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Review

Last week

I Names and Bindings

I Lifetimes and Allocation

I Garbage Collection

I Scope



Outline

I Control Flow

I Sequencing

I Selection

I Iteration

Sources:
PLP, ch. 6.1 - 6.5



Control Flow

Control flow determines the order in which things get done in a program.

Primary mechanisms for control flow

I Sequencing : execute statements or evaluate expressions in sequential (or
other explicitly specified) order

I Selection or alternation: make a choice based on some condition at
run-time

I if statements
I case statements

I Iteration: execute a piece of code repeatedly
I iterate until some condition is met (e.g. while loop)
I iterate a fixed number of times (e.g. for loop)
I iteration over collections



Control Flow

Control flow determines the order in which things get done in a program.

Additional mechanisms for control flow

I Procedural abstraction: use subroutine to parameterize and encapsulate a
collection of control constructs

I Recursion: self-referencing expressions or subroutines

I Concurrency : execution of two or more program fragments “at the same
time”

I Exception handling and speculation: program execution is interrupted and
execution is transferred to a special handler

I Nondeterminacy : order or choice of statements is deliberately unspecified

I Continuation: save and later return to a specific point in a computation



Sequencing

Broad term including several specific sub-categories

I Expression evaluation (dominant form of control in functional languages)

I Execution of consecutive statements (imperative languages)

I Explicit goto statements (unstructured flow)



Expressions

What is an expression?

I simple object
I literal constant
I named constant
I named variable

I function application
I applied to one or more arguments, each of which is an expression
I built-in functions called operator
I arguments of operators called operands
I notations include prefix, postfix, infix, mixfix

Most imperative languages use infix operator notation.

What are advantages and disadvantages of infix?
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6 + 2 * 4 ** 2 ** 3 / 64
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Side Effects

If the evaluation of an expression influences subsequent computation in some
other way besides returning a value, this is called a side effect.

Imperative languages

I Include expressions whose sole purpose is their side effect

I These are called statements (e.g. assignment)

I Imperative programming also called computing by means of side effects

Purely functional languages

I No side effects

I Said to be referentially transparent

Examples

I Imperative: C, Java, Pascal

I Mostly imperative: C#, Python, Ruby

I Mostly functional: ML, Lisp

I Purely functional: Haskell, Miranda



L-values and R-values
Expressions that denote locations are called l-values

Expressions that denote values are called r-values

Value Model

I variable is used as a name for the value stored in that variable

I same expression can be an l-value or r-value depending on its context

Example

a = b + c;

Here, a is an l-value because it refers to the location of the variable a.
Both b and c are r-values.

Reference model

I Every variable is an l-value

I To get a value, the variable must be dereferenced

I Dereferencing can be automatic (based on context, e.g. Clu) or explicit
(e.g. ML)



Structured and Unstructured Flow

The Infamous goto

I In machine language, there are no if statements or loops.

I We only have branches, which can be either unconditional or conditional
(on a very simple condition).

I With this, we can implement loops, if statements, and case statements. In
fact, we only need

1. increment
2. decrement
3. branch on zero

to build a universal machine (one that is Turing complete).

I We don’t do this in high-level languages (any more) because unstructured
use of the goto can lead to confusing programs.
See Go To Statement Considered Harmful by Edgar Dijkstra.



Structured and Unstructured Flow

Structured alternatives to goto

I Iteration: general-purpose iteration constructs

I Exit from subroutine: explicit return statements

I Exit from loop: explicit break or continue statements

I Return from nested subroutine: Some languages support this explicitly

I Exceptions Language mechanisms for throwing exceptions



Selection

I if Condition then Statement – Pascal, Ada

I if (Condition) Statement – C/C++, Java

I To avoid ambiguities, use end marker: end if, “}”

I To deal with multiple alternatives, use keyword or bracketing:

if Condition then
Statements

elsif Condition then
Statements

else
Statements

end if;



Nesting

if Condition1 then
if Condition2 then

Statements1
end if;

else
Statements2

end if;



Statement Grouping

I Pascal introduces begin-end pair to mark sequence

I C/C++/Java abbreviate keywords to {}

I Ada dispenses with brackets for sequences, because keywords for the
enclosing control structure are sufficient

I for J in 1..N loop ... end loop
I More writing but more readable

I Another possibility – make indentation significant (e.g., Abc, Python,
Haskell)



Short-circuit evaluation

if x/y > 5 then z := ... -- what if y = 0?

if y /= 0 and x/y > 5 then z := ...

