Programming Paradigms for Concurrency
Lecture 6 — Synchronization of Concurrent Objects
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Last Two Lectures:
Synchronization Primitives

’h 6 =R
/ spin  critical Resets lock

lock section upon exit



Today: Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by Queue locks



Today: Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by Queue locks

» Should increase throughput
— Not possible if inherently sequential
— Surprising things are parallelizable
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Coarse-Grained Synchronization

« Each method locks the object
— Avoid contention using queue locks

— Easy to reason about
 In simple cases

e S0, are we done?
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Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

* Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse




Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

* Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

* S0 why even use a multiprocessor?
— Well, some apps inherently parallel ...
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This Lecture

* Introduce four “patterns”
— Bag of tricks ...
— Methods that work more than once ...
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This Lecture

* Introduce four “patterns”

— Bag of tricks ...

— Methods that work more than once ...
 For highly-concurrent objects

— Concurrent access
— More threads, more throughput
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First:
Fine-Grained Synchronization

* Instead of using a single lock ...
» Split object into
— Independently-synchronized components

* Methods conflict when they access
— The same component ...
— At the same time
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Second;
Optimistic Synchronization

* Search without locking ...
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Second;
Optimistic Synchronization

* Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over
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Second;
Optimistic Synchronization

* Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over

» Evaluation

— Usually cheaper than locking, but
— Mistakes are expensive
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Third:
Lazy Synchronization

* Postpone hard work

 Removing components is tricky
— Logical removal
« Mark component to be deleted

— Physical removal
Do what needs to be done
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Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...
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Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support
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Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support

* Disadvantages
— Complex
— Sometimes high overhead
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Linked List

* |llustrate these patterns ...

* Using a list-based Set
— Common application
— Building block for other apps

21



Set Interface

 Unordered collection of items
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Set Interface

 Unordered collection of items
* No duplicates
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Set Interface

 Unordered collection of items
* No duplicates

 Methods
—add (x) put x In set
— remove (x) take x out of set
— contains (x) tests if x In set
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List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove (T x) ;
public boolean contains (T x);

}
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List-Based Sets

[public boolean add (T x);

Add item to set
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List-Based Sets

[public boolean remove (T x);

Remove item from set
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List-Based Sets

[public boolean contains (T x); ]

IS 1tem In set?
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List Node

public class Node ({
public T item;
public int key;
public Node next;
}
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List Node

[public T item;

Item of Interest
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List Node

[public int key;

Usually hash code
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List Node

public Node next;]

Reference to next node
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The List-Based Set

(13-~ EB—B—D>
=l

P

Sorted with Sentinel nodes
(min & max possible keys)

]
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Reasoning about Concurrent
Objects

* Invariant
— Property that always holds
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Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

» Established because
— True when object is created

— Truth preserved by each method
« Each step of each method
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Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()
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Specifically ...

 Invariants preserved by
—add ()

— remove ()

— contains ()

* Most steps are trivial
— Usually one step tricky
— Often linearization point
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Interference

 Invariants make sense only If
— methods considered
— are the only modifiers
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Interference

 Invariants make sense only If
— methods considered
— are the only modifiers

« Language encapsulation helps
— List nodes not visible outside class
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Interference

e Freedom from interference needed
even for removed nodes

— Some algorithms traverse removed nodes
— Careful with malloc() & free()!

» Garbage collection helps here
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Abstract Data Types

 Concrete representation:

L=~~~

* Abstract Type:
_ {a’ b}
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Abstract Data Types

* Meaning of representation given by
abstraction map

- S( (I3[ F>»bI[F>(1] ) ={ab}

42



Rep Invariant

* Which concrete values meaningful?
— Sorted?
— Duplicates?

