
Rigorous Software Development - Spring 2013 Thomas Wies

Homework 6

Please submit your solution via email to the instructor with CC to ly603@nyu.edu.

The deadline for Homework 6 is March 25.

Problem 1 JML Tools (3 Points)

Download and install JML Tools from:

http://sourceforge.net/projects/jmlspecs/files/

Note that you should use the jmlspecs distribution, not the OpenJML distribution, as Open-
JML does not yet support all the JML features needed for this homework assignment. Get
yourself familiar with the JML compiler (jmlc) and runtime assertion checker (jmlrac).

Problem 2 Heavyweight Speci�cations (6 Points)

Consider the following Java method:

static int f(int n){
int i = 0;
int s = 0;
while (s < n) {

i = i + 1;
s = s + 2 * i - 1;

}
return i;

}

Write a heavyweight JML speci�cation for method f that precisely characterizes the method's
return value for non-negative input values n. You may assume that the Java type int can
hold arbitrary large integer values.
Test your speci�cation with the JML runtime assertion checker (jmlrac). You will need
a main method that calls f for various input values. Remember: You have to compile
your annotated Java code with the JML compiler (jmlc) before you can use the runtime
assertion checker.
What happens if you test your speci�cation for input values greater than 2147395600? Why
this value?

1

http://sourceforge.net/projects/jmlspecs/files/


Rigorous Software Development - Spring 2013 Thomas Wies

Problem 3 Map Implementation (16 Points + 4 Bonus Points)

On the course webpage you �nd the skeleton for a Map data structure that implements
functions mapping keys to values using sorted binary trees. Your task is to implement and
specify this data structure. The speci�cation should be given in terms of a model �eld of
type JMLValueToObjectMap, so make yourself familiar with the methods provided by
this class.

(a) Implement and specify a method

private /*@pure@*/ JMLValueToObjectMap computeContent(Node n)

that computes the content of the binary tree. (4 Points)

(b) Implement and specify a method

public /*@pure@*/ boolean inDomain (Key k)

that checks whether there exists a node in the tree whose key is equal to k. (4 Points)

(c) Implement and specify a method

public /*@nullable@*/ Object add(Key k, Object v)

that inserts a key/value pair into the tree. The tree should remain sorted. If a node
with that key already exists, the old mapping will be replaced. The methods returns
null if the key was not mapped to a value before this method has been called, and the
old value otherwise. (4 Points)

(d) Write a small test program that creates an instance of your map and inserts some
key/value pairs where keys are of type IntKey. Compile and run your program with
the JML tools. (4 Points)

(e) Bonus: Give a class invariant that states sortedness of the tree. Test your invariant
with your example program. Hint: There are multiple ways to do this, but all require

you to write at least one auxiliary pure method. (4 Bonus Points)

2


	JML Tools (3 Points)
	Heavyweight Specifications (6 Points)
	Map Implementation (16 Points + 4 Bonus Points)