But binary operators normally evaluate both arguments. Solutions:

I a lazy evaluation rule for logical operators (Lisp, C)

C1 && C2 // don’t evaluate C2 if C1 is false

C1 || C2 // don’t evaluate C2 if C1 is true

I a control structure with a different syntax (Ada)

-- don ’t evaluate C2

if C1 and then C2 then -- if C1 is false

if C1 or else C2 then -- if C1 is true



Multiway selection

Case statement needed when there are many possibilities “at the same logical
level” (i.e. depending on the same condition)

case Next_Char is
when ’I’ => Val := 1;
when ’V’ => Val := 5;
when ’X’ => Val := 10;
when ’C’ => Val := 100;
when ’D’ => Val := 500;
when ’M’ => Val := 1000;
when others => raise Illegal_Numeral;

end case;

Can be simulated by sequence of if-statements, but logic is obscured.



Implementation of case

A possible implementation for C/C++/Java/Ada style case:

(If we have a finite set of possibilities, and the choices are computable at
compile-time.)

I build table of addresses, one for each choice

I compute value

I transform into table index

I get table element at index and branch to that address

I execute

I branch to end of case statement

This is not the typical implementation for a ML/Haskell style case.



Complications

case (x+1) is
when integer ’first ..0 ⇒ Put_Line ("negative");
when 1 ⇒ Put_Line ("unit");
when 3 | 5 | 7 | 11 ⇒ Put_Line ("small prime");
when 2 | 4 | 6 | 8 | 10 ⇒ Put_Line ("small even");
when 21 ⇒ Put_Line ("house wins");
when 12..20 | 22..99 ⇒ Put_Line ("manageable");
when others ⇒ Put_Line ("irrelevant");

end case;

Implementation would be a combination of tables and if statements.



C style case

switch (Next_Char) {
case ’I’: Val = 1;
case ’V’: Val = 5;
case ’X’: Val = 10;
case ’C’: Val = 100;
case ’D’: Val = 500;
case ’M’: Val = 1000;
default: Illegal_Numeral = true;

}

What’s wrong with this code?
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C style case

switch (Next_Char) {
case ’I’: Val = 1; break;
case ’V’: Val = 5; break;
case ’X’: Val = 10; break;
case ’C’: Val = 100; break;
case ’D’: Val = 500; break;
case ’M’: Val = 1000; break;
default: Illegal_Numeral = true;

}



Use Case: Copy memory from one location to another

void send(int* to, int* from , int count) {
do *to++ = **from ++;
while (--count > 0);

}

I Requires execution of a conditional branch after each word has been copied.

I Bad for performance because pipeline is flushed after each single copy.

I Idea: use loop unrolling, e.g., copy 8 words in a single loop iteration.

void send(int* to , int* from , int count) {
do {

*to++ = **from ++; *to++ = **from ++;
*to++ = **from ++; *to++ = **from ++;
*to++ = **from ++; *to++ = **from ++;
*to++ = **from ++; *to++ = **from ++;
count -= 8;

} while (count > 0);
}

I What if count is not divisible by 8?
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Duff’s device

void send (int* to , int* from , int count) {
int n = (count + 7) / 8;
switch (count % 8) {

case 0: do { *to++ = *from ++;
case 7: *to++ = *from ++;
case 6: *to++ = *from ++;
case 5: *to++ = *from ++;
case 4: *to++ = *from ++;
case 3: *to++ = *from ++;
case 2: *to++ = *from ++;
case 1: *to++ = *from ++;

} while (--n > 0);
}

}

Discovered by Tom Duff in 1983; discovery announced with “a combination of
pride and revulsion”.



