CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

Homework 7

Please email your solutions to Rongdi Huang (rh1424@nyu.edu). Solutions to programming
exercises must be submitted electronically as plain text files. No exotic formats, please!

The deadline for Homework 7 is November 21.

For the following problems, make sure your code runs under SML/NJ.

Problem 1 Big Natural Numbers (10 Points)

On the course web site you find a file BIG_NAT. sig declaring a signature BIG_NAT for ma-
nipulating arbitrarily large natural numbers. You further find a file BigNat . sml declaring
a structure BigNat with an incomplete implementation of the signature BIG_NAT.

(a) Understand the implementation of big natural numbers in the structure BigNat and
complete the missing functions sub (subtraction with carry) and exp (exponentiation).
When you implement sub, pay attention to the elimination of leading zeros to preserve
the uniqueness of the representation. (6 Points)

(b) Load the signature and structure into the interpreter. Write a function fact: bignat
-> bignat that computes the factorial function on big natural numbers using BigNat.
Further, write a function factDigits: int —-> int that for a given n € N, com-
putes the number of decimal digits of n!. How many decimal digits has the factorial of
3337 (4 Points)

Problem 2 Big Integers (10 Points)

Write a module implementing the type bigint representing arbitrarily large integers. The
signature of the module should contain the following operations:

eqtype bigint

val fromInt : int -> bitint
val toInt : bigint -> int (# [Overflow] #*)
val toString : bigint -> string

val < : bigint * bigint -> bool
val <= : bigint % bigint -> bool
val isEven : bigint -> bool

val isNegative : bigint -> bool

val ~ : bigint -> bigint
val + : bigint % bigint -> bigint
val - : bigint x bigint -> bigint

val » : bigint % bigint -> bigint



CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

val div
val mod
val abs
val exp

bigint % bigint -> bigint (* [Div] =)
bigint % bigint -> bigint (* [Div] =)
bigint -> bigint (* absolute value %)
bigint % bigint -> bigint (* [Domain] *)

Implement the type bigint as follows:

type bigint = bool x BigNat.bignat

where a boolean marking true indicates that the represented number is negative. The
function toString should use the symbol ~ as the sign for negative numbers, according to
the SML syntax. Hint: Be careful to ensure that the representation of numbers is unique
so that the meaning of equality of two bigint values is correct. In particular, the number
0 must be represented uniquely.

Problem 3 Multisets (10 Points)

Multisets are sets in which elements can appear multiple times. Formally, a multiset over a
set X is a function X — N. We consider the following operations on multisets:

MS(X)=X — N

count : MS(X) x X — N

count(m,x) = m(x)

empty : MS(X)

empty = Ax € X.0

insert : MS(X) x X — MS(X)

insert(m,x’) = Az € X.if © = 2/ then m(x) + 1 else m(x)
union : MS(X) x MS(X) — MS(X)

union(mi, ma) = Az € X.my(z) + ma(x)

(a) Declare a signature MULTISET that describes multisets using a type

type '’"a mset

and the above operations. (2 Points)

(b) Declare a structure Multisetl with signature MULTISET that implements multisets
using the type

type '"a mset = '"a -> int

(3 Points)

(c) Declare a structure Multiset?2 with signature MULTISET that implements multisets
with the type

type '"a mset = (’a x int) list

(5 Points)

Note that in SML a double-quoted name ’ * a is a type variable that stands for an arbitrary
type equipped with an equality predicate = : ""a x* ’"a -> bool.



	Big Natural Numbers (10 Points)
	Big Integers (10 Points)
	Multisets (10 Points)

