Programming Paradigms for Concurrency
Lecture 6 — Synchronization of Concurrent Objects

[HE AR

MULTIPROCESSOR
PROGRAMMING

The Art of Multiprocessor Programming

Last Two Lectures:
Synchronization Primitives

’h 6 =R
/ spin critical Resets lock

lock section upon exit

Today: Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by Queue locks

Today: Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by Queue locks

» Should increase throughput
— Not possible if inherently sequential
— Surprising things are parallelizable

Coarse-Grained Synchronization

« Each method locks the object
— Avoid contention using queue locks

Coarse-Grained Synchronization

« Each method locks the object
— Avoid contention using queue locks

— Easy to reason about
 In simple cases

Coarse-Grained Synchronization

« Each method locks the object
— Avoid contention using queue locks

— Easy to reason about
 In simple cases

e S0, are we done?

Coarse-Grained Synchronization

« Seqguential bottleneck
— Threads “stand in line”

Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

* Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

* Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

* S0 why even use a multiprocessor?
— Well, some apps inherently parallel ...

10

This Lecture

* Introduce four “patterns”
— Bag of tricks ...
— Methods that work more than once ...

11

This Lecture

* Introduce four “patterns”

— Bag of tricks ...

— Methods that work more than once ...
 For highly-concurrent objects

— Concurrent access
— More threads, more throughput

12

First:
Fine-Grained Synchronization

* Instead of using a single lock ...
» Split object into
— Independently-synchronized components

* Methods conflict when they access
— The same component ...
— At the same time

13

Second;
Optimistic Synchronization

* Search without locking ...

14

Second;
Optimistic Synchronization

* Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over

15

Second;
Optimistic Synchronization

* Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over

» Evaluation

— Usually cheaper than locking, but
— Mistakes are expensive

16

Third:
Lazy Synchronization

* Postpone hard work

 Removing components is tricky
— Logical removal
« Mark component to be deleted

— Physical removal
Do what needs to be done

17

Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...

18

Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support

19

Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support

* Disadvantages
— Complex
— Sometimes high overhead

20

Linked List

* |llustrate these patterns ...

* Using a list-based Set
— Common application
— Building block for other apps

21

Set Interface

 Unordered collection of items

22

Set Interface

 Unordered collection of items
* No duplicates

23

Set Interface

 Unordered collection of items
* No duplicates

 Methods
—add (x) put x In set
— remove (x) take x out of set
— contains (x) tests if x In set

24

List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove (T x) ;
public boolean contains (T x);

}

25

List-Based Sets

[public boolean add (T x);

Add item to set

26

List-Based Sets

[public boolean remove (T x);

Remove item from set

27

List-Based Sets

[public boolean contains (T x);]

IS 1tem In set?

28

List Node

public class Node ({
public T item;
public int key;
public Node next;
}

29

List Node

[public T item;

Item of Interest

30

List Node

[public int key;

Usually hash code

31

List Node

public Node next;]

Reference to next node

32

The List-Based Set

(13-~ EB—B—D>
=l

P

Sorted with Sentinel nodes
(min & max possible keys)

]

33

Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

34

Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

» Established because
— True when object is created

— Truth preserved by each method
« Each step of each method

35

Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()

36

Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()

* Most steps are trivial
— Usually one step tricky
— Often linearization point

37

Interference

 Invariants make sense only If
— methods considered
— are the only modifiers

38

Interference

 Invariants make sense only If
— methods considered
— are the only modifiers

« Language encapsulation helps
— List nodes not visible outside class

39

Interference

e Freedom from interference needed
even for removed nodes

— Some algorithms traverse removed nodes
— Careful with malloc() & free()!

» Garbage collection helps here

40

Abstract Data Types

 Concrete representation:

L=~~~

* Abstract Type:
_ {a’ b}

41

Abstract Data Types

* Meaning of representation given by
abstraction map

- S((I3[F>»bI[F>(1]) ={ab}

42

Rep Invariant

* Which concrete values meaningful?
— Sorted?
— Duplicates?

* Rep invariant
— Characterizes legal concrete reps

— Preserved by methods
— Relied on by methods

43

Blame Game

* Rep invariant is a contract

e Suppose
—add() leaves behind 2 copies of x
—remove() removes only 1

 Which is incorrect?

