Review

Last lecture

- Types
Outline

- ML

Sources:

- PLP, ch. 10
ML overview

- originally developed by Robin Milner for writing theorem provers
- functional: functions are first-class values
- garbage collection
- strong and static typing; powerful type system
 - parametric polymorphism (somewhat like Ada generics)
 - structural equivalence
 - all with type inference!
- advanced module system
- exceptions
- miscellaneous features:
 - datatypes (merge of enumerated literals and variant records)
 - pattern matching
 - references (like “const pointers”)
Popular ML Implementations and Dialects

- Standard ML of New Jersey (SML/NJ)
- Poly/ML
- MLton
- OCaml
- F#
A sample SML/NJ interactive session

- val k = 5;
 val k = 5 : int
- k * k * k;
 val it = 125 : int
 ‘it’ denotes the last computation
- [1, 2, 3];
 val it = [1,2,3] : int list
- ["hello", "world"];
 val it = ["hello","world"] : string list
- 1 :: [2, 3];
 val it = [1,2,3] : int list
Operations on lists

- null [1, 2];
 val it = false : bool
- null [];
 val it = true : bool
- hd [1, 2, 3];
 val it = 1 : int
- tl [1, 2, 3];
 val it = [2, 3] : int list
- [];
 val it = [] : 'a list

this list is polymorphic
Simple functions

A function *declaration*:

- `fun abs x = if x >= 0.0 then x else ~x;`

 `val abs = fn : real -> real`

A function *expression*:

- `val abs = fn x => if x >= 0.0 then x else ~x;`

 `val abs = fn : real -> real`

`fn` is like `lambda` in Scheme.
Functions

- fun length xs =
 if null xs
 then 0
 else 1 + length (tl xs);

val length = fn : 'a list -> int

'a denotes a type variable;
length can be applied to lists of any element type

The same function, written in pattern-matching style:

- fun length [] = 0
 | length (x::xs) = 1 + length xs;

val length = fn : 'a list -> int
Advantages of type inference and polymorphism:

- frees you from having to write types. A type can be more complex than the expression whose type it is, e.g., `flip`

- with type inference, you get polymorphism for free:
 - no need to specify that a function is polymorphic
 - no need to “instantiate” a polymorphic function when it is applied
Multiple arguments?

- All functions in ML take exactly one argument
- If a function needs multiple arguments, we can
 1. pass a tuple:
 - `(53, "hello")` (*a tuple *)
     ```
     val it = (53, "hello") : int * string
     ```
 We can also use tuples to return multiple results.
 2. use *currying* (named after Haskell Curry, a logician)
The tuple solution

Another function; takes two lists and yields their concatenation

- fun append1 ([], ys) = ys
 | append1 (x::xs, ys) = x :: append1 (xs, ys);
val append1 = fn: 'a list * 'a list -> 'a list

- append1 ([1,2,3], [8,9]);
val it = [1,2,3,8,9] : int list
Currying

The same function, written in curried style:

- fun append2 [] ys = ys
 | append2 (x::xs) ys = x :: append2 xs ys;
val append2 = fn: 'a list -> 'a list -> 'a list

- append2 [1,2,3] [8,9];
val it = [1,2,3,8,9] : int list

- val app123 = append2 [1,2,3];
val app123 = fn : int list -> int list

- app123 [8,9];
val it = [1,2,3,8,9] : int list
More partial application

But what if we want to provide the other argument instead, i.e. append \([8,9]\) to its argument?

- here is one way: (the Ada/C/C++/Java way)

```haskell
fun appTo89 xs = append2 xs [8,9];
```

- here is another: (using a higher-order function)

```haskell
val appTo89 = flip append2 [8,9];
```

\texttt{flip} is a function which takes a curried function and “flips” its two arguments. We define it on the next frame...
fun flip f y x = f x y

The type of \(\text{flip}\) is \((\alpha \to \beta \to \gamma) \to \beta \to \alpha \to \gamma\). Why?

Consider \((f x)\). \(f\) is a function; its argument has the same type as \(x\).

\[f : A \to B \]
\[x : A \]
\[(f x) : B \]

Now consider \((f x y)\). Because function application is left-associative, \(f x y \equiv (f x) y\). Therefore, \((f x)\) must be a function, and its argument must have the same type as \(y\):

\[(f x) : C \to D \]
\[y : C \]
\[(f x y) : D \]

Note that \(B\) must be the same as \(C \to D\). We say that \(B\) must unify with \(C \to D\).

The return type of \(\text{flip}\) is whatever the type of \((f x y)\) is. After renaming the types, we have the type given at the top.
fun flip f y x = f x y

The type of flip is \((\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma\). Why?
Type inference example

fun flip f y x = f x y

The type of flip is \((\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma\). Why?