* Rep invariant
— Characterizes legal concrete reps

— Preserved by methods
— Relied on by methods
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Blame Game

* Rep invariant is a contract

e Suppose
—add() leaves behind 2 copies of x
—remove() removes only 1

 Which is incorrect?
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Blame Game

e Suppose
—add() leaves behind 2 copies of x
—remove() removes only 1
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Blame Game

e Suppose
—add() leaves behind 2 copies of x
—remove() removes only 1

* Which Is incorrect?
— If rep invariant says no duplicates
« add() is incorrect

— Otherwise
* remove() is incorrect
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Rep Invariant (partly)

 Sentinel nodes
— tail reachable from head

e Sorteo
* No duplicates
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Abstraction Map

* S(head) =
—{ x| there exists a such that

* a reachable from head and
e a.item =x

=}
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Seqguential List Based Set
add()

(I3F—Gl[ 33—

remove()

(T3—>(a] - b 3=—>(c _
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Seqguential List Based Set
add()

CB—>@I3\ [cT3—>{dT]

remove()

(T3—r(a b[F—{c]_
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Coarse-Grained Locking

é6
([3F—Gl[3F—>b[3—[]]
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Coarse-Grained Locking

(T9—cE[3F¥—

SO SN
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Coarse-Grained Locking

2

(I3—Gal— L
>

Simple but hotspot + bottleneck
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Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”
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Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”

« Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue

95



Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”

56



Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”

« Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other

Y



Hand-over-Hand locking

([F—Gl3—bl3—{]]

g
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Hand-over-Hand locking

6

al3—l—(]

0%

59



Hand-over-Hand locking
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Hand-over-Hand locking

61



Hand-over-Hand locking

62



Removing a Node

HE g CIE g (I g I g (1N

OOOQ
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Removing a Node

O
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Removing a Node

6 6
B (OO g Ok g C1N

O o,
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Removing a Node




Removing a Node
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Removing a Node

i
LLrlaly e[l ]

OO

Why hold 2 locks?

o
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Concurrent Removes

HE g CIE g (I g I g (1N

O o, '
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Concurrent Removes

([F=>el—~bl5—> [0l

O o, '
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Concurrent Removes
(3=l F~ el (c[F—(]]

;
OQOQ ;
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Concurrent Removes
([l F—=lF>(c[F—(]]

O o, '
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Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes




Uh, Oh

SEagth [ ]

O o, :
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Uh, Oh

Bad news, ¢ not removed

T-m_ BT

O o, :
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Problem

* To delete node c
— Swing node b’s next field to d

al b

* Problem is,
— Someone deleting b concurrently could

direct a pointer a M @_»

toC

80



Insight

* If a node is locked,
— No one can delete node’s successor

 If a thread locks
— node to be deleted
—and its predecessor,
— then it works
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Hand-Over-Hand Again

HE g CIE g (I g I g (1N

OOOQ
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Hand-Over-Hand Again




Hand-Over-Hand Again

O

OE g AE gk gl
SERN
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Hand-Over-Hand Again




Hand-Over-Hand Again




Hand-Over-Hand Again

SEagth [ ]

OOOQ
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Removing a Node

HE g CIE g (I g I g (1N

O o, :
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Removing a Node

[[F=>el—~bl5—> [0l

O o, :
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Removing a Node
BE O E O EdOE (Il

O o, :
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Removing a Node
BE (OE O EdOE (Il

;;
O o, ’
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Removing a Node
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Removing a Node

6 6
BB (A5 (O dOE ogCll

O o, '
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Removing a Node

6 6 o6 6

NIl F el F=e] )
acquire o)
Lock for Q *




Removing a Node

6 6 o6 o
B OB CIE s d GG g I

Cannot ~
acquire O
lock for b

o A '&
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Removing a Node

6 6
b B qC18

wl Oooa %;:
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Removing a Node

Proceed
to
remove(b)




Removing a Node

O o,
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Removing a Node




Removing a Node

L[5~ ‘3 o] ]
L=
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Removing a Node
([3—(al ‘3 an
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Remove method

public boolean remove (Item item) ({
int key = item.hashCode() ;
Node pred, curr;

try {

} finally {
curr.unlock () ;
pred.unlock() ;

