models are observed at different points in time then an 
abstraction function might not exist. 

 



Soundness of Abstraction 

If abstractMemory conforms to cachedMemory then 
 
all m,m': AbsMemory, a: Addr, d1,d2: Data | 
  write [m, m', a, d1] and read [m', a, d2] 
 => d1 = d2 
} 
 

implies 
 
all c,c': CacheMemory, a: Addr, d1,d2: Data | 
  write [c, c', a, d1] and read [c', a, d2] 
 => d1 = d2 
} 
 



Fixed Size Memory Model 

0x00000000 

0x00000001 

0x00000002 

0x00000003 

0x00000004 

Addr 

A 

B 

C 

Data 

data 

Initially, all addresses have some arbitrary data value 
associated, i.e., data is total.  
 
The only non-determinism is in the choice of the initial 
state. Then all operations are deterministic. 



c1 c2 

write[3,a] read[4,b] 

a1 a2 

write[3,a] 

read[4,b] 

The fixes size memory should still conform to the 
abstract memory. 

alpha alpha 

Abstraction Function for  
Fixed Size Memory 

But there does not seem to be an abstraction function: 
How do we distinguish written values from the 
arbitrary initial values in concrete memories? 



History and Prophecy Variables 

• History Variables:  
– Augment concrete states with an auxiliary variable 
unwritten that keeps track of the addresses not yet 
written after initialization. 

– unwritten is called a history variable, because it 
holds additional history about the behavior. 

• Prophecy Variables: 
– the dual concept to a history variable is a prophecy 

variable; it holds information about the future 
behavior of a state. 

• Using history and prophecy variables one can 
always find an appropriate abstraction function 
to prove conformance. 

 



Adding a History Variable 

sig FixMemory_H extends FixMemory { 
  unwritten: set Addr 
} 
 
pred init [m: FixMemory_H] { 
  memory/init [m] 
  m.unwritten = Addr 
} 
 
pred write [m, m': FixMemory_H, a: Addr, d: Data] { 
  memory/write [m, m', a, d] 
  m'.unwritten = m.unwritten - a 
} 



Abstraction Function for  
Fixed Size Memory 

module memory/checkFixedSize [Addr, Data] 
open fixedSizeMemory_H [Addr, Data] as fmemory 
open abstractMemory [Addr, Data] as amemory 
 
pred alpha [fm: FixMemory_H, am: AbsMemory] { 
  am.data = fm.data – (fm.unwritten->Data) 
} 
 
assert InitOK { 
  all fm: FixMemory_H, am: AbsMemory | 
    fmemory/init [fm] and alpha [fm, am] 
 => amemory/init [am] 
} 



Summary 

• We can relate models at different levels of 
abstraction using abstraction functions. 

• Abstract models have more behavior than the 
concrete models that refine them and are 
typically non-deterministic. 

• Abstraction functions allow us to efficiently 
check complex properties of concrete models 
on simpler abstract models. 

 


