
Field Constraint Analysis

Thomas Wies

Max-Planck-Institut für Informatik, Saarbrücken, Germany
wies@mpi-inf.mpg.de

VMCAI 2006

Joint work with

Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin Rinard



Motivation

Motivation

Shape Analysis
Verify consistency properties of linked data structures.

acyclicity, heap reachability, sharing, . . .

Thomas Wies Field Constraint Analysis 2 / 17



Motivation

Motivation

Shape Analysis
Verify consistency properties of linked data structures.

acyclicity, heap reachability, sharing, . . .

Conflicting objectives

1 generality: support a large class of data structures

2 predictability: provide completeness guarantees

3 degree of automation: synthesize loop invariants

4 scalability: verify data structures in the context of larger programs

Thomas Wies Field Constraint Analysis 2 / 17



Motivation

Motivation

Shape Analysis
Verify consistency properties of linked data structures.

acyclicity, heap reachability, sharing, . . .

Conflicting objectives

1 generality: support a large class of data structures

2 predictability: provide completeness guarantees

3 degree of automation: synthesize loop invariants

4 scalability: verify data structures in the context of larger programs

Reduce verification problem to problem of reasoning over logical
constraints, e.g. in MSOL over trees.

Thomas Wies Field Constraint Analysis 2 / 17



Motivation

Backbone and Derived Fields

Doubly-linked lists

next next next

prev prev prev

Backbone fields
Derived fields

le
ft

right

le
ft

right

pa
re

nt

pa
re

nt

parent

parent

Trees with parent pointers

Thomas Wies Field Constraint Analysis 3 / 17



Motivation

Backbone and Derived Fields

Doubly-linked lists

next next next

prev prev prev

Backbone fields
Derived fields

students

ne
xt

ne
xt

ne
xt

schools

ne
xt

ne
xt

attends

attends

attends

attends

Skip lists

next next next next next

nextSub
nextSub

Thomas Wies Field Constraint Analysis 3 / 17



Motivation

Road Map

MSOLMSOL

lists

next

skip lists

next, nextSub

decidable

?

|= G
!

|= G′

G ≡ acyclic(next) → wlp(c, acyclic(next))
︸ ︷︷ ︸

may contain nextSub

next next next next next

next

next next next nextx nextxEffect of c

nextSub
nextSub

Thomas Wies Field Constraint Analysis 4 / 17



Field Constraint Analysis Field Constraints

Field Constraints

Example

next next next next nextx y

nextSub
nextSub

Field constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Thomas Wies Field Constraint Analysis 5 / 17



Field Constraint Analysis Field Constraints

Field Constraints

Example

next next next next nextx y

nextSub
nextSub

Field constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Field constraint for a derived field f :

∀ x y . f (x) = y → F(x, y)

⇐⇒ ∀ x . F(x, f (x))

F may be arbitrary formula over backbone fields relating x and f (x).

Thomas Wies Field Constraint Analysis 5 / 17



Field Constraint Analysis Field Constraints

Field Constraints

Example

next next next next nextx y

nextSub
nextSub

Field constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Idea
Use field constraints to eliminate derived field occurrences in query.

Thomas Wies Field Constraint Analysis 5 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

Idea
Replace derived fields by approximating formula.

Soundness
Result of elimination must be stronger or equivalent.

➜ Replacing negative occurrences is sound.
➜ Replacing positive occurrences is not sound.

➜ Rewrite all occurrences into negative ones.

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

∀ y1 . x1 = x2 ∧ nextSub(x1) = y1 → y1 = nextSub(x2)

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

∀ y1 y2 . x1 = x2 ∧ nextSub(x1) = y1 ∧ nextSub(x2) = y2 → y1 = y2

Final query: ∀ y1 y2 . x1 = x2 ∧ next+(x1, y1) ∧ next+(x2, y2) → y1 = y2

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

Final query: ∀ y1 y2 . x1 = x2 ∧ next+(x1, y1) ∧ next+(x2, y2) → y1 = y2

Counterexample:

x1, x2 y1 y2

next next

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

Final query: ∀ y1 y2 . x1 = x2 ∧ next+(x1, y1) ∧ next+(x2, y2) → y1 = y2

Counterexample:

x1, x2 y1 y2

next next

➜ Keep track of equalities between replaced terms.