)
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Remove method

|lint key = item.hashCode() ; |

Key used to order node
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Remove method

[Node pred, curr;

Predecessor and current nodes
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Remove method

[try { L

Make sure

t finally { locks released
curr.unlock () ;
kpred.unlock();
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Remove method

—

Everything else
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Remove method

try {
pred = this.head;

pred.lock() ;
curr = pred.next;
curr.lock () ;

}mfinally { ..}
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Remove method

lock pred == head
pred = this.head;
pred.lock() ;

%‘:]}»ID

L
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Remove method

Lock current

curr = pred.next;
curr.lock () ;
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Remove method

Traversing list

=

112




Remove: searching

while (curr.key <= key) {
i1f (item == curr.item) {
pred.next = curr.next;
return true;

}

pred.unlock() ; . — R
pred = curr; %DI
curr = curr.next; ‘ \

curr.lock () ;

}

return false;
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Remove: searching

[while (curr.key <= key) {

Search key range

o
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Remove: searching

[while (curr.key <= key)

At start of each loop:
curr and pred lockeo

==




Remove: searching

~N
if (item == curr.item) {
pred.next = curr.next;
return true; )

If item found, remove node

=



Remove: searching

Unlock predecessor

[pred.unlock();

==
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Remove: searching

Only one node locked!

[pred.unlock();
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Remove: searching

demote current

i

[pred = currT]
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Remove: searching

Find and lock new current

curr = curr.next;
curr.lock () ;
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Remove: searching

Lock Invariant restored

curr = curr.next; | il
curr.lock () ; |:|
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Remove: searching

Otherwise, not present

[ return false;

122



Why remove() Is linearizable

[if (item == curr.item) {

*pred reachable from head
ecurr is pred.next
*S0 curr.item is in the set
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Why remove() Is linearizable

pred.next = curr.next; l
[ \

Linearization point if

item Is present
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Why remove() Is linearizable

(if (item ==
pred.next

. return true;

curr.item) {
curr.next;

Node locked, so no other

thread can remove it....
126



Why remove() Is linearizable

ltem not present

[re turn f{

127



Why remove() Is linearizable

[return false;i

*pred reachable from head
ecurr is pred.next
pred.key < key

‘key < curr.key
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Why remove() Is linearizable

Linearization point

[curr - curr%

129



Adding Nodes

e To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)
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Same Abstraction Map

* S(head) =
—{ x| there exists a such that

* a reachable from head and
e a.item =x

=}
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Rep Invariant

« Easy to check that
— tail always reachable from head
— Nodes sorted, no duplicates
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Drawbacks

» Better than coarse-grained lock
— Threads can traverse Iin parallel

 Still not ideal
— Long chain of acquire/release
— Inefficient
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Optimistic Synchronization

* Find nodes without locking
* Lock nodes
* Check that everything is OK

134



Optimistic: Traverse without
Locking

135



Optimistic: Lock and Load

136



Optimistic: Lock and Load

137



What could go wrong?
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What could go wrong?

@D
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What could go wrong?

6 6

oy

d[3—>(e])

°.
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What could go wrong?
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What could go wrong?
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What could go wrong?




What could go wrong?

(T3— G0 @F—ED

Uh-oh
Oo”
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Validate — Part 1

Yes, b still
reachable
from head
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What Else Could Go Wrong?
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What Else Coould Go Wrong?

é é
(13— G EH—+EaEE0
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What Else Coould Go Wrong?
6 &

L@B J—»@D

([3— E3—>
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What Else Could Go Wrong?
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What Else Could Go Wrong?

