Programming Paradigms for Concurrency
Lecture 3 — Concurrent Objects

[HE AR

MULTIPROCESSOR
PROGRAMMING

Based on companion slides for
The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

Modified by
Thomas Wies
New York University

Concurrent Computation

Objectivism

* What Is a concurrent object?

OW C
OW C

0 we describe one?
o we implement one?

OW C

o we tell if we’re right?

Objectivism

* What Is a concurrent object?
— How do we describe one?

— How do we tell if we’re right?

FIFO Queue: Enqueue Method

| q.eng (@)

FIFO Queue: Dequeue Method

Lq-deq()/c}

/[ele]e
L ud

Lock-Based Queue

0 1 tail
head § ‘ S /
| ‘Ei'

2
3

6

capacity = 8

7

Lock-Based Queue

0 1 tail

head

Fields protected by5
single shared lock capacity = 8

8

A Lock-Based Queue

head

1

class LockBasedQueue<T> { °”““Y1\Y’Z/

Pu

head
lock
items

int head, tail;
T[] items;
Lock lock;
1c LogkBagedQueue (int capacity) {

0

/ | \

Fields protected by
single shared lock

tan

(T[Y)\ new Object[capacity];

Lock-Based Queue

Initially head = tall tail
0 1

head

10

A Lock-Based Queue

head tall

class LockBasedQueue<T> { recitv? \Y’z/

int head, tail; (f}

T[] 1*ems;

Lock lock;
(public LockBasedQueue (int capa01ty) {\
head = 0; tail = 0;
lock = new ReentrantLock() ;

\ items = (T[]) new Object[capacity];J

}

Initially head = tall

11

Lock-Based deq()
hea:l § ‘ SAZ/

5 4

Acquire Lock

tall

head
VVamngto
enqueue

Implementation: deq()

P] throws EmptyException {
lock.lock () ; :
try T ’ = Acquire lock at

if (tail == head) method start
throw new EmptyException() ;

T x = items[head % items.length];
head++;

head

return x;

taH

} flnally { capacity-1 \y,z/

lock.unlock () ; @ (D:
}

14

Check If Non-Empty

Implementation: deq()

public T deq() throws EmptyException ({
lock.lock () ;

t {
(zf (tail == head)

throw new EmptyException() ;

T x = items[head ? items /length] ;
head++;

head tall

return x;

} finally {

capacity-1 \y , z/
lock.unlock () ;

DX

If queue empty
throw exception

16

Modify the Queue

head
0 \ 1 tail

head /
7 2 Waiting to
6 enqueue...

Implementation: deq()

public T deq() throws EmptyException ({
lock.lock () ;

try {
if (tail == head)

] ()
T x = items[head % items.length];]
head++;

return x; head tail
’ \0 .
} finally { crpacity1 \Y |z, /
lock.unlock() ; 653
}
} Queue not empty? /N

Remove item and update head

18

Implementation: deq()

public T deq() throws EmptyException ({
lock.lock () ;
try {
if (tail == head)
throw new EmptyException() ;
T x = items[head % items.length];

head

Return result

taH

capacity-1 \y,z/

®@C)

19

Release the Lock

head
tail

@/

Implementation: deq()

public T deq() throws EmptyException ({
lock.lock () ;
try {
if (tail == head)
throw new EmptyException() ;
T x = items[head % items.length];

head++;
return x: head tall
[} finally { capacity-1 \y,z/

lock.unlock () ; @ w
}

Release lock no
matter what!

21

Implementation: deq()

public T deq() throws EmptyException ({
lock.lock () ;
try {
if (tail == head)
throw new EmptyException() ;
T x = items[head % items.length];
head++;
return x;
} finally {
lock.unlock () ;

22

Now consider the following
Implementation

* The same thing without mutual exclusion

* For simplicity, only two threads
— One thread eng only
— The other deqg only

23

Walt-free 2-Thread Queue

0 1 tail
head § ‘ S /
7
6

2
3

capacity = 8

24

Walt-free 2-Thread Queue

head
0 tail

- /

>

5 4 ,

25

Walt-free 2-Thread Queue

head
tall
E; result;j;
queue[tall]
= z

26

Walt-free 2-Thread Queue

head
0 tail

L 34”

27

Walt-free 2-Thread Queue

public class WaitFreeQueue {

heqd tail

O 1
int head = 0, tail = O; %ded\ylg/lf/

items = (T[]) new Object[capacityw

public void eng(Item x) { / | \
if (tail-head == capacity) throw
D b b e e e

1:items[tail % capacity] = x; tail++

public Item deq() {
if (tail == head) throw
new EmptyException () ; No lock needed
Item item = items[head % capacity]; head++;
return item;

}} 28

Walt-free 2-Thread Queue

public T deq() throws EmptyException ({
lock.lock () ;

try {
if (tail == head)

29

What Is a Concurrent Queue?