44

Blame Game

e Suppose
—add() leaves behind 2 copies of x
—remove() removes only 1

45

Blame Game

e Suppose
—add() leaves behind 2 copies of x
—remove() removes only 1

* Which Is incorrect?
— If rep invariant says no duplicates
« add() is incorrect

— Otherwise
* remove() is incorrect

46

Rep Invariant (partly)

 Sentinel nodes
— tail reachable from head

e Sorteo
* No duplicates

47

Abstraction Map

* S(head) =
—{ x| there exists a such that

* a reachable from head and
e a.item =x

=}

48

Seqguential List Based Set
add()

(I3F—Gl[33—

remove()

(T3—>(a] - b 3=—>(c _

49

Seqguential List Based Set
add()

CB—>@I3\ [cT3—>{dT]

remove()

(T3—r(a b[F—{c]_

50

Coarse-Grained Locking

é6
([3F—Gl[3F—>b[3—[]]

51

Coarse-Grained Locking

(T9—cE[3F¥—

SO SN

52

Coarse-Grained Locking

2

(I3—Gal— L
>

Simple but hotspot + bottleneck

53

Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”

54

Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”

« Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue

95

Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”

56

Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”

« Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other

Y

Hand-over-Hand locking

([F—Gl3—bl3—{]]

g

58

Hand-over-Hand locking

6

al3—l—(]

0%

59

Hand-over-Hand locking

60

Hand-over-Hand locking

61

Hand-over-Hand locking

62

Removing a Node

HE g CIE g (I g I g (1N

OOOQ

63

Removing a Node

O

64

Removing a Node

6 6
B (OO g Ok g C1N

O o,

65

Removing a Node

Removing a Node

6 O
sexanil

O o,

Removing a Node

i
LLrlaly e[l]

OO

Why hold 2 locks?

o

68

Concurrent Removes

HE g CIE g (I g I g (1N

O o, '
69

Concurrent Removes

([F=>el—~bl5—> [0l

O o, '
70

Concurrent Removes
(3=l F~ el (c[F—(]]

;
OQOQ ;

1

Concurrent Removes
([l F—=lF>(c[F—(]]

O o, '
72

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Uh, Oh

SEagth []

O o, :
78

Uh, Oh

Bad news, ¢ not removed

T-m_ BT

O o, :
79

Problem

* To delete node c
— Swing node b’s next field to d

al b

* Problem is,
— Someone deleting b concurrently could

direct a pointer a M @_»

toC

80

Insight

* If a node is locked,
— No one can delete node’s successor

 If a thread locks
— node to be deleted
—and its predecessor,
— then it works

81

Hand-Over-Hand Again

HE g CIE g (I g I g (1N

OOOQ

82

Hand-Over-Hand Again

Hand-Over-Hand Again

O

OE g AE gk gl
SERN

84

Hand-Over-Hand Again

Hand-Over-Hand Again

Hand-Over-Hand Again

SEagth []

OOOQ

87

Removing a Node

HE g CIE g (I g I g (1N

O o, :
88

Removing a Node

[[F=>el—~bl5—> [0l

O o, :
89

Removing a Node
BE O E O EdOE (Il

O o, :
90

Removing a Node
BE (OE O EdOE (Il

;;
O o, ’

1

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6 6
BB (A5 (O dOE ogCll

O o, '
95

Removing a Node

6 6 o6 6

NIl F el F=e])
acquire o)
Lock for Q *

Removing a Node

6 6 o6 o
B OB CIE s d GG g I

Cannot ~
acquire O
lock for b

o A '&

97

Removing a Node

6 6
b B qC18

wl Oooa %;:
08

Removing a Node

Proceed
to
remove(b)

Removing a Node

O o,

100

Removing a Node

Removing a Node

L[5~ ‘3 o]]
L=

102

Removing a Node
([3—(al ‘3 an

103

Remove method

public boolean remove (Item item) ({
int key = item.hashCode() ;
Node pred, curr;

try {

} finally {
curr.unlock () ;
pred.unlock() ;

)