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

Final query: ∀ y1 y2 . x1 = x2 ∧ next+(x1, y1) ∧ next+(x2, y2)
∧ (x1 = x2 → y1 = y2) → y1 = y2

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Eliminating Derived Fields

Example

Field Constraint: ∀ x y . nextSub(x) = y → next+(x, y)

Query: x1 = x2 → nextSub(x1) = nextSub(x2)

Final query: ∀ y1 y2 . x1 = x2 ∧ next+(x1, y1) ∧ next+(x2, y2)
∧ (x1 = x2 → y1 = y2) → y1 = y2

Final query is valid.

Thomas Wies Field Constraint Analysis 6 / 17



Field Constraint Analysis Elimination Algorithm

Elimination Algorithm

proc Elim(G) = elim(G, ∅)
proc elim(G : formula in negation normal form;

K : set of (variable,field,variable) triples):
let T = {f (t) ∈ Ground(G). f ∈ Derived(G) ∧ Derived(t) = ∅}
if T 6= ∅ do

choose f (t) ∈ T
choose x, y fresh first-order variables
let F = FC(f )
let F1 = F(x, y) ∧

∧

(xi,f ,yi)∈K(x = xi → y = yi)

let G1 = G[f (t) := y]
return ∀x. x = t → ∀y. (F1 → elim(G1, K ∪ {(x, f , y)}))

else case G of
| Qx. G1 where Q ∈ {∀,∃}:

return Qx. elim(G1, K)
| G1 op G2 where op ∈ {∧,∨}:

return elim(G1, K) op elim(G2, K)
| else return G

Thomas Wies Field Constraint Analysis 7 / 17



Field Constraint Analysis Elimination Algorithm

Soundness

Theorem
Field constraint analysis is sound.

Completeness?

Thomas Wies Field Constraint Analysis 8 / 17



Field Constraint Analysis Completeness

Completeness

Requirement: |= Elim(G) ↔ G

In general incomplete.

Critical part of derived field elimination:
Replacement of derived field by approx. formula.

∀ x y . f (x) = y → F(x, y)

Thomas Wies Field Constraint Analysis 9 / 17



Field Constraint Analysis Completeness

Completeness for Interesting Special Cases

Deterministic Field Constraints + General Formulas

∀ x y . f (x) = y ↔ F(x, y)

➜ Subsumes previous approaches

Thomas Wies Field Constraint Analysis 10 / 17



Field Constraint Analysis Completeness

Completeness for Interesting Special Cases

Deterministic Field Constraints + General Formulas

∀ x y . f (x) = y ↔ F(x, y)

➜ Subsumes previous approaches

General Field Constraints + Quite Nice Formulas

Quite nice formulas: all derived field occurrences f (t) satisfy

free variables in t are outermost universally quantified (or free in G)

➜ interesting in practice, because:

• field constraints itself are quite nice

• quite nice formulas are closed under wlp.

Thomas Wies Field Constraint Analysis 10 / 17



Field Constraint Analysis Completeness

Preservation of Field Constraints

...
sprev = root; scurrent = root.nextSub;
while

"(∀ x y. nextSub x = y → next+ x y) ∧
scurrent = nextSub sprev ∧
next∗ root scurrent ∧ ..."

((scurrent != null) && (scurrent.v < v)) {
sprev = scurrent;
scurrent = scurrent.nextSub;

}
...

Complete method for checking preservation of field constraints if

loop invariants are field constraints
conjoined with other quite nice formulas.

