Boolean Heaps

Andreas Podelski Thomas Wies {podelski,wies}@mpi-inf.mpg.de

Max-Planck-Institut für Informatik Saarbrücken, Germany

Static Analysis Symposium London, September 2005

< 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > <

Motivation

Predicate Abstraction vs. Three-valued Shape Analysis

Predicate Abstraction

(e.g. SLAM)

transition graph

- nodes pprox states
- edges \approx transitions

abstract by state predicates

→ graph over abstract states

Three-valued Shape Analysis

(TVLA)

heap graph

- nodes pprox heap objects
- edges pprox pointer fields

abstract by heap predicates → graph over abstract objects

< □ ▶

Motivation

Predicate Abstraction vs. Three-valued Shape Analysis

Predicate Abstraction

(e.g. SLAM)

transition graph

- nodes pprox states
- edges \approx transitions

abstract by state predicates

→ graph over abstract states

Three-valued Shape Analysis

(TVLA)

heap graph

- nodes pprox heap objects
- edges pprox pointer fields

abstract by heap predicates \sim graph over abstract objects

< □ ▶ < 同

Problem: How can one cast the idea of predicates on heap objects in the framework of predicate abstraction?

Overview

Motivation

2 Boolean Heap Programs

Predicate Abstraction vs. Boolean Heap Programs Concrete and Abstract Domain Heap Predicate Transformers Symbolic Abstract Post

3 Tool Demo

4 Conclusion

< D >

Predicate Abstraction vs. Boolean Heap Programs

Predicate Abstraction

Concrete command:

С

State predicates: $Pred = \{p_1, \dots, p_n\}$

Abstract boolean program: **var** p_1, \ldots, p_n : boolean for each $p_i \in Pred$ do if wp[#] $c p_i$ then $p_i :=$ true else if wp[#] $c (\neg p_i)$ then $p_i :=$ false else $p_i := *$

Example Concrete command: **var** x : integer x := x + 1State predicates: $p_1 \stackrel{def}{=} x = 0, \qquad p_2 \stackrel{def}{=} x > 0$ Abstract boolean program: **var** p_1, p_2 : boolean if false then $p_1 :=$ true else if $p_1 \vee p_2$ then $p_1 :=$ false **else** $p_1 := *$ if $p_1 \vee p_2$ then $p_2 :=$ true else if $\neg p_1 \land \neg p_2$ then $p_2 :=$ false **else** $p_2 := *$

Sac

Predicate Abstraction vs. Boolean Heap Programs

Predicate Abstraction

Concrete command:

С

State predicates: $Pred = \{p_1, \dots, p_n\}$

Abstract boolean program: **var** p_1, \ldots, p_n : boolean for each $p_i \in Pred$ do if wp[#] $c p_i$ then $p_i :=$ true else if wp[#] $c (\neg p_i)$ then $p_i :=$ false else $p_i := *$ Boolean Heap Programs Concrete command:

С

Unary heap predicates: $Pred = \{p_1(v), \dots, p_n(v)\}$

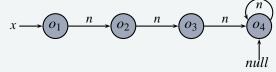
Boolean heap program: **var** V: set of bitvectors over *Pred* **for each** $\overline{p} \in V$ **do for each** $p_i \in Pred$ **do if** $\overline{p} \rightarrow hwp^{\#} c p_i$ **then** $\overline{p} \cdot p_i := true$ **else if** $\overline{p} \rightarrow hwp^{\#} c (\neg p_i)$ **then** $\overline{p} \cdot p_i := false$ **else** $\overline{p} \cdot p_i := *$

Concrete Domain

Concrete domain - sets of program states.

Example

State *s* containing a 3-element, singly-linked list, accessible by program variable x.



States are represented as logical structures.

$$s \in State = (Var \rightarrow Heap) \times (Field \rightarrow Heap \rightarrow Heap)$$

< □ ▶ < 同

Abstract domain

• is a finite lattice of closed formulas Ψ

$$\gamma \Psi = \{ s \in State \mid s \models \Psi \}$$

• is parameterized by finite set of abstraction predicates Pred.