* Need a way to specify a concurrent
gueue object

 Need a way to prove that an algorithm
Implements the object’s specification

 Lets talk about object specifications ...

30

Correctness and Progress

* In a concurrent setting, we need to specify
both the safety and the liveness properties

of an object
* Need a way to define

— when an implementation is correct

— the conditions under which it guarantees
progress

Lets begin with correctness

31

Seqguential Objects

« Each object has a state

— Usually given by a set of fields

— Queue example: sequence of items
* Each object has a set of methods

— Only way to manipulate state
— Queue example: enq and deq methods

32

Sequential Specifications

* If (precondition)
— the object is In such-and-such a state
— before you call the method,

* Then (postcondition)
— the method will return a particular value
— or throw a particular exception.

* and (postcondition, con't)
— the object will be In some other state
— when the method returns,

33

Pre and PostConditions for
Dequeue

* Precondition:
— Queue IS non-empty
* Postcondition:
— Returns first item in queue

* Postcondition:
— Removes first item in queue

34

Pre and PostConditions for
Dequeue

* Precondition:
— Queue Is empty
* Postcondition:
— Throws Empty exception

* Postcondition:
— Queue state unchanged

35

Why Sequential Specifications
Totally Rock

 Interactions among methods captured by side-
effects on object state
— State meaningful between method calls

« Documentation size linear in number of methods
— Each method described in isolation

« Can add new methods
— Without changing descriptions of old methods

36

What About Concurrent
Specifications ?

e Methods?
« Documentation?
« Adding new methods?

37

Methods Take Time

38

Methods Take Time

Invocation
12:00
le[e] |

A

Qo,

e

39

Methods Take Time

Invocation
12:00
le[e] |

Co,
Method call
40

Methods Take Time

[invocaﬂon

e

Methods Take Time

invocation response]
12:00 12:01
o]e|e]

X)

& == -
e

Sequential vs Concurrent

« Sequential
— Methods take time? Who knew?
e Concurrent

— Method call is not an event
— Method call is an interval.

43

Concurrent Methods Take
Overlapping Time

e

44

Concurrent Methods Take
Overlapping Time

7=
Method call

e

45

Concurrent Methods Take
Overlapping Time

Method call
75>

46

Concurrent Methods Take
Overlapping Time

Z v

Method call Method call
7> ¥,

Method call
<

time

47

Sequential vs Concurrent

« Sequential:

— Object needs meaningful state only between
method calls

e Concurrent

— Because method calls overlap, object might
never be between method calls

48

Sequential vs Concurrent

« Sequential:
— Each method described in isolation

e Concurrent

— Must characterize all possible interactions
with concurrent calls
 What if two engs overlap?
* TwWo degs? eng and deg? ...

49

Sequential vs Concurrent

« Sequential:

— Can add new methods without affecting older
methods

e Concurrent:

— Everything can potentially interact with
everything else

50

Sequential vs Concurrent

« Sequential:

— Can add new methods without affecting older
methods

e Concurrent:

— Everything can potentially Ip
everything else

51

The Big Question

* What does it mean for a concurrent object
to be correct?

— What is a concurrent FIFO queue?
— FIFO means strict temporal order
— Concurrent means ambiguous temporal order

52

Intuitively...

public T deq() throws EmptyException ({
lock.lock () ;
try {
if (tail == head)
throw new EmptyException() ;
T x = items[head % items.length];
head++;
return x;
} finally {
lock.unlock () ;

53

T x
head++;
return x;

Intuitively...

throws EmptyException {

All gueue modifications

}[ﬁlnally {
lock.unlock () ; '
echiunlociiy are mutually exclusive

54

: . ,
Lets capture the idea of describing
the concurrent via the sequential

ock () q.deq

1 unlock ()
Ei o de? '

lock () Eenqiunlockf() ()
: | | . | Behavior iIs

“Sequential”

Linearizabillity

« Each method should
— “take effect”
— Instantaneously
— Between invocation and response events

* Object is correct if this “sequential”
behavior Is correct

* Any such concurrent object Is
— Linearizable™

56

Is It really about the object?