T

150



Validate Part 2
(while holding locks)

151



Optimistic: Linearization Point

152



Same Abstraction Map

* S(head) =
—{ x| there exists a such that

* a reachable from head and
e a.item =x

=}
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Invariants

« Careful: we may traverse deleted nodes

* But we establish properties by
— Validation
— After we lock target nodes
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Correctness

o |f
— nodes b and ¢ both locked
— node b still accessible
— node c still successorto b

* Then

— neither will be deleted
— OK to delete and return true
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Unsuccessful Remove

6 6
- ” 2| -
w o o

I!! CE;aq08
o'&
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Validate (1)

[ F—>{e] ]

Yes, b still
reachable
from head

157



Validate (2)

158



OK Computer




Correctness

o |f
— nodes b and d both locked
— node b still accessible
— node d still successorto b

 Then
— neither will be deleted
— no thread can add c after b
— OK to return false

160



Validation

private boolean
validate (Node pred,
Node curr) {

Node node = head;

while (node.key <= pred.key) {
if (node == pred)

return pred.next == curr;

node = node.next;

}

return false;

161



Validation

Node pred, ]
Node curr) {

Predecessor &
current nodes

162




Validation

L

[Node node = head;

Begin at the
beginning
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Validation

L

[while (node.key <= pred.key) { ]

X

Search range of keys
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Validation

[ if (node ==&

Predecessor reachable
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Validation

[ return pred. nex%

Is current node next?
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Validation

Otherwise move on

[node = node.next; @

167




Validation

Predecessor not reachable

DWID

L

[return false;
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Remove: searching

public boolean remove (Item item) ({
int key = item.hashCode() ;
retry: while (true) ({
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

}

169



Remove: searching

|int key = item.hashCode();

(I3»(3»(I3» (D

f&ﬂ

Search key
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Remove: searching

[retry: while (true) {l

(D3> (I3 (13D
1
L

Retry on synchronization conflict
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Remove: searching

this.head;
pred.next;

Node pred
Node curr

Examine predecessor and current nodes
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Remove: searching

while (curr.key <= key) {] [GEQ:B}I

Search by key

173



Remove: searching

i1f (item == curr.item)
bre""k/" ac Jun
Stop If we find item ‘ ‘rl
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Remove: searching

Move along

pred = curr;
curr = curr.next;

175




On Exit from Loop

 If item Is present
— curr holds item
— pred just before curr

 If item Is absent
— curr has first higher key
— pred just before curr

« Assuming no synchronization problems
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Remove Method

try {
pred.lock(); curr.lock() ;

if (validate (pred,curr)) {
1f (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {
pred.unlock() ;
curr.unlock () ;

b}
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Remove Method

try {

Always unlock

1}

3

} finally { -
pred.unlock() ;
curr.unlock () ;

}
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Remove Method

tr
|pred.lock(); curr.lock() ;

Lock both nodes
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Remove Method

[if (validate (pred, curr)) {l

Check for synchronization
conflicts

180



Remove Method

(if (curr.item == item)

.

pred.next = curr.next;
return true;

{\

<

target found,
remove node
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Remove Method

target not found
[return ﬂal{

182



Optimistic List

* Limited hot-spots
— Targets of add(), remove(), contains()
— NO contention on traversals

e Moreover

— Traversals are wait-free
— Food for thought ...
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So Far, So Good

* Much less lock acquisition/release
— Performance
— Concurrency

* Problems
— Need to traverse list twice
— contains() method acquires locks

184



Evaluation

* Optimistic Is effective if
— cost of scanning twice without locks
IS less than
— cost of scanning once with locks
* Drawback
— contains() acquires locks
— 90% of calls in many apps
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Lazy List

 Like optimistic, except
— Scan once
— contains (x) never locks ...

* Key Insight
— Removing nodes causes trouble
— Do it “lazily”
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Lazy List

e remove ()

— Scans list (as before)
— Locks predecessor & current (as before)

* Logical delete
— Marks current node as removed (new!)

