
Rigorous Software Development - Spring 2013 Thomas Wies

Homework 3

Please submit your solution via email to the instructor with CC to ly603@nyu.edu.

The deadline for Homework 3 is February 25.

Problem 1 Railway Switching (25 Points)

In this exercise, you will construct a simple model of a railway switching system, and you

will check that a switching policy ensures no collisions. You will make some simplifying

assumptions, for example, that a train occupies one track segment at a time, but you will

learn techniques that apply in general, especially how to model a physical environment that

allows many arbitrary behaviors (in this case the train movements), and how to separate

the requirement (that no collisions occur) from assumptions (that drivers obey signals).

(a) Model the track layout as a collection Segment of track segments, with relation next

from Segment to Segment. Segments are physically disjoint, touching each other only

at their endpoints, and are directional, with trains assumed to travel from one endpoint

to the other. The endpoints are not represented explicitly, though. Instead, we are

representing the connection of the exit end of s1 to the entrance end of s2 by next

mapping s1 to s2. Generate two sample layouts; and obtain some nice visualizations

using the Alloy Analyzer. (2 Points)

(b) To model the possibility of collisions, we might just say that two trains can collide only

when they are on the same segment. For a more general notion, which allows for the

possibility of a collision between trains on segments that are, for example, parallel but

too close to allow a train on each, we can declare a relation overlaps that represents,

very abstractly, the physical layout of the track, mapping a segment s1 to a segment

s2 when it would be dangerous for one train to be on s1 and another to be on s2 at

the same time. What properties would you expect this relation to have: is it re�exive,

symmetric, transitive? Add the relation to your model, along with a fact Overlaps

recording whichever of these properties you think should hold. (3 Points)

(c) Now you are going to introduce time varying state. Declare a signature Train to rep-

resent a set of trains, and a signature TrainState, with a relation on from Train to

Segment to represent their positions. (Remember that each train can occupy only a

single segment.) De�ne an additional �eld occupied in TrainState that holds the set of

segments occupied by trains. Generate and visualize two sample states. (2 Points)

(d) To describe all physical possible train movements, introduce an operation Move on

TrainState that takes as arguments two train states (representing the pre- and post-

states), and a set of trains that move, and constraints the train states so that, in this

step, each train that moves passes from a segment to one of its successors under the

next relation. Generate and visualize two sample executions of the operation Move.

(3 Points)

1



Rigorous Software Development - Spring 2013 Thomas Wies

(e) To model the signaling system, introduce a signature GateState with a �eld closed

whose value is a set of segments, representing those segments beyond which a train is

not supposed to travel. Note that there is no need to introduce gates or lights as explicit

atoms. Write a predicate LegalMovements that captures legal movements and whose

arguments are a GateState, two TrainStates, and a set of Trains that move. (3 Points)

(f) Write a safety condition SafeTrainState on TrainState saying that trains never occupy

overlapping segments, and generate two sample states: one that satis�es the condition

and one that violates it. (2 Points)

(g) The hardest part is designing the mechanism�the policy that determines when gates

should be closed. Rather than prescribing exactly when and which gates should be

closed, we want to write a condition that imposes some minimal constraints. In this

way, we will actually be checking a whole family of possible mechanisms. Write the

policy as a predicate GatePolicy that takes as arguments a GateState and a TrainState.

It may say, for example, that if several occupied segments share a successor, then at

most one can have an open gate. (5 Points)

(h) Finally, put all the parts together: write an assertion SafeSwitching that says that when

the trains move, if the mechanism obeys the gate policy, and the train movements are

legal, then a collision does not occur (that is, the system does not transition from a safe

state to an unsafe state). Check this assertion, and if you �nd counterexamples, study

them carefully, and adjust your model. Most likely, your gate policy will be at fault.

(3 Points)

(i) When you are satis�ed that the gate policy works as expected (preventing collisions),

make sure that you have not overconstrained the model, by generating and visualizing

two interesting train movements. (2 Points)

Hint: you can use Alloy to export the snapshots of generated instances to dot �les, which

you can process further using Graphviz. You can also use the snapshot viewer to adjust the

coloring of atoms to improve the visualization. For instance, in part (c) you will probably

want to use coloring to indicate the occupied segments.

2