104

Remove method

|lint key = item.hashCode() ; |

Key used to order node

105

Remove method

[Node pred, curr;

Predecessor and current nodes

106

Remove method

[try { L

Make sure

t finally { locks released
curr.unlock () ;
kpred.unlock();

107

Remove method

—

Everything else

108

Remove method

try {
pred = this.head;

pred.lock() ;
curr = pred.next;
curr.lock () ;

}mfinally { ..}

109

Remove method

lock pred == head
pred = this.head;
pred.lock() ;

%‘:]}»ID

L

110

Remove method

Lock current

curr = pred.next;
curr.lock () ;

111

Remove method

Traversing list

=

112

Remove: searching

while (curr.key <= key) {
i1f (item == curr.item) {
pred.next = curr.next;
return true;

}

pred.unlock() ; . — R
pred = curr; %DI
curr = curr.next; ‘ \

curr.lock () ;

}

return false;

113

Remove: searching

[while (curr.key <= key) {

Search key range

o

114

Remove: searching

[while (curr.key <= key)

At start of each loop:
curr and pred lockeo

==

Remove: searching

~N
if (item == curr.item) {
pred.next = curr.next;
return true;)

If item found, remove node

=

Remove: searching

Unlock predecessor

[pred.unlock();

==

117

Remove: searching

Only one node locked!

[pred.unlock();

118

Remove: searching

demote current

i

[pred = currT]

119

Remove: searching

Find and lock new current

curr = curr.next;
curr.lock () ;

120

Remove: searching

Lock Invariant restored

curr = curr.next; | il
curr.lock () ; |:|

121

Remove: searching

Otherwise, not present

[return false;

122

Why remove() Is linearizable

[if (item == curr.item) {

*pred reachable from head
ecurr is pred.next
*S0 curr.item is in the set

124

Why remove() Is linearizable

pred.next = curr.next; l
[\

Linearization point if

item Is present
125

Why remove() Is linearizable

(if (item ==
pred.next

. return true;

curr.item) {
curr.next;

Node locked, so no other

thread can remove it....
126

Why remove() Is linearizable

ltem not present

[re turn f{

127

Why remove() Is linearizable

[return false;i

*pred reachable from head
ecurr is pred.next
pred.key < key

‘key < curr.key

128

Why remove() Is linearizable

Linearization point

[curr - curr%

129

Adding Nodes

e To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)

130

Same Abstraction Map

* S(head) =
—{ x| there exists a such that

* a reachable from head and
e a.item =x

=}

131

Rep Invariant

« Easy to check that
— tail always reachable from head
— Nodes sorted, no duplicates

132

Drawbacks

» Better than coarse-grained lock
— Threads can traverse Iin parallel

 Still not ideal
— Long chain of acquire/release
— Inefficient

133

Optimistic Synchronization

* Find nodes without locking
* Lock nodes
* Check that everything is OK

134

Optimistic: Traverse without
Locking

135

Optimistic: Lock and Load

136

Optimistic: Lock and Load

137

What could go wrong?

138

What could go wrong?

@D

139

What could go wrong?

6 6

oy

d[3—>(e])

°.

140

What could go wrong?

141

What could go wrong?

142

What could go wrong?

What could go wrong?

(T3— G0 @F—ED

Uh-oh
Oo”

144

Validate — Part 1

Yes, b still
reachable
from head

145

What Else Could Go Wrong?

146

What Else Coould Go Wrong?

é é
(13— G EH—+EaEE0

\VA

What Else Coould Go Wrong?
6 &

L@B J—»@D

([3— E3—>

148

What Else Could Go Wrong?

149

What Else Could Go Wrong?