- Consider \((f\ x)\). f is a function; its argument has the same type as x.
 \[f : A \rightarrow B \quad x : A \quad (f\ x) : B \]

- Now consider \((f\ x\ y)\). Because function application is left-associative,
 \(f\ x\ y \equiv (f\ x)\ y\). Therefore, \((f\ x)\) must be a function, and its argument must have the same type as y:
 \[(f\ x) : C \rightarrow D \quad y : C \quad (f\ x\ y) : D \]

- Note that B must be the same as \(C \rightarrow D\). We say that B must unify with \(C \rightarrow D\).

- The return type of flip is whatever the type of \(f\ x\ y\) is. After renaming the types, we have the type given at the top.
Type rules

The type system is defined in terms of inference rules. For example, here is the rule for variables:

\[
\frac{(x : \tau) \in E}{E \vdash x : \tau}
\]

and the one for function calls:

\[
\frac{E \vdash e_1 : \tau' \rightarrow \tau \quad E \vdash e_2 : \tau'}{E \vdash e_1 \; e_2 : \tau}
\]

and here is the rule for if expressions:

\[
\frac{E \vdash e : \text{bool} \quad E \vdash e_1 : \tau \quad E \vdash e_2 : \tau}{E \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}
\]
Passing functions

- fun exists pred [] = false
 | exists pred (x::xs) = pred x orelse
 exists pred xs;
val exists = fn : ('a -> bool) -> 'a list -> bool

- exists (fn i => i = 1) [2, 3, 4];
val it = false : bool

- pred is a predicate: a function that returns a boolean
- exists checks whether pred is true for any member of the list
Applying functionals

- `exists (fn i => i = 1) [2, 3, 4];`
 `val it = false : bool`

Now partially apply `exists`:

- `val hasOne = exists (fn i => i = 1);`
 `val hasOne = fn : int list -> bool`
- `hasOne [3,2,1];`
 `val it = true : bool`
Functionals 2

fun all pred [] = true
 | all pred (x::xs) = pred x andalso all pred xs

fun filter pred [] = []
 | filter pred (x :: xs) = if pred x
 then x :: filter pred xs
 else filter pred xs

all : (α → bool) → α list → bool

filter : (α → bool) → α list → α list
let provides local scope:

(* standard Newton-Raphson *)

fun findroot (a, x, acc) =
 let val nextx = (a / x + x) / 2.0
 (* nextx is the next approximation *)
 in
 if abs (x - nextx) < acc * x
 then nextx
 else findroot (a, nextx, acc)
 end
A classic in functional form: quicksort

fun qSort op< [] = []
| qSort op< [x] = [x]
| qSort op< (a::bs) = let fun partition left right [] = (left, right) (* done partitioning *)
| partition left right (x::xs) = (* put x to left or right *)
if x < a
then partition (x::left) right xs
else partition left (x::right) xs
val (left, right) = partition [] [] bs
in
qSort op< left @ a :: qSort op< right
end

qSort : (α * α → bool) → α list → α list
Another variant of mergesort

fun qSort op< [] = []
| qSort op< [x] = [x]
| qSort op< (a:::bs) =
 let fun deposit (x, (left, right)) =
 if x < a
 then (x:::left, right)
 else (left, x:::right)
 val (left, right) = foldl deposit ([], []) bs
 in
 qSort op< left @ a ::: qSort op< right
end

\[
qSort : (\alpha \times \alpha \rightarrow \text{bool}) \rightarrow \alpha \text{list} \rightarrow \alpha \text{list}
\]
The type system

- primitive types: bool, int, char, real, string, unit
- constructors: list, array, product (tuple), function, record
- “datatypes”: a way to make new types
- structural equivalence (except for datatypes)
 - as opposed to name equivalence in e.g. Ada
- an expression has a corresponding type expression
- the interpreter builds the type expression for each input
- type checking requires that type of functions’ parameters match the type of their arguments, and that the type of the context matches the type of the function’s result
ML records

Records in ML obey structural equivalence (unlike records in many other languages).

A type declaration: *only needed if you want to refer to this type by name*

```plaintext
type vec = { x : real , y : real };
```

A variable declaration:

```plaintext
val v = { x = 2.3 , y = 4.1 };
```

Field selection:

```plaintext
#x v;
```

Pattern matching in a function:

```plaintext
fun dist {x,y} = 
    sqrt (pow (x, 2.0) + pow (y, 2.0))
```
Datatypes

A datatype declaration:

- defines a new type *that is not equivalent to any other type* (like name equivalence)
- introduces *data constructors*
 - *data constructors* can be used in patterns
 - they are also values themselves
Datatype example

```haskell
datatype tree = Leaf of int  
            | Node of tree * tree
```

Leaf and Node are *data constructors*:

