
CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

Homework 9

Please email your solutions to Rongdi Huang (rh1424@nyu.edu). Solutions to programming

exercises must be submitted electronically as plain text �les. No exotic formats, please!

The deadline for Homework 9 is December 12.

For the following problems, make sure your code runs under Scala. The Scala language

distribution can be downloaded from http://www.scala-lang.org.

While implementing this exercise, please make sure that you don't change the de�nitions

given in the templates. In particular:

� Don't change the package declaration or the object name.

� Don't change the function names.

� Don't change the given function signatures.

Respecting these guidelines allows us to be more e�cient in correcting the submissions.

Thank you for your collaboration.

Problem 1 Calendar (20 Points)

In this part we are interested in printing a calendar using Scala. More speci�cally, we want

to print an overview of a given month that shows which date falls on which day of the week.

For example, in 2012, the First of August was a Wednesday. The month of August 2012

should be printed as follows:

Su Mo Tu We Th Fr Sa

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

Before you start solving this exercise, make yourself familiar with the methods provided by

the List class in the Scala standard API. All parts of this exercise have very short solutions

if you use the appropriate functions provided by class List.

Warm-Up (2 Points)

De�ne a function unlines that turns a list of lists of characters into a list of characters

inserting a \n character between each two lists. The following example illustrates the

function unlines:

unlines(List(List(’f’,’e’,’i’,’s’,’t’,’y’),List(’f’,’a’,’w’,’n’)))

should yield

1

http://www.scala-lang.org

CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

List(’f’,’e’,’i’,’s’,’t’,’y’,’\n’,’f’,’a’,’w’,’n’)

Leap years, the First of January and all that (2 Points)

To be able to print a monthly overview, we �rst have to determine on which weekday falls

the �rst day of the given month. We provide you with the following function de�nitions to

simplify this task:

/** The weekday of January 1st in year y, represented

* as an Int. 0 is Sunday, 1 is Monday etc. */
def firstOfJan(y: Int): Int = {

val x = y - 1
(365*x + x/4 - x/100 + x/400 + 1) % 7

}

def isLeapYear(y: Int) =
if (y % 100 == 0) (y % 400 == 0) else (y % 4 == 0)

def mlengths(y: Int): List[Int] = {
val feb = if (isLeapYear(y)) 29 else 28
List(31, feb, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

}

With the help of these functions, de�ne a function �rstDay that calculates the weekday of

the �rst day of a given month:

def firstDay(month: Int, year: Int): Int = ...

How to picture that? (16 Points)

Picturing data with a non-trivial layout such as a calendar can be tricky. Therefore, we

want to use a compositional approach where larger, more complex pictures are composed of

smaller, simpler pictures.

In our design, pictures are represented as instances of the Picture case class:

case class Picture(height: Int, width: Int, pxx: List[List[Char]]) {
def showIt: String = unlines(pxx).mkString("")

}

As we can see, a picture has a height and width, and contents pxx which is character data

represented as a list of rows, where each row is a list of characters. The showIt method

turns the picture into a list of characters using the unlines function de�ned in the �rst part.

The following function pixel creates a simple picture of height and width 1 that contains a

given character:

def pixel(c: Char) = Picture(1, 1, List(List(c)))

From pictures as simple as that, we want to compose larger ones using composition operators.

2

CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

(a) De�ne a method above for class Picture that returns a new picture where the argu-

ment picture is put below this:

case class Picture(...) {
def above(q: Picture): Picture = ...

}

For instance, the following code

println((pixel(’a’) above pixel(’b’)).showIt)

should print

a
b

Give an error message (using the prede�ned function sys.error) when the pictures

do not have the same width.

(b) De�ne a method beside for class Picture that returns a new picture where the

argument picture is put on the right side of this:

case class Picture(...) {
def beside(q: Picture): Picture = ...

}

Give an error message (using the prede�ned function sys.error) when the pictures

do not have the same height.

(c) De�ne functions stack and spread that arrange a list of pictures above and beside

each other, respectively, producing a single resulting picture. For stack, the picture at
the head of the argument list should be the topmost picture in the result. Similarly for

spread, the head of the list should be the leftmost picture in the result.

def stack(pics: List[Picture]): Picture = ...
def spread(pics: List[Picture]): Picture = ...

(d) De�ne a function tile that arranges a list of rows of pictures in a rectangular way

using the stack and spread functions:

def tile(pxx: List[List[Picture]]): Picture = ...

(e) De�ne a function that takes a width w and a list of characters, and produces a picture

of height 1 and width w where the given characters are justi�ed on the right border:

def rightJustify(w: Int)(chars: List[Char]): Picture = ...

Give an error message if chars.length > w.

3

CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

(f) De�ne a function group that splits a list into sublists. The function takes an integer as

argument that indicates the split indices (e.g. split every 7 elements). We intend to use

this function to split a list representing a whole month into a list of weeks. Note that

this function is parameterized which means that it can be used with lists of any element

type.

def group[T](n: Int, xs: List[T]): List[List[T]] = ...

(g) De�ne a function dayPics that takes the number of the �rst day and the number of

days of a month and produces a list of 42 pictures. In this list, the �rst d pictures are

empty (i.e., the character data is a list of spaces) if the number of the �rst day is d
(d==0: Sunday, d==1: Monday, etc.). The trailing pictures that correspond to days

of the next month are empty, too. Using this function, a picture of a calendar can be

produced by grouping and tiling the result of dayPics.

def dayPics(d: Int, s: Int): List[Picture] = ...

Hint: A Scala string can be converted to a list of characters by calling its toList
method. This might come in handy when converting days to lists of characters.

(h) Using the functions de�ned in the previous steps, de�ne a function calendar that

produces a picture of a calender that corresponds to the given year and month.

def calendar(year: Int, month: Int): Picture = ...

Problem 2 User-De�ned Control Constructs (10 Points)

Scala (deliberately) does not provide break and continue statements for loops. Extend

the whileLoop control constructs from the lecture slides with break and continue
constructs that implement the appropriate behavior of break and continue statements

in languages such as C. The following two examples demonstrate how the constructs should

work:

var x = 0
whileLoop (x < 5) {

x += 1
if (x == 3) continue
println(x)

}

1
2
4
5

var x = 0
whileLoop (x < 5) {

x += 1
if (x == 3) break
println(x)

}

1
2

Hint: One way of implementing break and continue is using exceptions.

4

	Calendar (20 Points)
	User-Defined Control Constructs (10 Points)