T

150

Validate Part 2
(while holding locks)

151

Optimistic: Linearization Point

152

Same Abstraction Map

* S(head) =
—{ x| there exists a such that

* a reachable from head and
e a.item =x

=}

153

Invariants

« Careful: we may traverse deleted nodes

* But we establish properties by
— Validation
— After we lock target nodes

154

Correctness

o |f
— nodes b and ¢ both locked
— node b still accessible
— node c still successorto b

* Then

— neither will be deleted
— OK to delete and return true

155

Unsuccessful Remove

6 6
- ” 2| -
w o o

I!! CE;aq08
o'&

156

Validate (1)

[F—>{e]]

Yes, b still
reachable
from head

157

Validate (2)

158

OK Computer

Correctness

o |f
— nodes b and d both locked
— node b still accessible
— node d still successorto b

 Then
— neither will be deleted
— no thread can add c after b
— OK to return false

160

Validation

private boolean
validate (Node pred,
Node curr) {

Node node = head;

while (node.key <= pred.key) {
if (node == pred)

return pred.next == curr;

node = node.next;

}

return false;

161

Validation

Node pred,]
Node curr) {

Predecessor &
current nodes

162

Validation

L

[Node node = head;

Begin at the
beginning

163

Validation

L

[while (node.key <= pred.key) {]

X

Search range of keys

164

Validation

[if (node ==&

Predecessor reachable

165

Validation

[return pred. nex%

Is current node next?

166

Validation

Otherwise move on

[node = node.next; @

167

Validation

Predecessor not reachable

DWID

L

[return false;

168

Remove: searching

public boolean remove (Item item) ({
int key = item.hashCode() ;
retry: while (true) ({
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

}

169

Remove: searching

|int key = item.hashCode();

(I3»(3»(I3» (D

f&ﬂ

Search key

170

Remove: searching

[retry: while (true) {l

(D3> (I3 (13D
1
L

Retry on synchronization conflict

171

Remove: searching

this.head;
pred.next;

Node pred
Node curr

Examine predecessor and current nodes

172

Remove: searching

while (curr.key <= key) {] [GEQ:B}I

Search by key

173

Remove: searching

i1f (item == curr.item)
bre""k/" ac Jun
Stop If we find item ‘ ‘rl

174

Remove: searching

Move along

pred = curr;
curr = curr.next;

175

On Exit from Loop

 If item Is present
— curr holds item
— pred just before curr

 If item Is absent
— curr has first higher key
— pred just before curr

« Assuming no synchronization problems

176

Remove Method

try {
pred.lock(); curr.lock() ;

if (validate (pred,curr)) {
1f (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {
pred.unlock() ;
curr.unlock () ;

b}

177

Remove Method

try {

Always unlock

1}

3

} finally { -
pred.unlock() ;
curr.unlock () ;

}

178

Remove Method

tr
|pred.lock(); curr.lock() ;

Lock both nodes

179

Remove Method

[if (validate (pred, curr)) {l

Check for synchronization
conflicts

180

Remove Method

(if (curr.item == item)

.

pred.next = curr.next;
return true;

{\

<

target found,
remove node

181

Remove Method

target not found
[return ﬂal{

182

Optimistic List

* Limited hot-spots
— Targets of add(), remove(), contains()
— NO contention on traversals

e Moreover

— Traversals are wait-free
— Food for thought ...

183

So Far, So Good

* Much less lock acquisition/release
— Performance
— Concurrency

* Problems
— Need to traverse list twice
— contains() method acquires locks

184

Evaluation

* Optimistic Is effective if
— cost of scanning twice without locks
IS less than
— cost of scanning once with locks
* Drawback
— contains() acquires locks
— 90% of calls in many apps

185

Lazy List

 Like optimistic, except
— Scan once
— contains (x) never locks ...

* Key Insight
— Removing nodes causes trouble
— Do it “lazily”

186

Lazy List

e remove ()

— Scans list (as before)
— Locks predecessor & current (as before)

* Logical delete
— Marks current node as removed (new!)

* Physical delete
— Redirects predecessor's next (as before)

187

Lazy Removal

T3> 3>0er 3T 3>d -

188

Lazy Removal

Present In list

189

Lazy Removal

Logically deleted

190

Lazy Removal

Physically deleted

191

Lazy Removal

((13—GE=3~E, | [@T=

S

Physically deleted

192

Lazy List

o All Methods

— Scan through locked and marked nodes

— Removing a node doesn’t slow down other
method calls ...

» Must still lock pred and curr nodes.

193

Validation

No need to rescan list!