 Each method should
— “take effect”
— Instantaneously
— Between invocation and response events

* Sounds like a property of an execution...

* A linearizable object: one all of whose
possible executions are linearizable

Y

Example

58

Example

59

Example

60

Example

61

Example

62

Example

65

Example

66

Example

67

Example

68

Example

69

Example

71

Example

Example

Example

Example

78

Example

79

Comme i Cxamp’s
Comme ca |

Read/Write Register Example

() =)
—_

81

Read/Write Register Example

write(1) already
happened

82

Read/Write Register Example

write(1) already
happened

83

Read/Write Register Example

write(1) already
happened

84

Read/Write Register Example

write(1) already
happened

85

Read/Write Register Example

write(1) already
happened

86

Read/Write Register Example

write(1) already
happened

87

Read/Write Register Example

@
e

88

Read/Write Register Example

=
—

89

Read/Write Register Example

Read/Write Register Example

A
—

91

Read/Write Register Example

Read/Write Register Example

Read/Write Register Example

Talking About Executions

 Why?
— Can’t we specify the linearization point of

each operation without describing an
execution?

* Not Always

— In some cases, linearization point depends on
the execution

95

Linearizable Objects are Composable

* Modularity

« Can prove linearizability of objects In
Isolation

« Can compose independently-implemented
objects

101

Reasoning About

tail

Linearizabllity: Lockigg

public T deq() throws EmptyException ({

lock.lock () ; @ cspacity-l\Y | z , /

try {
if (tail == head)
throw new EmptyException () ; 71\
T x = items[head % items.length];
head++;
return x;
} finally {

lock.unlock () ;

102

Reasoning About
Linearizabllity: Locking

[lock.unlock();

Linearization points
are when locks are
released

103

More Reasoning: Wait-free

public class WaitFreeQueue { head

tail

capacity_l\{; | zl/ / ‘

int head = 0, tail = O;
items = (T[]) new Object[capacity]; CZ::::):

public void enqg(Item x) { 7N
if (tail-head == capacity) throw
new FullException() ;
items[tail $ capacity] = x; tail++;
}
public Item deq() {
if (tail == head) throw
new EmptyException () ;

Item item = items[head % capacity]; head++;

return item;

)

More Reasoning: Wait-free

ublic clas- ‘tFreeQueue { —
P e ;—i]

» Linearization order |
ir Q0 W Poew o Order head and tail
‘ QQ QQ c . g
W 2 & fields modified
e,((\ 00 (\0 +d eng(Item x) { T/ I- \
Q&(QQ\‘X \\‘o-ail—head == capacity) throw
.\9060(\ new FullException() ;

dQ items[tail % capacity] = x

}

public Item deq() {
if (tail == head) throw
new EmptyException () ; |
Item item = items[head % capacity];(head++;
return item;

}} 105

Strategy

* |dentify one atomic step where method
“happens”

— Critical section
— Machine instruction

* Doesn’t always work

— Might need to define several different steps
for a given method

106

Linearizabllity: Summary

* Powerful specification tool for shared
objects

* Allows us to capture the notion of objects
being “atomic”

 Don’t leave home without it

107

Sequential Consistency

* No need to preserve real-time order

— Cannot re-order operations done by the
same thread

— Can re-order non-overlapping operations
done by different threads

« Often used to describe multiprocessor
memory architectures

108

Example

109

Example

Example

111

Example

112

Example

113

Theorem

Seqguential Consistency Is not
composable

116

FIFO Queue Example

=))

e

117

FIFO Queue Example

D) |

e

118

FIFO Queue Example

4)
)
&= e
_ /
N—

History H

e

119

Seqguentially Consistent

e |

e

120

Seqguentially Consistent

D) |

e

121

Ordering imposed by p

Ordering imposed by g

Ordering imposed by both

Combining orders

g.ena(y) X p. enq(y)l q.dev|(x)

‘

\

125

Fact

* Most hardware architectures don'’t support
sequential consistency

* Because they think it's too strong
* Here's another story ...

