
Boolean Heaps

Andreas Podelski Thomas Wies
{podelski,wies}@mpi-inf.mpg.de

Max-Planck-Institut für Informatik
Saarbrücken, Germany

Static Analysis Symposium
London, September 2005

Motivation

Motivation
Predicate Abstraction vs. Three-valued Shape Analysis

Predicate Abstraction

(e.g. SLAM)

transition graph

• nodes ≈ states

• edges ≈ transitions

abstract by state predicates

; graph over abstract states

Three-valued Shape Analysis

(TVLA)

heap graph

• nodes ≈ heap objects

• edges ≈ pointer fields

abstract by heap predicates

; graph over abstract objects

Thomas Wies Boolean Heaps 2 / 16

Motivation

Motivation
Predicate Abstraction vs. Three-valued Shape Analysis

Predicate Abstraction

(e.g. SLAM)

transition graph

• nodes ≈ states

• edges ≈ transitions

abstract by state predicates

; graph over abstract states

Three-valued Shape Analysis

(TVLA)

heap graph

• nodes ≈ heap objects

• edges ≈ pointer fields

abstract by heap predicates

; graph over abstract objects

Problem: How can one cast the idea of predicates on heap objects in
the framework of predicate abstraction?

Thomas Wies Boolean Heaps 2 / 16

Boolean Heap Programs

Overview

1 Motivation

2 Boolean Heap Programs
Predicate Abstraction vs. Boolean Heap Programs
Concrete and Abstract Domain
Heap Predicate Transformers
Symbolic Abstract Post

3 Tool Demo

4 Conclusion

Thomas Wies Boolean Heaps 3 / 16

Boolean Heap Programs Predicate Abstraction vs. Boolean Heap Programs

Predicate Abstraction vs. Boolean Heap Programs

Predicate Abstraction
Concrete command:
c

Example
Concrete command:
var x : integer

x := x + 1

State predicates:
Pred = {p1, . . . , pn}

State predicates:

p1
def
= x = 0, p2

def
= x > 0

Abstract boolean program:

var p1, . . . , pn : boolean

for each pi ∈ Pred do

if wp# c pi then pi := true

else if wp# c (¬pi) then pi := false

else pi := ∗

Abstract boolean program:

var p1, p2 : boolean

if false then p1 := true

else if p1 ∨ p2 then p1 := false

else p1 := ∗

if p1 ∨ p2 then p2 := true

else if ¬p1 ∧¬p2 then p2 := false

else p2 := ∗

Thomas Wies Boolean Heaps 4 / 16

Boolean Heap Programs Predicate Abstraction vs. Boolean Heap Programs

Predicate Abstraction vs. Boolean Heap Programs
Predicate Abstraction
Concrete command:
c

Boolean Heap Programs
Concrete command:
c

State predicates:
Pred = {p1, . . . , pn}

Unary heap predicates:
Pred = {p1(v), . . . , pn(v)}

Abstract boolean program:

var p1, . . . , pn : boolean

for each pi ∈ Pred do

if wp# c pi then pi := true

else if wp# c (¬pi) then pi := false

else pi := ∗

Boolean heap program:

var V : set of bitvectors over Pred

for each p ∈ V do

for each pi ∈ Pred do

if p → hwp# c pi

then p.pi := true

else if p → hwp# c (¬pi)

then p.pi := false

else p.pi := ∗

Thomas Wies Boolean Heaps 4 / 16

Boolean Heap Programs Concrete and Abstract Domain

Concrete Domain

Concrete domain - sets of program states.

Example

State s containing a 3-element, singly-linked list, accessible by
program variable x.

o1 o2 o3 o4x

null

n nn

u

States are represented as logical structures.

s ∈ State = (Var → Heap) × (Field → Heap → Heap)

Thomas Wies Boolean Heaps 5 / 16

Boolean Heap Programs Concrete and Abstract Domain

Abstract Domain
Setup

Abstract domain
• is a finite lattice of closed formulas Ψ

γ Ψ = { s ∈ State | s |= Ψ }

• is parameterized by finite set of abstraction predicates Pred.