Abstraction predicates

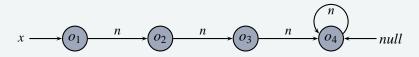
- are formulas in first-order logic or some extension, e.g. FO^{TC}
- have a free variable v
 → denote sets of objects in the heap of a given state
- heap predicates.

< □ ▶

Heap Predicate Abstraction

Example

$$Pred = \{v = x, v = null, v \in x.n^*\}$$

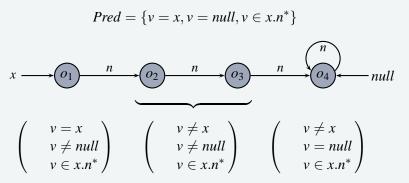


₹.

<日 > < 四 > < 四 > < 三 > < 三 >

Heap Predicate Abstraction

Example



- 4 ⊒ ►

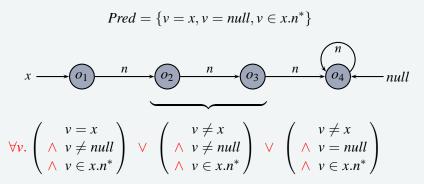
Image: A text A tex

9990

Thomas Wies

Heap Predicate Abstraction

Example



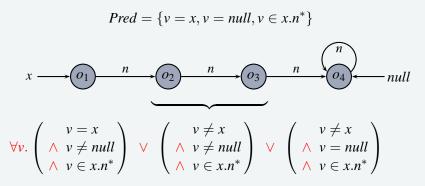
< □ ▶

< 4 ₽ ► < Ξ

Sac

Heap Predicate Abstraction

Example



Boolean heap

Boolean heap \approx over-approximation of all heap objects.

Sac

Abstract State

- $\approx \forall v. \varphi(v)$
- \approx Boolean heap
- \approx set of bitvectors

₹.

<口 > < 部 > < 문 > < 문 >

Abstract State

- $\approx \forall v. \varphi(v)$
- \approx Boolean heap
- \approx set of bitvectors

Abstract Domain

pprox disjunctions of Boolean heaps

5990

8/16

Boolean Heaps

 \approx sets of sets of bitvectors

Programs and Predicate Transformers

Simple guarded command language:

$$c \in Com ::= assume(b) \mid x := e \mid e_1.f := e_2$$

.

< 口 > < 同 >

-

Programs and Predicate Transformers

Simple guarded command language:

$$c \in Com ::= assume(b) \mid x := e \mid e_1.f := e_2$$

Predicate transformers (defined as usual):

 $post \in Com \rightarrow 2^{State} \rightarrow 2^{State}$ $wp \in Com \rightarrow 2^{State} \rightarrow 2^{State}$

strongest post condition weakest (liberal) precondition

< □ ▶

Programs and Predicate Transformers

Simple guarded command language:

$$c \in Com ::= assume(b) \mid x := e \mid e_1.f := e_2$$

Predicate transformers (defined as usual):

$$post \in Com \rightarrow 2^{State} \rightarrow 2^{State}$$
$$wp \in Com \rightarrow 2^{State} \rightarrow 2^{State}$$

strongest post condition weakest (liberal) precondition

Weakest Preconditions

play important role in predicate abstraction.

- → Can wp be extended to formulas with free variables?
- → Can wp be computed syntactically on formulas?

Sac

Denotation of a formula with free variables:

$$\llbracket n(v) = z \rrbracket = \lambda s \in State \cdot \{ o \in Heap \mid s \ n \ o = s \ z \}$$

or
$$\llbracket n(v) = z \rrbracket = \lambda o \in Heap \cdot \{ s \in State \mid s \ n \ o = s \ z \}$$

₹

<口 > < 圖 > < 필 > < 필 > < 필 >

Denotation of a formula with free variables:

$$\llbracket n(v) = z \rrbracket = \lambda s \in State \cdot \{ o \in Heap \mid s \ n \ o = s \ z \}$$

or
$$\llbracket n(v) = z \rrbracket = \lambda o \in Heap \cdot \{ s \in State \mid s \ n \ o = s \ z \}$$