* Physical delete
— Redirects predecessor's next (as before)

187



Lazy Removal

T3> 3>0er 3T 3>d -
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Lazy Removal

Present In list

189



Lazy Removal

Logically deleted

190



Lazy Removal

Physically deleted
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Lazy Removal

((13—GE=3~E, | [@T=

S

Physically deleted
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Lazy List

o All Methods

— Scan through locked and marked nodes

— Removing a node doesn’t slow down other
method calls ...

» Must still lock pred and curr nodes.
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Validation

No need to rescan list!

Check that pred is not marked
Check that curr is not marked
Check that pred points to curr

194



Business as Usual

QIEag(lIEndOIE

0%
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Business as Usual

196



Business as Usual
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Business as Usual

(13~ Gll3+EI3> C
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Business as Usual

(5~ l5*bly>Cl—

a

i 199



Business as Usual

(5~ l5*bly>Cl—

a

b

i 200



Business as Usual

([5Gl bl>

i 201



Business as Usual

SER(D rald et



Business as Usual

scginnjilac

0%
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New Abstraction Map

* S(head) =
—{ x| there exists node a such that
 a reachable from head and

e a.ltem = x and
e als unmarked

=}
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Invariant

* If not marked, then item In the set

 and reachable from head

« and If not yet traversed, It Is reachable
from pred
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Validation

private boolean
validate (Node pred, Node curr) {
return
'pred.marked &é&
'curr.marked &é&
pred.next == curr);

}
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List Validate Method

[!pred.marked &&

Predecessor not
Logically removed
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List Validate Method

[!curr.marked &&

Current not
Logically removed
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List Validate Method

[pred.next == curr) ;

Predecessor still
Points to current

209



Remove

try {
pred.lock(); curr.lock();

if (validate(pred,curr) {
if (curr.key == key) {
curr .marked = true;
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {
pred.unlock () ;
curr.unlock () ;

1}



Remove

[ if (validate(pred,curr) {

Validate as before



Remove

[if (curr.key == key) {

Key found



Remove

[curr.marked = true:

Logical remove



Remove

[pred.next = curr.next;

physical remove



Contains

public boolean contains(Item item) {
int key = item.hashCode() ;
Node curr = this.head;
while (curr.key < key) {
curr = curr.next;

}

return curr.key == key && !curr.marked;

215



Contains

[Node curr = this.head;

Start at the head

216



Contains

[while (curr.key < key) { l

Search key range

217



Contains

[curr = curr.next;

Traverse without locking
(nodes may have been removed)

218



Contains

[return curr.key == key &é& !curr.marked;]

N

Present and undeleted?

219



Summary: Wait-free Contains
/\/\/\ 4_,*
EREBINE SFACE (I E COCH

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing - not in the set
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Lazy List

e~ ———— —
6 6 6 6 6
EEEANEZANE (] EL 0NN

Lazy add() and remove() + Walit-free contains()
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Evaluation

 Good:

— contains() doesn’t lock

— |n fact, its wait-free!

— Good because typically high % contains()
— Uncontended calls don't re-traverse

 Bad

— Contended add() and remove() calls do re-
traverse

— Traffic jam if one thread delays
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Traffic Jam

* Any concurrent data structure based on
mutual exclusion has a weakness

* |f one thread
— Enters critical section

— And “eats the big muffin”
« Cache miss, page fault, descheduled ...

— Everyone else using that lock is stuck!
— Need to trust the scheduler....
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Reminder: Lock-Free Data

®

Structures

* No matter what ...

— Guarantees minimal progress in any
execution

—I.e. Some thread will always complete a
method call

— Even if others halt at malicious times
— Implies that implementation can’t use locks

224



Lock-free Lists

* Next logical step
— Walit-free contains()
— lock-free add() and remove()

* Use only compareAndSet()
— What could go wrong?
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Lock-free Lists

Logical Removal

Use CAS to verify pointer Physical Removal
IS correct

Not enough!

226



Problem...