Thomas Wies Field Constraint Analysis 11 / 17



Deployment in Hob Hob Framework

Deployment in Hob

Thomas Wies Field Constraint Analysis 12 / 17



Deployment in Hob Hob Framework

Hob Modules

impl module Skiplist {
format Entry {
v : int;
next, nextSub : Entry;

}
var root : Entry;

proc add(e:Entry) {
int v = e.v;
Entry sprev = root, scurrent = root.nextSub;
while ((scurrent != null) && (scurrent.v < v)) {
sprev = scurrent; scurrent = scurrent.nextSub;

}
Entry prev = sprev, current = sprev.next;
while ((current != scurrent) && (current.v < v)) {
prev = current; current = current.next;

}
e.next = current; prev.next = e;
choice { sprev.nextSub = e; e.nextSub = scurrent; }

| { e.nextSub = null; }
}

spec module Skiplist {
format Entry;
specvar Content : Entry set;

proc add(e:Entry)
requires card(e) = 1 & not (e in Content)
modifies Content
ensures Content’ = Content + e’;

}

abst module Skiplist {
use plugin "Bohne";

Content = {x : Entry | "next+ root x"};
invariant "∀ x y. nextSub x = y → next+ x y";

...
}

Bohne Plugin
Symbolic shape analsysis for loop invariant inference.

Thomas Wies Field Constraint Analysis 13 / 17



Deployment in Hob Bohne Plugin

Bohne Plugin

Boolean heaps [1,2]:
∀ x .

∨

i

∧

j pi,j(x).

Infered loop invariants:
disjunctions of Boolean heaps.

(Heap) predicate abstraction:

p1(x)∧ . . .∧ pn(x)
?

|= wlp(c, p(x)).

Decision procedure is black box.
➜ Use field constraint analysis.

abst module Skiplist {
use plugin "Bohne";

Content = {x : Entry | "next+ root x"};
invariant "∀ x y. nextSub x = y → next+ x y";

proc add {
p_1 = {x : Entry | "∃ y. next y = x"};
p_2 = {x : Entry | "next∗ current x"};
p_3 = {x : Entry | "next∗ scurrent x"};
p_4 = {x : Entry | "next∗ sprev x"};
p_5 = {x : Entry | "next x = null"};
p_6 = "nextSub sprev = scurrent";
p_7 = "next prev = current";

}
}

[1] Wies, Symbolic Shape Analysis. Master’s Thesis, 2004.
[2] Podelski, Wies. Boolean Heaps. In SAS, 2005.

Thomas Wies Field Constraint Analysis 14 / 17



Deployment in Hob Bohne Plugin

Some Results

Analyzed Data Structures

• singly-linked lists

• doubly-linked lists (with iterators)

• binary trees (with parent pointers)

• two-level skip lists

Analyzed Programs

• minesweeper game

• process scheduler

• web server

Hob project homepage:
http://hob.csail.mit.edu/

Thomas Wies Field Constraint Analysis 15 / 17

http://hob.csail.mit.edu/


Conclusion

Related Work

Previous Approaches

• Graph Types: Klarlund and Schwarzbach (POPL 1993)

• PALE: Møller and Schwarzbach (PLDI 2001)

• Structure Simulation:
Immerman, Rabinovich, Reps, Sagiv, Yorsh (CAV 2004)

Shape Analysis

• TVLA: Sagiv, Reps, Wilhelm (TOPLAS 2002),
. . .

• Symb. computing most-precise abstr. op. for shape analysis:
Yorsh, Reps, Sagiv (TACAS 2004)

Thomas Wies Field Constraint Analysis 16 / 17



Conclusion

Conclusion

Field Constraint Analysis

• enables application of decidable logics to verify data structures
that are beyond the scope of these logics

• is applicable to data structures where fields cross-cut a backbone
in arbitrary ways

• is always sound

• is complete for a class of formulas that is of practical interest.

Ongoing and Future Work

• more efficient decision procedures for list backbones

• user-defined backbones (e.g. for cyclic lists)

• combinations with other decision procedures

➜ Jahob project.

Thomas Wies Field Constraint Analysis 17 / 17


	Motivation
	Field Constraint Analysis
	Field Constraints
	Elimination Algorithm
	Completeness

	Deployment in Hob
	Hob Framework
	Bohne Plugin

	Conclusion