Abstraction predicates

• are formulas in first-order logic or some extension, e.g. FOTC

• have a free variable v
➜ denote sets of objects in the heap of a given state

• heap predicates.

Thomas Wies Boolean Heaps 6 / 16

Boolean Heap Programs Concrete and Abstract Domain

Abstract Domain
Heap Predicate Abstraction

Example

Pred = {v = x, v = null, v ∈ x.n∗}

o1 o2 o3 o4x null
n nn

u

Thomas Wies Boolean Heaps 7 / 16

Boolean Heap Programs Concrete and Abstract Domain

Abstract Domain
Heap Predicate Abstraction

Example

Pred = {v = x, v = null, v ∈ x.n∗}

o1 o2 o3 o4x null

︸ ︷︷ ︸

n nn

u

v = x
v 6= null
v ∈ x.n∗

v 6= x
v 6= null
v ∈ x.n∗

v 6= x
v = null
v ∈ x.n∗

Thomas Wies Boolean Heaps 7 / 16

Boolean Heap Programs Concrete and Abstract Domain

Abstract Domain
Heap Predicate Abstraction

Example

Pred = {v = x, v = null, v ∈ x.n∗}

o1 o2 o3 o4x null

︸ ︷︷ ︸

n nn

u

∀v.

v = x
∧ v 6= null
∧ v ∈ x.n∗

 ∨

v 6= x
∧ v 6= null
∧ v ∈ x.n∗

 ∨

v 6= x
∧ v = null
∧ v ∈ x.n∗

Thomas Wies Boolean Heaps 7 / 16

Boolean Heap Programs Concrete and Abstract Domain

Abstract Domain
Heap Predicate Abstraction

Example

Pred = {v = x, v = null, v ∈ x.n∗}

o1 o2 o3 o4x null

︸ ︷︷ ︸

n nn

u

∀v.

v = x
∧ v 6= null
∧ v ∈ x.n∗

 ∨

v 6= x
∧ v 6= null
∧ v ∈ x.n∗

 ∨

v 6= x
∧ v = null
∧ v ∈ x.n∗

Boolean heap

Boolean heap ≈ over-approximation of all heap objects.

Thomas Wies Boolean Heaps 7 / 16

Boolean Heap Programs Concrete and Abstract Domain

Abstract Domain

Abstract State

≈ ∀v. ϕ(v)
≈ Boolean heap
≈ set of bitvectors

Thomas Wies Boolean Heaps 8 / 16

Boolean Heap Programs Concrete and Abstract Domain

Abstract Domain

Abstract State

≈ ∀v. ϕ(v)
≈ Boolean heap
≈ set of bitvectors

Abstract Domain

≈ disjunctions of Boolean heaps
≈ sets of sets of bitvectors

Thomas Wies Boolean Heaps 8 / 16

Boolean Heap Programs Heap Predicate Transformers

Programs and Predicate Transformers

Simple guarded command language:

c ∈ Com ::= assume(b) | x := e | e1.f := e2

Thomas Wies Boolean Heaps 9 / 16

Boolean Heap Programs Heap Predicate Transformers

Programs and Predicate Transformers

Simple guarded command language:

c ∈ Com ::= assume(b) | x := e | e1.f := e2

Predicate transformers (defined as usual):

post ∈ Com → 2State → 2State strongest post condition

wp ∈ Com → 2State → 2State weakest (liberal) precondition

Thomas Wies Boolean Heaps 9 / 16

Boolean Heap Programs Heap Predicate Transformers

Programs and Predicate Transformers

Simple guarded command language:

c ∈ Com ::= assume(b) | x := e | e1.f := e2

Predicate transformers (defined as usual):

post ∈ Com → 2State → 2State strongest post condition

wp ∈ Com → 2State → 2State weakest (liberal) precondition

Weakest Preconditions
play important role in predicate abstraction.

➜ Can wp be extended to formulas with free variables?

➜ Can wp be computed syntactically on formulas?