Indefinite loops

I All loops can be expressed as while loops

I good for invariant/assertion reasoning

I condition evaluated at each iteration

I if condition initially false, loop is never executed

while C loop S end loop;

is equivalent to

if C then
S;
while C loop S end loop;

end if;



Executing while at least once

Sometimes we want to check condition at end instead of at beginning; this will
guarantee loop is executed at least once.

I repeat ... until condition; (Pascal)

I do { ... } while (condition); (C)

while form is most common

can be simulated by while + a boolean variable:

first := True;
while (first or else condition) loop

...
first := False;

end loop;



Breaking out

A more common need is to be able to break out of the loop in the middle of an
iteration.

I break (C/C++, Java)

I last (Perl)

I exit (Ada)

loop
... part A ...
exit when condition;
... part B ...

end loop;



Breaking way out

Sometimes, we want to break out of several levels of a nested loop

I give names to loops (Ada, Perl, Java)

I use a goto (C/C++)

Outer: while C1 loop ...
Inner: while C2 loop ...

Innermost: while C3 loop ...
exit Outer when Major_Failure;
exit Inner when Small_Annoyance;
...

end loop Innermost;
end loop Inner;

end loop Outer;



Definite Loops

Counting loops are iterators over discrete domains:

I for J in 1..10 loop ... end loop;

I for (int i = 0; i < n; i++) { ... }

Design issues:

I evaluation of bounds

I scope of loop variable

I empty loops

I increments other than 1

I backwards iteration

I non-numeric domains and iterators



Evaluation of bounds

for J in 1..N loop
...
N := N + 1;

end loop; -- terminates?

Yes – in Ada, bounds are evaluated once before iteration starts.

C/C++/Java loop has hybrid semantics:

for (int j = 0; j < last; j++) {
...
last ++; -- terminates?

}

No – the condition “j < last” is evaluated at the end of each iteration.



The loop variable

I is it mutable?

I what is its scope? (i.e. local to loop?)

Constant and local is a better choice:

I constant: disallows changes to the variable, which can affect the loop
execution and be confusing

I local : don’t need to worry about value of variable after loop exits

Count: integer := 17;
...
for Count in 1..10 loop

...
end loop;
... -- Count is still 17



Different increments

Algol 60:

for j from exp1 to exp2 by exp3 do ...

I too rich for most cases; typically, exp3 is +1 or -1.

I what are semantics if exp1 > exp2 and exp3 < 0?

C/C++:

for (int j = exp1; j <= exp2; j += exp3) ...

Ada:

for J in 1..N loop ...
for J in reverse 1..N loop ...



Non-numeric Domains and Iterators

Ada form generalizes to discrete types:

for M in months loop ... end loop;

Basic pattern on other data types: iterators

I for each collection type, define an iterator type with primitive operations:
next, hasNext

I In Java, a for loop on a collection xs takes the form:

for (Object x : xs) ...

which is expanded to

for (Iterator <Object > iter = xs.iterator ();
iter.hasNext ();) {

Object x = iter.next ();
...

}



For Comprehensions

Languages such as Python and Scala generalize for loops to expressions that
compute new iterable collections from existing ones.

Computing sequences of prime numbers in Scala:

def factors(x: Int) =
for (i <- 1 to x if x % i == 0) yield i

def primes(xs: List[Int]) =
for (x <- xs if factors(x) == List(1,x)) yield x

primes(List.range (1 ,20))
// List (2,3,5,7,11,13,17,19)



Pre- and Post-conditions

How can we prove that a loop does what we want?

pre-conditions and post-conditions:

{P} S {Q}

If proposition P holds before executing S, and the execution of S
terminates, then proposition Q holds afterwards.

Need to formulate:

I pre- and post-conditions for all statement forms

I syntax-directed rules of inference

{P ∧ C} S {P}
{P} while C do S {P ∧ ¬C}



Example: squaring a number in Dafny

method square(x: int) returns(y: int)
{

var n := 0;
y := 0;
while (n < x)
{

y := y + 2*n + 1;
n := n + 1;

}
}



Adding a contract and invariants

method square(x: int) returns(y: int)
requires x >= 0;
ensures y == x*x;
{

var n := 0;
y := 0;
while (n < x)
invariant n > 0;
invariant y == n*n;
{

y := y + 2*n + 1;
n := n + 1;

}
}