Logical Removal

Node added

227



The Solution: Combine Bit and
Pointer

Logical Removal =
Set Mark Bit

(T 3=l 3~k

Physical
Mark-Bit and Pointer ~ Removal Fail CAS: Node not

CAS added after logical
are CASed together Removal
(AtomicMarkableReference)

228



Solution

 Use AtomicMarkableReference

« Atomically
— Swing reference and
— Update flag

 Remove In two steps
— Set mark bit in next field
— Redirect predecessor’s pointer
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Marking a Node

« AtomicMarkableReference class
— Java.util.concurrent.atomic package

f

Reference —=—

{address ] =

.

mark bit
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Extracting Reference & Mark

public Object get(boolean[] marked) ;
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Extracting Reference & Mark

Object ] [boolean []

Returns mark at

Returns .
array index 0!

reference
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Extracting Mark Only

boolean]

Value of
mark
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Changing State

public boolean compareAndSet (
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark) ;
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Changing State

If this Is the current
reference ...

[Object expeégg;;lij

[boolean expectedMark,

And this is the
current mark ...
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Changing State

...then change to this

/ new reference. ...
1

[Object updateRef,]

[boolean updateMark) ;
... and this new

mark
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Changing State

public boolean attemptMark (
Object expectedRef,
boolean updateMark) ;

237



Changing State

Object expectedRef, |

If this Is the current
reference ...

238



Changing State

lboolean updateMark)|;

.. then change to
this new mark.
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Removing a Node

T3 @Z—]—%%LE;[Z;ED
o




Removing a Node

Wi

al

remove
b O o o@
241
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Removing a Node

[I-]—%]Q LIH—(c[3—(])




Removing a Node

([5—~

Ffemove
b Oo OQ
243




Traversing the List

* Q: what do you do when you find a
“logically” deleted node in your path”?

* A: finish the job.
— CAS the predecessor’'s next field
— Proceed (repeat as needed)

244



Lock-Free Traversal
(only Add and Remove)




The Window Class

class Window {

public Node pred;

public Node curr;

Window (Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}
}
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The Window Class

public Node pred;
public Node curr;

A container for pred
and current values
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Using the Find Method

Window window = find(head, key)
Node pred = window.pred;
curr = window.curr;
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Using the Find Method

[Window window = find (head, key):; ]

N

Find returns window
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Using the Find Method

Node pred = window.pred;
curr = window.curr;

Extract pred and curr
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The Find Method

[ Window window

At some Instant, f ‘ or ...

pred curr succ
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The Find Method

[ Window window

| {jtem ¥ notin list
At some Instant,

F——U5

curr= null
pred succ
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Remove

public boolean remove (T item) ({
Boolean snip;
while (true) {
Window window = find (head, key) ;
Node pred = window.pred, curr = window.curr;
if (curr.key !'= key) {
return false;
} else {
Node succ = curr.next.getReference() ;
snip = curr.next.compareAndSet (succ, succ, false true);
if (!'snip) continue;
pred.next.compareAndSet (curr, succ, false, false);
return true;

b}
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Remove

public boolean remove (T item) ({

Boolean snip;

while (true) {
} 1nd

find (head, key);
\ndow.pred, curr = window.curr;

return fa

} else {
Node succ = curr. L .getReference() ;
snip = curr.next.co eAndSet (succ, succ, false, true);

if (!'snip) continue;
pred.next.compareAndSet\gurr, succ, false, false);
return true;

L Keep trying
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Remove

Window window = find (head, key) ;
Node pred = window.pred, curr = window.curr;

Find neighbors

255



Remove

(if (curr.key !'= key) {\
return false;
\} else {

She’s not there ...
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Remove

Try to mark node as deleted

Node succ = curr.next.getReference() ;
snip = curr.next.compareAndSet (succ, succ, false, true);
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Remove

If it doesn’t work,
just retry, if it [U;m
does, job
essentially done

[ if (!'snip) continue;
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Remove

Try to advance reference
(if we don’t succeed, someone else did or will).

