
CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

Sample Solution for Homework 6

Problem 1 AMP, p. 220: Exercise 102: Linearization of add (5 Points)

To show that every call to the add method is linerizable, we have to show that there exist

linearization points such that: (1) whenever add returns true the given item was not in the

list before this point and it is inserted to the list after this point; (2) whenever add returns

false, the item must already have been in the list before this point. In both case (1) and

case (2), choose the point when control exits the loop on line 14 as the linearization point.

After the while loop terminates, the thread is holding the locks on curr and pred. By the

way in which the locks are acquired, the loop ensures that pred must be reachable from

head and that pred.next == curr must still hold after the loop. Moreover, the loop

ensures pred.key < key. From the loop condition we additionally know that curr.key
>= key holds after the loop.

Now, if add returned true, then the condition on line 15 was false, i.e., we must have

curr.key > key. From the established properties and the sortedness of the list, it follows

that item is not yet in the list. Hence, the insertion of the item is correct.

If on the other hand add returned false, then we have curr.key = key. Since curr is

reachable from head and by the uniqueness of keys, it follows that item is already in the

list. Again, add returns the correct result.

Note that there are multiple correct ways of choosing the linearization points. Choosing the

exit point of the while loop has the advantage that we can use a single linearization point

for all cases. However, it is not always possible to �nd a single linearization point.

Problem 2 AMP, p. 220: Exercise 105: Fine-grained contains (8 Points)

1 public boolean contains(T item) {
2 int key = item.hasCode();
3 head.lock();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {
10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }
15 return curr.key == key;
16 } finally { curr.unlock(); }
17 } finally { pred.unlock(); }
18 }

1



CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

The contains method scans the list to �nd the pair of nodes (pred,curr) reachable

from head such that pred.next == curr, pred.key < key and curr.key >= key.
The traversal uses hand-over-hand locking. Hence, the locks for both pred and curr
are held when line 15 is reached and curr.key == key is evaluated. Thus, it ensures

that the above properties still hold for the two nodes when line 15 is executed. Suppose

curr.key == key evaluates to false. If follows that curr.key > key. From the

sortedness invariant of the list, pred.next == curr, and pred.key < key we con-

clude that item cannot be in the set. Suppose on the other hand that curr.key == key
evaluates to true. Then it follows from the uniqueness of keys that curr.item = item.
Hence, item is in the set.

Note that replacing the hand-over-hand locking implementation with the optimistic locking

implementation would still be correct.

Problem 3 AMP, p. 220: Exercise 109: Non-blocking optimistic contains
(7 Points)

The alternative implementation is not linearizable. Consider an interleaved execution of two

threads T1 and T2 on an empty set instance s. Suppose thread T1 �rst executes s.add(1)
and then executes s.remove(1) up to the beginning of line 34. Now, let T2 execute

s.contains(1) right up to before it evaluates curr.key == key and returns the re-

sult. At this point, since 1 is in the set, we must have curr.key == key. Now, let T1

continue its execution of s.remove(1). Since T2 is not holding any locks, T1 can complete

its execution without blocking, removing 1 from the set and returning true indicating suc-

cessful removal. Now, T2 continues. Since curr.key == key still holds it returns true,
even though 1 is no longer in the set.

Problem 4 AMP, p. 220: Exercise 112: Fault lazy validation (5 Points)

The new employee forgot about the add method, which may modify pred.next without

marking curr. The modi�ed implementation would no longer be linearizable. Speci�cally,

suppose we have an empty set instance s and a thread T1 executes s.add(1) right up to

the beginning of line 9. At this point, pred and curr point to the two sentinel nodes of

the list. In particular, curr.key == key does not hold. Now, another thread T2 executes

s.add(1) until completion, returning true to indicate the successful insertion. Finally,

T1 continues its execution. The call to validate returns true since neither of the sentinel

nodes has been marked. Moreover, curr.key == key does still not hold. Hence, T1

reinserts 1 into the list and also returns true, even though 1 was already present in the

list.

2


	AMP, p. 220: Exercise 102: Linearization of add (5 Points)
	AMP, p. 220: Exercise 105: Fine-grained contains (8 Points)
	AMP, p. 220: Exercise 109: Non-blocking optimistic contains (7 Points)
	AMP, p. 220: Exercise 112: Fault lazy validation (5 Points)

