Sample Solution for Homework 3

Problem 1 AMP, p.66, Exercise 24: Sequential Consistency and Linearizability (12 Points)

- Fig. 3.13: This history is linearizable. A sequential execution of the history’s events that is a linearization of the history is: $r.\text{write}(1), r.\text{read}(1), r.\text{write}(2), r.\text{read}(2)$. Since linearizability implies sequential consistency, the history is also sequentially consistent.

- Fig. 3.14: This history is linearizable. A sequential execution of the history’s events that is a linearization of the history is: $r.\text{write}(2), r.\text{write}(1), r.\text{read}(1), r.\text{read}(1)$. Again, this implies that the history is also sequentially consistent.

Problem 2 AMP, p.67, Exercise 27: (7 Points)

Consider an object q of class `IQueue<Integer>` and an execution of two threads T_0 and T_1, where T_0 executes $q.\text{enq}(0)$, while T_1 executes first $q.\text{enq}(1)$ and then $q.\text{deq}()$. Now consider the following interleaving of the three calls. First, T_0 executes $q.\text{enq}(0)$ up to but excluding line 10. Then, T_1 executes first $q.\text{enq}(1)$ and then $q.\text{deq}()$. After, the call to $q.\text{deq}()$ returns, T_0 proceeds executing $q.\text{enq}(0)$ until the call returns, too. Before the call to deq we have that $q.\text{head} == 0$ and $q.\text{items}[0] == \text{null}$. Hence, this call will throw an `EmptyException`. There is no sequential execution of the queue that will produce this behavior, i.e., throwing `EmptyException` after a preceding call to $q.\text{enq}(1)$. Hence, `IQueue` is not linearizable.

Problem 3 AMP, p.67, Exercise 28: (6 Points)

Yes, the method `reader` may potentially divide by zero. The Boolean v is declared `volatile`. This means that any sequence of read and write operations on v will be sequentially consistent. However, the Java memory model does not guarantee sequential consistency of non-volatile variables, even if they are used together with volatile variables. In particular, the read of x on line 10 might return 0, even though this read requires $v == \text{true}$. That is, $v == \text{true}$ does not imply that the assignment to x on line 5 has already taken effect.