
G22.2110-003 Programming Languages - Fall 2012
Lecture 10

Thomas Wies

New York University

Review

Last class

I ML

Outline

I Modules

Sources:
PLP, 3.3.4, 3.3.5, 3.8
McConnell, Steve. Code Complete, Second Edition, ch. 5.
http:
//en.wikipedia.org/wiki/Argument_dependent_name_lookup

http://en.wikipedia.org/wiki/Argument_dependent_name_lookup
http://en.wikipedia.org/wiki/Argument_dependent_name_lookup

Software Complexity

I Tony Hoare:
There are two ways of constructing a software design: one way is to
make it so simple that there are obviously no deficiencies, and the
other is to make it so complicated that there are no obvious
deficiencies.

I Edsger Dijkstra:
Computing is the only profession in which a single mind is obliged to
span the distance from a bit to a few hundred megabytes, a ratio of
1 to 109, or nine orders of magnitude. Compared to that number of
semantic levels, the average mathematical theory is almost flat. By
evoking the need for deep conceptual hierarchies, the automatic
computer confronts us with a radically new intellectual challenge
that has no precedent in our history.

I Steve McConnell:
Software’s Primary Technical Imperative has to be managing
complexity.

Dealing with Complexity

Problem Decomposition
Minimize the amount of essential complexity that has to be dealt with at
any one time. In most cases, this is the top priority .

Information Hiding
Encapsulate complexity so that it is not accessible outside of a small part
of the program.

Additional benefits of information hiding:

I Reduces risk of name conflicts

I Safeguards integrity of data

I Helps to compartmentalize run-time errors

Modules

A module is a programming language construct that enables problem
decomposition, information hiding, and (often) separate compilation.

A module

I defines a set of logically related entities (strong internal coupling)

I has a public interface that defines entities exported by the
component

I may depend on the entities defined in the interface of another
component (weak external coupling)

I may include other (private) entities that are not exported
(information hiding)

What is a module?

I different languages use different terms

I different languages have different semantics for this construct
(sometimes very different)

I a module is somewhat like a record, but with an important
distinction:

I record
=⇒ consists of a set of names called fields, which refer to values in
the record

I module
=⇒ consists of a set of names, which can refer to values, types,
routines, other language-specific entities, and possibly other modules

Language constructs for modularity

Issues:

I public interface

I private implementation

I dependencies between modules

I naming conventions of imported entities

I relationship between modules and files

I access control : module controls whether a client can access its
contents

I closed module: names must be explicitly imported from outside
module

I open module: outside names are accessible inside module

Language choices

I Ada : package declaration and body, with and use clauses,
renamings

I C : header files, #include directives

I C++ : header files, #include directives, namespaces, using
declarations/directives, namespace alias definitions

I Java/Scala : packages, import statements

I ML : signature, structure and functor definitions

Ada: Packages

package Queues is
Size: constant Integer := 1000;

type Queue is private; -- information hiding

procedure Enqueue (Q: in out Queue , Elem: Integer);
procedure Dequeue (Q: in out Queue;

Elem: out Integer);
function Empty (Q: Queue) return Boolean;
function Full (Q: Queue) return Boolean;
function Slack (Q: Queue) return Integer;
-- overloaded operator "=":

function "=" (Q1, Q2: Queue) return Boolean;

private
... -- concern of implementation ,

-- not of package client

end Queues;

Private parts and information hiding

package Queues is
... -- visible declarations

private
type Storage is

array (Integer range <>) of Integer;
type Queue is record

Front: Integer := 0; -- next elem to remove

Back: Integer := 0; -- next available slot

Contents: Storage (0 .. Size -1); -- actual contents

Num: Integer := 0;
end record;

end Queues;

Implementation of Queues

package body Queues is
procedure Enqueue (Q: in out Queue;

Elem: Integer) is
begin

if Full(Q) then
-- need to signal error: raise exception

else
Q.Contents(Q.Back) := Elem;

end if;
Q.Num := Q.Num + 1;
Q.Back := (Q.Back + 1) mod Size;

end Enqueue;

Predicates on queues

function Empty (Q: Queue) return Boolean is
begin

return Q.Num = 0; -- client cannot access

-- Num directly

end Empty;

function Full (Q: Queue) return Boolean is
begin

return Q.Num = Size;
end Full;

function Slack (Q: Queue) return Integer is
begin

return Size - Q.Num;
end Slack;

Operator Overloading

function "=" (Q1, Q2 : Queue) return Boolean is
begin

if Q1.Num /= Q2.Num then
return False;

else
for J in 1 .. Q1.Num loop

-- check corresponding elements

if Q1.Contents ((Q1.Front + J - 1) mod Size) /=
Q2.Contents ((Q2.Front + J - 1) mod Size)

then
return False;

end if;
end loop;
return True; -- all elements are equal

end if;
end "="; -- operator "/=" implicitly defined

-- as negation of "="

