
CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

Homework 6

Please email your solutions to Rongdi Huang (rh1424@nyu.edu). Solutions to programming
exercises must be submitted electronically as plain text �les. No exotic formats, please!

The deadline for Homework 6 is October 31.

For the following problems, make sure your code runs under SML/NJ. SML/NJ is available
on the CIMS machines and can be downloaded from http://www.smlnj.org for various
platforms. Also, many Linux distributions provide appropriate packages.

Problem 1 Polymorphic Types in ML (4 Points)

Declare polymorphic functions that satisfy the following type signatures:

(a) a function id: ’a -> ’a

(b) a function com: (’a -> ’b) -> (’b -> ’c) -> ’a -> ’c

(c) a function cas: (’a * ’b -> ’c) -> ’a -> ’b -> ’c

(d) a function car: (’a * ’b -> ’c) -> ’a * ’b -> ’c

Your functions should not be recursive. Note that the given type signatures uniquely deter-
mine the behavior of each function.

Problem 2 ML Lists (6 Points)

(a) Declare a function unzip: (’a * ’b) list -> ’a list * b’ list that takes
a list of pairs and splits it component-wise into two lists. Some examples:

- unzip [(1, true), (3, false)];
val it = ([1, 3], [true, false]) : int list * bool list
- unzip [("a", 3), ("c", 2), ("b", 1)];
val it = (["a", "c", "b"], [3, 2, 1]) : sting list * int list

Try to use the function foldr in your implementation.

(b) Declare the fold function foldr using the fold function foldl. Do not use any auxiliary
recursive functions.

(c) Declare the fold function foldl using the fold function foldr. Proceed as follows:

1. Declare append using foldr.

2. Declare rev in terms of foldr and append.

3. Declare foldl in terms of foldr and rev.

1

http://www.smlnj.org


CSCI-GA.2110-003 - Programming Languages - Fall 2012 Thomas Wies

Problem 3 ML Datatypes (10 Points)

Your goal is to write a function that di�erentiates polynomials with respect to a variable x.
Here is an example:

(x3 + 3x2 + x + 2)′ = 3x2 + 6x + 1

We represent polynomials using the following type:

datatype exp = Const of int
| X
| Add of exp * exp
| Mult of exp * exp
| Power of exp * int

For instance, the expression

Add (Add (Mult (Const 3, Power (X, 2)), Mult (Const 6, X)), Const 1)

represents the polynomial 3x2 + 6x + 1.

(a) Write a val declaration that binds the identi�er u to the polynomial expression x3 +
3x2 + x + 2. Consider + to be left-associative. (1 Point)

(b) Write a function derive: exp -> exp that computes the derivative of a polynomial
expression according to the following rules:

c′ = 0
x′ = 1

(u + v)′ = u′ + v′

(u · v)′ = u′ · v + u · v′

(un)′ = n · un−1 · u′

The expression representing the derivative is allowed to contain subexpressions that can
be further simpli�ed (e.g., 0 · u). (3 Points)

(c) Write a function simplifyTop: exp -> exp that tries to simplify an expression on
the top-level by applying one of the following simpli�cation rules:

0 + u → u u + 0 → u
0 · u → 0 u · 0 → 0
1 · u → u u · 1 → u

u0 → 1 u1 → u

If none of these rules can be applied on the top-level of the expression, then the expression
should be returned unchanged. (3 Points)

(d) Write a function simplify: exp -> exp that simpli�es an expression using the
above rules until none of the rules can be applied. Proceed as follows:

1. First, simplify all components of an expression.

2. Then simplify the expression with the simpli�ed components using the function
simplifyTop. (3 Points)

2


	Polymorphic Types in ML (4 Points)
	ML Lists (6 Points)
	ML Datatypes (10 Points)

