
CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

Sample Solution for Homework 8

Problem 1 AMP, p. 449: Exercise 216 (6 Points)

1. To see why it is necessary to check whether the object is locked consider the following

two transactions.

A: atomic {
x = x + y;

}

B: atomic {
y = y + x;

}

Suppose that initially, both x and y are 1, the global version clock is 0, and the stamps

of both x and y are 0. Now A and B execute concurrently, each initializing their read

stamps to the current value of the global version clock, which is 0. Before the two

transactions commit, A has x in its write set and y in its read set. The value of the

virtual copy of x in A is 2. For B, the situation is similar with the roles of x and y
interchanged.

Now both transactions start their commit concurrently. First, both A and B atomically

increment the global version clock and store the new value of the clock in their own

write stamps. Suppose that A's write stamp is 1 and B's write stamp is 2. Next, both

transactions lock the objects in their write sets, i.e., both x and y are now locked.

If the transactions would now check whether the objects in their read sets are locked,

they would both abort. Instead, each transaction continues to check that the stamp of

each object in their read sets are not greater than the transaction's read stamp. Since

all stamps are 0, these checks succeed. Next, both transactions commit, changing the

values of x and y to 2, and updating their stamps to 1 and 2, respectively.

Note that any serialized execution of the transactions A and B yields either x==2 and

y===3, or x==3 and y==2. Hence, the above example shows that this implementation

of the transactions commit handler would not guarantee serializability of committed

transactions.

2. Yes. If an object is �rst read and then written with a transaction, it is both in the read

set and the write set of that transaction. Therefore, the additional check on line 70 of

Fig. 18.31 is needed.

3. Consider the same example as above. We start from the same initial state with both

transaction executing concurrently until their commit handlers are called. Now, sup-

pose that A starts executing its commit handler �rst, locking x and setting its write

stamp to 1. Next, it checks whether y's stamp is consistent with A's read stamp and

whether y is unlocked. Both checks succeed. Now, suppose that B starts its commit

handler, setting its write stamp to 2, locking y and checking whether x's stamp is

consistent with B's read stamp. This check succeeds. Next, A completes its com-

mit, which updates x to 2 and unlocks x. Next, B continues, sees that x is unlocked

and completes its own commit, setting y to 2. Again, the resulting state cannot be

obtained by any serial execution of A and B.

1



CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

Problem 2 AMP, p. 449: Exercise 218 (6 Points)

class AtomicArray[T](length: Int) {

val array = new Array[Ref[T]](length)

def compareAndSet(i: Int, expect: T, update: T): Boolean =
// No need to check index bounds as Scala’s Arrays are already checked.
array(i).single.compareAndSet(expect, update)

def get(i: Int): T =
array(i).single()

def set(i: Int, newValue: T): Unit =
array(i).single() = newValue

}

Problem 3 Transactional Stack

See EliminationStack.scala for the source code of the solution to this exercise.

2


	AMP, p. 449: Exercise 216 (6 Points)
	AMP, p. 449: Exercise 218 (6 Points)
	Transactional Stack