- Leaf : int → tree
- Node : tree * tree → tree
We can define functions by pattern matching:

```haskell
fun sum (Leaf t) = t
  | sum (Node (t1, t2)) = sum t1 + sum t2

fun flatten (Leaf t) = [t]
  | flatten (Node (t1, t2)) = flatten t1 @ flatten t2
```

flatten : tree → int list
Parameterized datatypes

datatype 'a gentree =
 Leaf of 'a
 | Node of 'a gentree * 'a gentree

val names = Node (Leaf "this", Leaf "that")

 names : string gentree
The rules of pattern matching

Pattern elements:

- integer literals: 4, 19
- character literals: #'a'
- string literals: "hello"
- data constructors: Node (...)
 - depending on type, may have arguments, which would also be patterns
- variables: x, ys
- wildcard: _

Convention is to capitalize data constructors, and start variables with lower-case.
More rules of pattern matching

Special forms:

- \((\), \{\}\) – the unit value
- \([\]\) – empty list
- \([p_1, p_2, \ldots, p_n]\) means \((p_1 :: (p_2 :: \ldots :: (p_n :: [])\ldots))\)
- \((p_1, p_2, \ldots, p_n)\) – a tuple
- \{field_1, field_2, \ldots, field_n\} – a record
- \{field_1, field_2, \ldots, field_n, \ldots\} – a partially specified record
- \(v\ as\ p\)
 – \(v\) is a name for the entire pattern \(p\)
Common idiom: option

option is a built-in datatype:

```ml
datatype 'a option = NONE | SOME of 'a
```

Defining a simple lookup function:

```ml
fun lookup eq key [] = NONE
  | lookup eq key ((k,v)::kvs) = 
    if eq key k
    then SOME v
    else lookup eq key kvs
```

Is the type of `lookup`:

```ml
(α → α → bool) → α → (α * β)list → β option
```
Common idiom: option

option is a built-in datatype:

```ocaml
datatype 'a option = NONE | SOME of 'a
```

Defining a simple lookup function:

```ocaml
fun lookup eq key [] = NONE
  | lookup eq key ((k,v)::kvs) = 
    if eq key k
    then SOME v
    else lookup eq key kvs
```

Is the type of `lookup`:

```ocaml
(α → α → bool) → α → (α * β)list → β option
```

No! It’s slightly more general:

```ocaml
(α₁ → α₂ → bool) → α₁ → (α₂ * β)list → β option
```
Another lookup function

We don’t need to pass two arguments when one will do:

```haskell
fun lookup _ [] = NONE
    | lookup checkKey ((k,v)::kvs) = 
      if checkKey k
         then SOME v
         else lookup checkKey kvs
```

The type of this lookup:

\[(\alpha \to \text{bool}) \to (\alpha \times \beta)\text{list} \to \beta \text{option}\]
Useful library functions

- **map**: \((\alpha \to \beta) \to \alpha \text{ list} \to \beta \text{ list}\)

  ```
  map (fn i => i + 1) [7, 15, 3]  
  \implies [8, 16, 4]
  ```

- **foldl**: \((\alpha \times \beta \to \beta) \to \beta \to \alpha \text{ list} \to \beta\)

  ```
  foldl (fn (a,b) => "(" ^ a ^ " + " ^ b ^ ")")  
  "0"  ["1", "2", "3"]  
  \implies "(3+(2+(1+0)))"
  ```

- **foldr**: \((\alpha \times \beta \to \beta) \to \beta \to \alpha \text{ list} \to \beta\)

  ```
  foldr (fn (a,b) => "(" ^ a ^ " + " ^ b ^ ")")  
  "0"  ["1", "2", "3"]  
  \implies "(1+(2+(3+0)))"
  ```

- **filter**: \((\alpha \to \text{bool}) \to \alpha \text{ list} \to \alpha \text{ list}\)
Ad hoc overloading interferes with type inference:

```plaintext
fun plus x y = x + y
```

Operator `+` is overloaded, but types cannot be resolved from context (defaults to `int`).

We can use explicit typing to select interpretation:

```plaintext
fun mix1 (x, y, z) = x * y + z : real
fun mix2 (x: real, y, z) = x * y + z
```
Parametric polymorphism vs. generics

- A function whose type expression has type variables applies to an infinite set of types.
- Equality of type expressions means structural not name equivalence.
- All applications of a polymorphic function use the same body: no need to instantiate.

```haskell
let val ints = [1, 2, 3]
  val strs = ["this", "that"]

in

  len ints + (* int list -> int *)
  len strs (* string list -> int *)

end
```
An ML signature specifies an interface for a module.

signature STACK =

sig

 type stack

 exception Empty

 val empty : stack

 val push : char * stack -> stack

 val pop : stack -> char * stack

 val isEmpty : stack -> bool

end
ML structure

structure Stack : STACK =
struct
 type stack = char list
exception Empty
val empty = []
val push = op:::
fun pop (c::cs) = (c, cs)
 | pop [] = raise Empty
fun isEmpty [] = true
 | isEmpty _ = false
end