Check that pred is not marked
Check that curr is not marked
Check that pred points to curr

194

Business as Usual

QIEag(lIEndOIE

0%

195

Business as Usual

196

Business as Usual

197

Business as Usual

(13~ Gll3+EI3> C

i 198

Business as Usual

(5~ l5*bly>Cl—

a

i 199

Business as Usual

(5~ l5*bly>Cl—

a

b

i 200

Business as Usual

([5Gl bl>

i 201

Business as Usual

SER(D rald et

Business as Usual

scginnjilac

0%

203

New Abstraction Map

* S(head) =
—{ x| there exists node a such that
 a reachable from head and

e a.ltem = x and
e als unmarked

=}

204

Invariant

* If not marked, then item In the set

 and reachable from head

« and If not yet traversed, It Is reachable
from pred

205

Validation

private boolean
validate (Node pred, Node curr) {
return
'pred.marked &é&
'curr.marked &é&
pred.next == curr);

}

206

List Validate Method

[!pred.marked &&

Predecessor not
Logically removed

207

List Validate Method

[!curr.marked &&

Current not
Logically removed

208

List Validate Method

[pred.next == curr) ;

Predecessor still
Points to current

209

Remove

try {
pred.lock(); curr.lock();

if (validate(pred,curr) {
if (curr.key == key) {
curr .marked = true;
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {
pred.unlock () ;
curr.unlock () ;

1}

Remove

[if (validate(pred,curr) {

Validate as before

Remove

[if (curr.key == key) {

Key found

Remove

[curr.marked = true:

Logical remove

Remove

[pred.next = curr.next;

physical remove

Contains

public boolean contains(Item item) {
int key = item.hashCode() ;
Node curr = this.head;
while (curr.key < key) {
curr = curr.next;

}

return curr.key == key && !curr.marked;

215

Contains

[Node curr = this.head;

Start at the head

216

Contains

[while (curr.key < key) { l

Search key range

217

Contains

[curr = curr.next;

Traverse without locking
(nodes may have been removed)

218

Contains

[return curr.key == key &é& !curr.marked;]

N

Present and undeleted?

219

Summary: Wait-free Contains
/\/\/\ 4_,*
EREBINE SFACE (I E COCH

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing - not in the set

220

Lazy List

e~ ———— —
6 6 6 6 6
EEEANEZANE (] EL 0NN

Lazy add() and remove() + Walit-free contains()

221

Evaluation

 Good:

— contains() doesn’t lock

— |n fact, its wait-free!

— Good because typically high % contains()
— Uncontended calls don't re-traverse

 Bad

— Contended add() and remove() calls do re-
traverse

— Traffic jam if one thread delays

222

Traffic Jam

* Any concurrent data structure based on
mutual exclusion has a weakness

* |f one thread
— Enters critical section

— And “eats the big muffin”
« Cache miss, page fault, descheduled ...

— Everyone else using that lock is stuck!
— Need to trust the scheduler....

223

Reminder: Lock-Free Data

®

Structures

* No matter what ...

— Guarantees minimal progress in any
execution

—I.e. Some thread will always complete a
method call

— Even if others halt at malicious times
— Implies that implementation can’t use locks

224

Lock-free Lists

* Next logical step
— Walit-free contains()
— lock-free add() and remove()

* Use only compareAndSet()
— What could go wrong?

225

Lock-free Lists

Logical Removal

Use CAS to verify pointer Physical Removal
IS correct

Not enough!

226

Problem...

Logical Removal

Node added

227

The Solution: Combine Bit and
Pointer

Logical Removal =
Set Mark Bit

(T 3=l 3~k

Physical
Mark-Bit and Pointer ~ Removal Fail CAS: Node not

CAS added after logical
are CASed together Removal
(AtomicMarkableReference)

228

Solution

 Use AtomicMarkableReference

« Atomically
— Swing reference and
— Update flag

 Remove In two steps
— Set mark bit in next field
— Redirect predecessor’s pointer

229

Marking a Node

« AtomicMarkableReference class
— Java.util.concurrent.atomic package

f

Reference —=—

{address] =

.

mark bit

230

Extracting Reference & Mark

public Object get(boolean[] marked) ;

231

Extracting Reference & Mark

Object] [boolean []

Returns mark at

Returns .
array index 0!

reference

232

Extracting Mark Only

boolean]

Value of
mark

233

Changing State

public boolean compareAndSet (
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark) ;

234

Changing State

If this Is the current
reference ...