126

The Flag Example

2,

X.read(0)

e

127

The Flag Example

&)
&)

» Each thread’s view is sequentially
consistent

— It went first

128

The Flag Example

&)
&)

* Entire history isn’'t sequentially
consistent

— Can’t both go first

129

The Flag Example

&)
&)

* Is this behavior really so wrong?
— We can argue either way ...

130

Opinionl: It's Wrong

* This pattern
— Write mine, read yours

* |s exactly the flag principle
— Beloved of Alice and Bob

— Heart of mutual exclusion
e Peterson
« Bakery, etc.

* |It's non-negotiable!

131

Opinion2: But It Feels So Right ...

 Many hardware architects think that
seguential consistency Is too strong

* Too expensive to Implement in modern
hardware

« OK If flag principle
— violated by default
— Honored by explicit request

132

Memory Hierarchy

* On modern multiprocessors, processors
do not read and write directly to memory.

e Memory accesses are very slow compared
to processor speeds,

 Instead, each processor reads and writes
directly to a cache

133

Memory Operations

 To read a memory location,
— load data into cache.

* To write a memory location
— update cached copy,
— lazily write cached data back to memory

134

While Writing to Memory

* A processor can execute hundreds, or
even thousands of instructions

* Why delay on every memory write?

 Instead, write back in parallel with rest of
the program.

135

Revisionist History

* Flag violation history Is actually OK

— processors delay writing to memory
— until after reads have been issued.

« Otherwise unacceptable delay between
read and write instructions.

* Who knew you wanted to synchronize?

136

Who knew you wanted to
synchronize?

« Writing to memory = mailing a letter

« Vast majority of reads & writes
— Not for synchronization
— No need to idle waiting for post office

* If you want to synchronize
— Announce it explicitly
— Pay for it only when you need it

137

Double-Checked Locking

public class Singleton ({
private static Singleton instance;

public static Singleton getInstance() {

if (instance == null) {
synchronized (Singleton.class) ({
if (instance == null) {

instance = new Singleton()

}
}
}

return instance;

138

Explicit Synchronization

 Memory barrier instruction
— Flush unwritten caches
— Bring caches up to date

« Compilers often do this for you
— Entering and leaving critical sections

* Expensive

139

Volatile

* In Java, can ask compiler to keep a
variable up-to-date with volatile keyword

 Also inhibits reordering, removing from
loops, & other “optimizations”

140

Bakery Algorithm revisited

class Bakery implements Lock ({
volatile boolean[] flag;
volatile Label[] label;
public Bakery (int n) {
flag = new boolean[n];
label = new Label[n];
for (int 1 = 0; 1 < n; i++) {
flag[i] = false; label[i] = O;

141

Real-World Hardware Memory

Weaker than sequential consistency

But you can get sequential consistency at
a price

OK for expert, tricky stuff

— assembly language, device drivers, etc.

Linearizability more appropriate for high-
level software

142

Linearizabillity

 Linearizability
— Operation takes effect instantaneously
between invocation and response

— Uses sequential specification, locality implies
composablity

— Good for high level objects

143

Correctness: Linearizability

« Sequential Consistency
— Not composable
— Harder to work with
— Good way to think about hardware models

* We will use linearizability in the remainder
of this course unless stated otherwise

144

Progress

* We saw an implementation whose
methods were lock-based (deadlock-free)

* We saw an implementation whose
methods did not use locks (lock-free)

 How do they relate?

145

Progress Conditions

Deadlock-free: some thread trying to acquire the
lock eventually succeeds.

Starvation-free: every thread trying to acquire
the lock eventually succeeds.

Lock-free: some thread calling a method
eventually returns.

Wait-free: every thread calling a method
eventually returns.

146

Everyone
makes
progress

Someone
makes
progress

Progress Conditions

Non-Blocking Blocking
Wait-free Starvation-free
Lock-free Deadlock-free

147

Summary

« We will look at linearizable blocking and
non-blocking implementations of objects.

148

SOME RIGHTS RESERVED

?his work Is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

* You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work
 Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

- For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

« Any of the above conditions can be waived if you get permission from the
copyright holder.

* Nothing in this license impairs or restricts the author's moral rights.

149

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