Client can only use visible interface

with Queues; use Queues; with Text_IO;

procedure Test is
Q1 , Q2: Queue; -- local objects of a private type

Val : Integer;
begin

Enqueue(Q1 , 200); -- visible operation

for J in 1 .. 25 loop
Enqueue(Q1 , J);
Enqueue(Q2 , J);

end loop;
Deqeue(Q1 , Val); -- visible operation

if Q1 /= Q2 then
Text_IO.Put_Line("lousy implementation");

end if;
end Test;

Implementation

I package body holds bodies of subprograms that implement interface

I package may not require a body:

package Days is
type Day is (Mon , Tue , Wed , Thu , Fri , Sat , Sun);

subtype Weekday is Day range Mon .. Fri;

Tomorrow: constant array (Day) of Day
:= (Tue , Wed , Thu , Fri , Sat , Sun , Mon);

Next_Work_Day: constant array (Weekday) of Weekday
:= (Tue , Wed , Thu , Fri , Mon);

end Days;

Syntactic sugar: use and renames

Visible entities can be denoted with an expanded name:

with Text_IO;
...
Text_IO.Put_Line("hello");

use clause makes name of entity directly usable:

with Text_IO; use Text_IO;
...
Put_Line("hello");

renames clause makes name of entity more manageable:

with Text_IO;
package T renames Text_IO;
...
T.Put_Line("hello");

Sugar can be indispensable

with Queues;

procedure Test is
Q1 , Q2: Queues.Queue;

begin
if Q1 = Q2 then ...

-- error: "=" is not directly visible

-- must write instead: Queues ."="(Q1 , Q2)

Two solutions:

I import all entities:

use Queues;

I import operators only:

use type Queues.Queue;

C++ namespaces

I late addition to the language

I an entity requires one or more declarations and a single definition

I a namespace declaration can contain both, but definitions may also
be given separately

// in .h file

namespace util {
int f (int); /* declaration of f */

}

// in .cpp file

namespace util {
int f (int i) {

// definition provides body of function

...
}

}

Dependencies between modules in C++

I files have semantic significance: #include directives means textual
substitution of one file in another

I convention is to use header files for shared interfaces

#include <iostream > // import declarations

int main () {
std::cout << "C++ is really different"

<< std::endl;
}

Header files are visible interfaces

namespace stack { // in file stack.h

void push (char);
char pop ();

}

#include "stack.h" // import into client file

void f () {
stack ::push(’c’);
if (stack::pop() != ’c’) error("impossible");

}

Namespace Definitions

#include "stack.h" // import declarations

namespace stack { // the definition

const unsigned int MaxSize = 200;
char v[MaxSize];
unsigned int numElems = 0;

void push (char c) {
if (numElems >= MaxSize)

throw std:: out_of_range("stack overflow");
v[numElems ++] = c;

}

char pop () {
if (numElems == 0)

throw std:: out_of_range("stack underflow");
return v[--numElems];

}
}

Syntactic sugar: using declarations

namespace queue { // works on single queue

void enqueue (int);
int dequeue ();

}

#include "queue.h" // in client file

using queue :: dequeue; // selective import

void f () {
queue :: enqueue (10); // prefix needed for enqueue

queue :: enqueue (-999);
if (dequeue () != 10) // but not for dequeue

error("buggy implementation");
}

Wholesale import: the using directive

#include "queue.h" // in client file

using namespace queue; // import everything

void f () {
enqueue (10); // prefix not needed

enqueue (-999);
if (dequeue () != 10) // for anything

error("buggy implementation");
}

Shortening names

Sometimes, we want to qualify names, but with a shorter name.

In Ada:

package PN renames A.Very_Long.Package_Name;

In C++:

namespace pn = a:: very_long :: package_name;

We can now use PN as the qualifier instead of the long name.

Visibility: Koenig lookup in C++

When an unqualified name is used as a function call, other namespaces
besides those currently being used may be searched; this search depends
on the types of the arguments to the function.

This is known as Koenig lookup or argument dependent name lookup

For each argument type T in the function call, there is a set of zero or
more associated namespaces to be considered. The set of namespaces is
determined entirely by the types of the function arguments.

Type-def names used to specify the types do not contribute to this set.

Koenig lookup: details

The set of namespaces are determined in the following way:

I If T is a fundamental type, its associated set of namespaces is
empty.

I If T is a class type, its associated namespaces are the namespaces in
which the class and its direct and indirect base classes are defined.

I If T is a union or enumeration type, its associated namespace is the
namespace in which it is defined.

I If T is a pointer to U, a reference to U, or an array of U, its
associated namespaces are the namespaces associated with U.