Thomas Wies Boolean Heaps 9 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicates

Denotation of a formula with free variables:

[[n(v) = z]] = λ s ∈ State . { o ∈ Heap | s n o = s z }

or [[n(v) = z]] = λ o ∈ Heap . { s ∈ State | s n o = s z }

Thomas Wies Boolean Heaps 10 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicates

Denotation of a formula with free variables:

[[n(v) = z]] = λ s ∈ State . { o ∈ Heap | s n o = s z }

or [[n(v) = z]] = λ o ∈ Heap . { s ∈ State | s n o = s z }

Definition

n-ary heap predicates and denotation of formulas:

HeapPred[n]
def
= Heapn → 2State

[[ϕ(v)]]
def
= λ o . { s ∈ State | s, [v 7→ o] |= ϕ(v) }

Thomas Wies Boolean Heaps 10 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicates

Denotation of a formula with free variables:

[[n(v) = z]] = λ s ∈ State . { o ∈ Heap | s n o = s z }

or [[n(v) = z]] = λ o ∈ Heap . { s ∈ State | s n o = s z }

Definition

n-ary heap predicates and denotation of formulas:

HeapPred[n]
def
= Heapn → 2State

[[ϕ(v)]]
def
= λ o . { s ∈ State | s, [v 7→ o] |= ϕ(v) }

➜ formulas denote heap predicates

Thomas Wies Boolean Heaps 10 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicates

Denotation of a formula with free variables:

[[n(v) = z]] = λ s ∈ State . { o ∈ Heap | s n o = s z }

or [[n(v) = z]] = λ o ∈ Heap . { s ∈ State | s n o = s z }

Definition

n-ary heap predicates and denotation of formulas:

HeapPred[n]
def
= Heapn → 2State

[[ϕ(v)]]
def
= λ o . { s ∈ State | s, [v 7→ o] |= ϕ(v) }

➜ formulas denote heap predicates

➜ closed formulas denote 0-ary heap predicates ≈ state predicates

Thomas Wies Boolean Heaps 10 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicate Transformers

Remember: HeapPred = Heapn → 2State.

Lift predicate transformers post and wp to heap predicates.

lift ∈ (2State → 2State) → HeapPred → HeapPred

lift τ p = λ o . τ (p o)

Thomas Wies Boolean Heaps 11 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicate Transformers

Remember: HeapPred = Heapn → 2State.

Lift predicate transformers post and wp to heap predicates.

lift ∈ (2State → 2State) → HeapPred → HeapPred

lift τ p = λ o . τ (p o)

Definition

Heap predicate transformers :

hpost, hwp ∈ Com → HeapPred → HeapPred

hpost c
def
= lift (post c)

hwp c
def
= lift (wp c)

Thomas Wies Boolean Heaps 11 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicate Transformers

Properties

1 Form Galois connection on Boolean algebra of heap predicates:

Thomas Wies Boolean Heaps 12 / 16

Boolean Heap Programs Heap Predicate Transformers

Heap Predicate Transformers

Properties

1 Form Galois connection on Boolean algebra of heap predicates:

2 hwp is computed by syntactic substitutions on formulas
(all commands are deterministic):

hwp (assume b) [[ϕ(v)]] = [[b → ϕ(v)]]

hwp (x := e) [[ϕ(v)]] = [[ϕ(v)[x := e]]]

hwp(e1.f := e2) [[ϕ(v)]] = [[ϕ(v)[f := λ v . if v = e1 then e2 else f (v)]]].