N

pred.next.compareAndSet (curr, succ, false, false);
return true;
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Add

public boolean add (T item) ({
boolean splice;

while (true) {

Window window = find (head, key)

Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {

Node node = new Node (item) ;

node.next = new AtomicMarkableRef (curr, false);

if (pred.next.compareAndSet (curr, node,

false, false))
{ return true; }
}h}
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Add

public boolean add (T item) {
boolean splice;
while (true) {
Window window = find (head, key)
. , curr = window.curr;

if (curr.key == key) {
return
elIse |
Node node = ne (item) ;

node.next = icMarkableRef (curr, false) ;
reAndSet (curr, node, false, false))

fvadriasrn +=ri1a -1

}}) Item already there.
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Add

Node node new Node (item) ;
node.next new AtomicMarkableRef (curr, false);

B

create new node

262



Add

Install new node,
else retry loop

@%ﬁw AN

if (pred.next.compareAndSet (curr, node, false, false))
{return true;}
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Walit-free Contains

public boolean contains (T item) {
boolean marked;
int key = item.hashCode() ;
Node curr = this.head;
while (curr.key < key)
curr = curr.next;
Node succ = curr.next.get (marked) ;
return (curr.key == key && !marked[0])
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Walt-free Contains

Only diff is that we
get and check
marked

N

Node succ = curr.next.get (marked)
return (curr.key == key && !marked[0])
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Lock-free Find

public Window find (Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean|[] marked = {false};, boolean snip;
retry: while (true) {
pred = head;
curr = pred.next.getReference() ;
while (true) {
succ = curr.next.get (marked) ;
while (marked[0]) {
}
if (curr.key >= key)
return new Window (pred, curr);

pred = curr;
curr = succ;

)
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Lock-free Find

[retrY: while &
If list changes

while traversed,
start over
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Lock-free Find

Start looking from head

pred = head;
curr = pred.next.getReference()’

L
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Lock-free Find

Move down the list

while (true) {
succ = curr.next.get (marked) ;
while (marked[0]) {

}
if (curr.key >= key)
return new Window (pred, curr);
pred = curr;
curr = Succ;

/
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Lock-free Find

[ succ = curr.next.get (marked) ;

Get ref to successor and
current deleted bit

270



Lock-free Find

while (marked[0]) {
}

L

Try to remove deleted nodes In
path...code details soon
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Lock-free Find

If curr key that is greater or
equal, return pred and curr

if (curr.key >= key)
return new Window (pred, curr);
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Lock-free Find

Otherwise advance window and
loop again

pred = curr;
curr = succ;
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Lock-free Find

retry: while (true) {

while (marked[0]) {
snip = pred.next.compareAndSet (curr,

succ, false, false);

if (!'snip) continue retry;
curr = succ;
succ = curr.next.get (marked) ;
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Lock-free Find

Try to snip out node

I\

snip = pred.next.compareAndSet (curr,
succ, false, false);




Lock-free Find

if predecessor’s next field changed,
retry whole traversal

[ if ('snip) continue retry;




Lock-free Find

Otherwise move on to check
If next node deleted

succ;
curr.next.get (marked) ;

curr
SucCcC
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Performance

 Different list-based set implementations

* 16-node machine
* Vary percentage of contains () calls
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Low Contains Ratio

Ops/sec (50% reads/0 load)
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As Contains Ratio Increases
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Summary

Coarse-grained locking
Fine-grained locking
Optimistic synchronization
Lazy synchronization
Lock-free synchronization
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“To Lock or Not to Lock”

« Locking vs. Non-blocking:
— Extremist views on both sides

* The answer: nobler to compromise

— Example: Lazy list combines blocking add ()
and remove () and a wait-free contains ()

— Remember: Blocking/non-blocking is a property
of a method
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SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.
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