I If T is a pointer to function type, its associated namespaces are the
namespaces associated with the function parameter types and the
namespaces associated with the return type. [recursive]

Koenig Lookup

Example

namespace NS
{

class A {};
void f(A) {}

}

int main()
{

NS::A a;
f(a); //calls NS::f

}

Koenig Lookup

Example

#include <iostream >

int main()
{

// Where does operator <<() come from?

std::cout << "Hello , World" << std::endl;
return 0;

}

Linking

I an external declaration for a variable indicates that the entity is
defined elsewhere

extern int x; // will be found later

I a function declaration indicates that the body is defined elsewhere

I multiple declarations may denote the same entity

extern int x; // in some other file

I an entity can only be defined once

I missing/multiple definitions cannot be detected by the compiler:
they result in link-time errors

Include directives = multiple declarations

#include "queue.h" // as if declaration were

// textually present

void f () { ... }

#include "queue.h" // second declaration in

// different client

void g () { ... }

I headers are safer than cut-and-paste, but not as good as a proper
module system

Modules in Java

I package structure parallels file system

I a package is a directory

I a class is compiled into a separate object file

I each class declares the package in which it appears

package polynomials;
class poly {

... // in file .../ alg/polynomials/poly.java

}

package polynomials;
class iterator {

... // in file .../ alg/polynomials/iterator.java

}

Default: anonymous package in current directory.

Dependencies between classes

I dependencies indicated with import statements:

import java.awt.Rectangle; // declared in

// java.awt

import java.awt .*; // import all classes

// in package

I no syntactic sugar across packages: use expanded names or import

I none needed in same package: all classes in package are directly
visible to each other

I Scala: similar package system as Java but slightly more flexible
I local imports
I ability to define entities belonging to different packages in a single file

Modules in ML

There are three entities:

I signature : an interface

I structure : an implementation

I functor : a parameterized structure

A structure implements a signature if it defines everything mentioned in
the signature (in the correct way).

ML signature

An ML signature specifies an interface for a module.

signature STACK =
sig

type stack
exception EmptyStack
val empty : stack
val push : int * stack -> stack
val pop : stack -> int * stack
val isEmpty : stack -> bool

end

ML structure

A structure provides an implementation of a signature.

structure Stack : STACK =
struct

type stack = int list
exception EmptyStack
val empty = []
val push = op::
fun pop (c::cs) = (c, cs)

| pop [] = raise EmptyStack
fun isEmpty [] = true

| isEmpty _ = false
end

ML structures and information hiding

I Opaque signature matching :> hides the implementation of a
structure

structure Stack :> STACK =
struct

type stack = int list
...

end

- val s = Stack.push (1, Stack.empty);
val q = - : Stack.stack

A client of Stack cannot use list operations on q.

Importing and renaming ML structures

I Renaming of structures is done using structure declarations:
- structure S = Stack;
structure S : STACK

- S.pop (S.push (3, S.push (2, S.empty)))
val it = (3,-) : int * S.stack

I open imports all names in a structure into the current scope
- open Stack;
opening Stack

type stack

exception EmptyStack

val empty : stack

val push : int * stack -> stack

val pop : stack -> int * stack

val isEmpty : stack -> bool

- pop (push (3, push (2, empty)));
val it = (3,-) : int * stack

ML structures and polymorphism

I Structures may include polymorphic types and values:

signature STACK =
sig

type ’a stack
exception EmptyStack
val empty : ’a stack
val push : ’a * ’a stack -> ’a stack
val pop : ’a stack -> ’a * ’a stack
val isEmpty : ’a stack -> bool

end

A more interesting example: Priority Queues

datatype order = LESS | EQUAL | GREATER

signature PRIORITY_QUEUE =
sig

type ’a prio_queue
exception EmptyQueue
val empty : (’a * ’a -> order) -> ’a prio_queue
val isEmpty : ’a prio_queue -> bool
val insert : ’a * ’a prio_queue -> ’a prio_queue
val min : ’a prio_queue -> ’a option
val delMin : ’a prio_queue -> ’a prio_queue

end

structure PriorityQueue :> PRIORITY_QUEUE = ...

Using the priority queue structure

- open PriorityQueue
val iq = empty Int.compare
val sq = empty String.compare
val x = min (insert

(3, insert (1, insert (4, iq))))
val y = min (foldl insert sq

["These","are","the","entries"]);

val iq = - : int prio_queue

val sq = - : string prio_queue

val x = SOME 1: int option

val y = SOME "are": string option

Implementation of the PriorityQueue structure

structure PriorityQueue :> PRIORITY_QUEUE =
struct

type ’a prio_queue =
{elems: ’a list , cmp: ’a * ’a -> order}

exception EmptyQueue
fun empty cmp = {elems = [], cmp = cmp}
fun isEmpty {elems = [], cmp = _} = true

| isEmpty _ = false
...
fun min {elems = x :: _, cmp = _} = SOME x

| min _ = NONE
fun delMin {elems = _ :: xs , cmp = cmp} =

{elems = xs, cmp = cmp}
| delMin _ = raise EmptyQueue

end

Implementation of the PriorityQueue structure

structure PriorityQueue :> PRIORITY_QUEUE =
struct

...
fun insert (x, {elems = xs , cmp = cmp}) =

let fun ins [] = [x]
| ins (y :: xs) =

if cmp (x, y) = LESS
then x :: y :: xs
else y :: ins xs

in
{elems = ins xs , cmp = cmp}

end
...

end

Comparisons

Ada C++ Java ML

used to avoid name clashes 4 4 4 4

access control 4 weak 4 4

is closed 4 8 8 4

Relation between interface and implementation:

I Ada:

one package (interface) ⇔ one package body

I ML:
one signature can be implemented by many structures
one structure can implement many signatures