Thomas Wies Boolean Heaps 12 / 16

Boolean Heap Programs Heap Predicate Transformers

Weakest Heap Predicate Preconditions

Example

Command c = (x.n := y)

o1 o2 o3

x yz

n n c o1 o2 o3

x yz

n

n

s′, [v 7→ o1] 6|= n(v) = z
s′, [v 7→ o3] |= n(v) = z

Thomas Wies Boolean Heaps 13 / 16

Boolean Heap Programs Heap Predicate Transformers

Weakest Heap Predicate Preconditions

Example

Command c = (x.n := y)

o1 o2 o3

x yz

n n c o1 o2 o3

x yz

n

n

s′, [v 7→ o1] 6|= n(v) = z
s′, [v 7→ o3] |= n(v) = z

hwp c [[n(v) = z]] = [[(n(v) = z)[n := λ v . if v = x then y else n(v)]]]

≡ [[v = x ∧ y = z ∨ v 6= x ∧ n(v) = z]]

Thomas Wies Boolean Heaps 13 / 16

Boolean Heap Programs Heap Predicate Transformers

Weakest Heap Predicate Preconditions

Example

Command c = (x.n := y)

o1 o2 o3

x yz

n n c

s, [v 7→ o1] 6|= hwp c [[n(v) = z]]
s, [v 7→ o3] |= hwp c [[n(v) = z]]

o1 o2 o3

x yz

n

n

s′, [v 7→ o1] 6|= n(v) = z
s′, [v 7→ o3] |= n(v) = z

hwp c [[n(v) = z]] = [[(n(v) = z)[n := λ v . if v = x then y else n(v)]]]

≡ [[v = x ∧ y = z ∨ v 6= x ∧ n(v) = z]]

Thomas Wies Boolean Heaps 13 / 16

Boolean Heap Programs Symbolic Abstract Post

Symbolic Abstract Post

Best abstract post can be computed
using hwp:

post# c Ψ =
^

{Φ ∈ AbsDom | Ψ |= hwp c Φ }

Question:
Can it be computed efficiently?

Thomas Wies Boolean Heaps 14 / 16

Boolean Heap Programs Symbolic Abstract Post

Symbolic Abstract Post

Best abstract post can be computed
using hwp:

post# c Ψ =
^

{Φ ∈ AbsDom | Ψ |= hwp c Φ }

Question:
Can it be computed efficiently?

Use additional Cartesian abstraction
➜ Boolean heap program

Boolean heap program

var V : set of bitvectors over Pred

for each p ∈ V do

for each pi ∈ Pred do

if p |= hwp c pi

then p.pi := true

else if p |= hwp c (¬pi)

then p.pi := false

else p.pi := ∗

Thomas Wies Boolean Heaps 14 / 16

Boolean Heap Programs Symbolic Abstract Post

Symbolic Abstract Post

Best abstract post can be computed
using hwp:

post# c Ψ =
^

{Φ ∈ AbsDom | Ψ |= hwp c Φ }

Question:
Can it be computed efficiently?

Use additional Cartesian abstraction
➜ Boolean heap program

Boolean heap program

var V : set of bitvectors over Pred

for each p ∈ V do

for each pi ∈ Pred do

if p → hwp# c pi

then p.pi := true

else if p → hwp# c (¬pi)

then p.pi := false

else p.pi := ∗

hwp# c (p(v))
def
=

∧

{ϕ(v) ∈ BC(Pred) | ϕ(v) |= hwp c (p(v)) }

Thomas Wies Boolean Heaps 14 / 16

Tool Demo

Tool Demo - Bohne

Boolean heaps - nothing else

• joined work with Martin Rinard’s group at MIT

• plugin to Hob framework

• underlying logic: MSOL over trees

• more infos: http://hob.csail.mit.edu

Bohne verifies
• procedure contracts (specified in a set specification language)

• data structure invariants

• absence of null pointer dereferences.

Thomas Wies Boolean Heaps 15 / 16

http://hob.csail.mit.edu
http://hob.csail.mit.edu

Conclusion

Conclusion

Main Contributions
• new symbolic approach to shape analysis

• combines key ideas of predicate abstraction and three-valued
shape analysis

Future Work
• inter-procedural analysis

• automated abstraction refinement

• combination with integer arithmetic

• . . .

Thomas Wies Boolean Heaps 16 / 16

	Motivation
	Boolean Heap Programs
	Predicate Abstraction vs. Boolean Heap Programs
	Concrete and Abstract Domain
	Heap Predicate Transformers
	Symbolic Abstract Post

	Tool Demo
	Conclusion