[Object expeégg;;lij

[boolean expectedMark,

And this is the
current mark ...

235

Changing State

...then change to this

/ new reference. ...
1

[Object updateRef,]

[boolean updateMark) ;
... and this new

mark

236

Changing State

public boolean attemptMark (
Object expectedRef,
boolean updateMark) ;

237

Changing State

Object expectedRef, |

If this Is the current
reference ...

238

Changing State

lboolean updateMark)|;

.. then change to
this new mark.

239

Removing a Node

T3 @Z—]—%%LE;[Z;ED
o

Removing a Node

Wi

al

remove
b O o o@
241

failed

5[]
&

[[5—(a25

Removing a Node

[I-]—%]Q LIH—(c[3—(])

Removing a Node

([5—~

Ffemove
b Oo OQ
243

Traversing the List

* Q: what do you do when you find a
“logically” deleted node in your path”?

* A: finish the job.
— CAS the predecessor’'s next field
— Proceed (repeat as needed)

244

Lock-Free Traversal
(only Add and Remove)

The Window Class

class Window {

public Node pred;

public Node curr;

Window (Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}
}

246

The Window Class

public Node pred;
public Node curr;

A container for pred
and current values

247

Using the Find Method

Window window = find(head, key)
Node pred = window.pred;
curr = window.curr;

248

Using the Find Method

[Window window = find (head, key):;]

N

Find returns window

249

Using the Find Method

Node pred = window.pred;
curr = window.curr;

Extract pred and curr

250

The Find Method

[Window window

At some Instant, f ‘ or ...

pred curr succ

251

The Find Method

[Window window

| {jtem ¥ notin list
At some Instant,

F——U5

curr= null
pred succ

252

Remove

public boolean remove (T item) ({
Boolean snip;
while (true) {
Window window = find (head, key) ;
Node pred = window.pred, curr = window.curr;
if (curr.key !'= key) {
return false;
} else {
Node succ = curr.next.getReference() ;
snip = curr.next.compareAndSet (succ, succ, false true);
if (!'snip) continue;
pred.next.compareAndSet (curr, succ, false, false);
return true;

b}

253

Remove

public boolean remove (T item) ({

Boolean snip;

while (true) {
} 1nd

find (head, key);
\ndow.pred, curr = window.curr;

return fa

} else {
Node succ = curr. L .getReference() ;
snip = curr.next.co eAndSet (succ, succ, false, true);

if (!'snip) continue;
pred.next.compareAndSet\gurr, succ, false, false);
return true;

L Keep trying

254

Remove

Window window = find (head, key) ;
Node pred = window.pred, curr = window.curr;

Find neighbors

255

Remove

(if (curr.key !'= key) {\
return false;
\} else {

She’s not there ...
256

Remove

Try to mark node as deleted

Node succ = curr.next.getReference() ;
snip = curr.next.compareAndSet (succ, succ, false, true);

257

Remove

If it doesn’t work,
just retry, if it [U;m
does, job
essentially done

[if (!'snip) continue;

258

Remove

Try to advance reference
(if we don’t succeed, someone else did or will).

N

pred.next.compareAndSet (curr, succ, false, false);
return true;

259

Add

public boolean add (T item) ({
boolean splice;

while (true) {

Window window = find (head, key)

Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {

Node node = new Node (item) ;

node.next = new AtomicMarkableRef (curr, false);

if (pred.next.compareAndSet (curr, node,

false, false))
{ return true; }
}h}

260

Add

public boolean add (T item) {
boolean splice;
while (true) {
Window window = find (head, key)
. , curr = window.curr;

if (curr.key == key) {
return
elIse |
Node node = ne (item) ;

node.next = icMarkableRef (curr, false) ;
reAndSet (curr, node, false, false))

fvadriasrn +=ri1a -1

}}) Item already there.

