
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 1

Important Facts

• Office Hours: Thu 3-4pm, or by appointment

• Office: CIWW 407

• Course web site:
http://cs.nyu.edu/wies/teaching/rsd-13

• Mailing list:
csci_ga_3033_009_sp13@cs.nyu.edu

http://cs.nyu.edu/wies/teaching/rsd-13
http://cs.nyu.edu/wies/teaching/rsd-13
http://cs.nyu.edu/wies/teaching/rsd-13

Prerequisites

• Discrete structures: sets, relations, functions

• Basic algorithms (undergraduate level)

• Mathematical maturity: comfort with
notation, understand and write proofs

• Familiarity with Java-like languages

• (Moderate) programming experience

Grading

• Weekly Assignments: 30% (starting 02/03/12)

• Term Project: 30%

• Final Exam: 40%

Course Material

• Software Abstractions: Logic, Language, and
Analysis (revised edition). Daniel Jackson, The
MIT Press, 2006

• The Formal Semantics of Programming
Languages. Glynn Winskell, The MIT Press,
1993

• Additional material on the course web site

Software Reliability

Driving force to use computer systems:

Increase the safety of technological artifacts

But can we really build safe computer systems?

“Software and cathedrals are much the same.
First we build them, then we pray.”

Sam Redwine

Maiden Flight of Ariane 5 Rocket

• Ariane 5 exploded on its
first test flight in 1996

• Cause: failure of flight-
control software due to
overflow in floating point
to integer conversion

 • Financial loss: $500,000,000
(including indirect costs: $2,000,000,000)

Therac-25

• Radiation therapy
machine

• Two modes:

– X-ray

– electron-beam

 • Race condition in software caused use of
electron-beam instead of X-ray

• six cases of radiation poisoning between 1985
and 1987, three of them fatal

Northeast Blackout in 2003

• Cascading failure of power
grid due to lightning stroke

• Race condition in energy
control system stalled alarm
in control room for > 1 hour

• Multiple server failures due
to unprocessed events

• 55 million people affected

Economics of Software Errors

Estimated annual costs of software errors in the US (2002)

$60 billion (0.6% of GDP)

Estimated size of the US software industry (2002)

$240 billion (50% development)

Estimated

50%
of each software project is spent on testing

Software validation the “old-fashioned” way:

• Create a test suite (set of test cases)

• Run the test suite

• Fix the software if test suite fails

• Ship the software if test suite passes

Testing

“Program testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate for
showing their absence.”

Edsger W. Dijkstra

Very hard to test the portion inside the “if" statement!

input x

if (hash(x) == 10) {

 ...

}

Verification

• Verification: formally prove that a computing
system satisfies its specifications

– Rigor: well established mathematical foundations

– Exhaustiveness: considers all possible behaviors of
the system, i.e., finds all errors

– Automation: uses computers to build reliable
computers

• Formal Methods: general area of research
related to program specification and verification.

Success Stories of Formal Methods

• Astrée Static Analyzer

– Developed by Patrick Cousot’s group
and others

– Verify absence of runtime errors in C
code for Embedded Systems

– Industrial applications include
verification of Airbus fly-by-wire
software

• Static Driver Verifier, HAVOC, and VCC

– Developed at Microsoft Research

– Verification of OS code

– Applications:
• Windows Device Drivers

• Windows File System

• Windows Hypervisor

Resource

Flink
Blink

NodeBQueue

State

Flink
Blink

NodeALinks

ParentA
State

Flink
Blink

NodeALinks

ParentA
State

Flink
Blink

NodeALinks

ParentA

...

NODEA

NODEB NODEB NODEB

#define FIRST_CHILD(x) x->NodeBQueue.Flink
#define NEXT_NODE(x) x->NodeAlinks.Flink

__type_invariant(PNODEA x){
 ENCL_NODEA(FIRST_CHILD(x)) != x ==>
 ENCL_NODEB(FIRST_CHILD(x))->ParentA == x
}

__type_invariant(PNODEB y){
 NEXT_NODE(y) != &(y->ParentA->NodeBQueue) ==>
 y->ParentA == ENCL_NODEB(NEXT_NODE(y))->ParentA
}

Success Stories of Formal Methods

“Beware of bugs in the above code; I have only
proved it correct, not tried it.”

Donald Knuth

You can only verify what you have specified.

Testing is still important, but can we make it less
impromptu?

Rigorous Software Development

Driving force to use computer systems:

Increase the safety of technological artifacts

But can we really build safe computer systems?

In this course you will learn

• how to use software to build reliable software
– automated testing

– automated program verification

• how formal methods tools work under their hoods

Overview

Topics
• Modeling Software

• Design by Contract

• Runtime Assertion Checking

• Automated Test Case
Generation

• Extended Static Checking

• Semantics of Programming
Languages

• Formal Verification

• Static Analysis

Tools
• Alloy

• JML

• JMLUnit

• Korat

• Dafny

Dafny Demo

The Alloy Tool
http://alloy.mit.edu

Daniel Jackson

Alloy

• Analyzes micro models of software

• Helps to

– identify key properties of a software design

– find conceptual errors (not implementation errors)

• Small scope hypothesis: many properties that
do not hold have small counterexamples

• Exhaustively search for errors in all instances
of bounded size

Example Applications

• Security protocols

• Train controllers

• File systems

• Databases

• Network protocols

• Software design/testing/repair/sketching

Many examples are shipped with Alloy. More
can be found on the Alloy website.

Alloy in a Nutshell:
A Simple Address Book

Name Addr
addr