261

Add

Node node new Node (item) ;
node.next new AtomicMarkableRef (curr, false);

B

create new node

262

Add

Install new node,
else retry loop

@%ﬁw AN

if (pred.next.compareAndSet (curr, node, false, false))
{return true;}

263

Walit-free Contains

public boolean contains (T item) {
boolean marked;
int key = item.hashCode() ;
Node curr = this.head;
while (curr.key < key)
curr = curr.next;
Node succ = curr.next.get (marked) ;
return (curr.key == key && !marked[0])

264

Walt-free Contains

Only diff is that we
get and check
marked

N

Node succ = curr.next.get (marked)
return (curr.key == key && !marked[0])

265

Lock-free Find

public Window find (Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean|[] marked = {false};, boolean snip;
retry: while (true) {
pred = head;
curr = pred.next.getReference() ;
while (true) {
succ = curr.next.get (marked) ;
while (marked[0]) {
}
if (curr.key >= key)
return new Window (pred, curr);

pred = curr;
curr = succ;

)

206

Lock-free Find

[retrY: while &
If list changes

while traversed,
start over

207

Lock-free Find

Start looking from head

pred = head;
curr = pred.next.getReference()’

L

208

Lock-free Find

Move down the list

while (true) {
succ = curr.next.get (marked) ;
while (marked[0]) {

}
if (curr.key >= key)
return new Window (pred, curr);
pred = curr;
curr = Succ;

/

209

Lock-free Find

[succ = curr.next.get (marked) ;

Get ref to successor and
current deleted bit

270

Lock-free Find

while (marked[0]) {
}

L

Try to remove deleted nodes In
path...code details soon

211

Lock-free Find

If curr key that is greater or
equal, return pred and curr

if (curr.key >= key)
return new Window (pred, curr);

212

Lock-free Find

Otherwise advance window and
loop again

pred = curr;
curr = succ;

213

Lock-free Find

retry: while (true) {

while (marked[0]) {
snip = pred.next.compareAndSet (curr,

succ, false, false);

if (!'snip) continue retry;
curr = succ;
succ = curr.next.get (marked) ;

274

Lock-free Find

Try to snip out node

I\

snip = pred.next.compareAndSet (curr,
succ, false, false);

Lock-free Find

if predecessor’s next field changed,
retry whole traversal

[if ('snip) continue retry;

Lock-free Find

Otherwise move on to check
If next node deleted

succ;
curr.next.get (marked) ;

curr
SucCcC

277

Performance

 Different list-based set implementations

* 16-node machine
* Vary percentage of contains () calls

278

1.2e+07
1e+07
8e+06
6e+06
4e+06
2e+06

High Contains Ratio

Ops/sec (90% reads/0 load)

,/’. -

K
¥

KK
Kok

N
N
‘. ‘ \

o

o
\.L_‘

. g

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

279

Low Contains Ratio

Ops/sec (50% reads/0 load)

3.5e+06 |
X
3e+06 - x %%%% Hock-free
2.5e+06 %%% /,l«-’%——I~—\—\\l~—-l7‘//'.\‘\'/.‘\‘ILQ Lazy list
2e+06 + x A oy 1
1.5e+06 —./_,,i/' .
1e+06 [~ 1
500000 —W Coarse Grained
O a0 WY Y 10 o SR WY < Y40 VRO Y W WY s WU SUUEOY i SOOI U e VU o S VO

~—

< Fine Lock-coupling
5 10 15 20 25 30

threads

280

As Contains Ratio Increases

8e+06

7e+06
6e+06 -
5e+06 r
4e+06 -

3e+06
2e+06
1e+06

0

Ops/sec (32 threads/0 load)

,,::;:i;,”ﬁi; SIS Tt S

0

% Contains()

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

281

Summary

Coarse-grained locking
Fine-grained locking
Optimistic synchronization
Lazy synchronization
Lock-free synchronization

282

“To Lock or Not to Lock”

« Locking vs. Non-blocking:
— Extremist views on both sides

* The answer: nobler to compromise

— Example: Lazy list combines blocking add ()
and remove () and a wait-free contains ()

— Remember: Blocking/non-blocking is a property
of a method

283

SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

284

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