Definition

n-ary heap predicates and denotation of formulas:

$$\begin{aligned} \text{HeapPred}[n] &\stackrel{\text{def}}{=} \text{Heap}^n \to 2^{\text{State}} \\ & \llbracket \varphi(\overline{\nu}) \rrbracket \stackrel{\text{def}}{=} \lambda \overline{o} \cdot \{ s \in \text{State} \mid s, [\overline{\nu} \mapsto \overline{o}] \models \varphi(\overline{\nu}) \} \end{aligned}$$

5990

10/16

≣

<口 > < 部 > < 문 > < 문 >

Boolean Heaps

Denotation of a formula with free variables:

$$\llbracket n(v) = z \rrbracket = \lambda s \in State \cdot \{ o \in Heap \mid s \ n \ o = s \ z \}$$

or
$$\llbracket n(v) = z \rrbracket = \lambda o \in Heap \cdot \{ s \in State \mid s \ n \ o = s \ z \}$$

Definition

n-ary heap predicates and denotation of formulas:

$$\begin{aligned} \text{HeapPred}[n] &\stackrel{\text{def}}{=} \text{Heap}^n \to 2^{\text{State}} \\ & \llbracket \varphi(\overline{\nu}) \rrbracket \stackrel{\text{def}}{=} \lambda \overline{o} \cdot \{ s \in \text{State} \mid s, [\overline{\nu} \mapsto \overline{o}] \models \varphi(\overline{\nu}) \} \end{aligned}$$

O < </p>

- 4 E + 4

Boolean Heaps

9990

10/16

formulas denote heap predicates

Denotation of a formula with free variables:

$$\llbracket n(v) = z \rrbracket = \lambda s \in State \cdot \{ o \in Heap \mid s \ n \ o = s \ z \}$$

or
$$\llbracket n(v) = z \rrbracket = \lambda o \in Heap \cdot \{ s \in State \mid s \ n \ o = s \ z \}$$

Definition

n-ary heap predicates and denotation of formulas:

$$\begin{aligned} \text{HeapPred}[n] &\stackrel{\text{def}}{=} \text{Heap}^n \to 2^{\text{State}} \\ & \llbracket \varphi(\overline{\nu}) \rrbracket \stackrel{\text{def}}{=} \lambda \overline{o} \cdot \{ s \in \text{State} \mid s, [\overline{\nu} \mapsto \overline{o}] \models \varphi(\overline{\nu}) \} \end{aligned}$$

➔ formulas denote heap predicates

→ closed formulas denote 0-ary heap predicates \approx state predicates

9990

< □ > < 同 > < 글 > < 글 >

Remember: $HeapPred = Heap^n \rightarrow 2^{State}$.

Lift predicate transformers post and wp to heap predicates.

lift $\in (2^{State} \rightarrow 2^{State}) \rightarrow HeapPred \rightarrow HeapPred$ lift $\tau p = \lambda \overline{o} \cdot \tau (p \overline{o})$

< □ ▶ < 47 ▶ 3

Remember: $HeapPred = Heap^n \rightarrow 2^{State}$.

Lift predicate transformers post and wp to heap predicates.

 $\begin{array}{rcl} \text{lift} & \in & (2^{\textit{State}} \to 2^{\textit{State}}) \to \textit{HeapPred} \to \textit{HeapPred} \\ \text{lift} & \tau \; p & = & \lambda \; \overline{o} \, . \, \tau \; (p \; \overline{o}) \end{array}$

Definition

Heap predicate transformers :

hpost, hwp
$$\in$$
 Com \rightarrow HeapPred \rightarrow HeapPred
hpost $c \stackrel{def}{=}$ lift (post c)
hwp $c \stackrel{def}{=}$ lift (wp c)

Boolean Heaps

11/16

Properties

• Form Galois connection on Boolean algebra of heap predicates:

9990

< 口 > < 同 >

Properties

- Form Galois connection on Boolean algebra of heap predicates:
- hwp is computed by syntactic substitutions on formulas (all commands are deterministic):

$$\begin{split} & \mathsf{hwp}\ (\mathsf{assume}\ b)\ \llbracket\varphi(\overline{v})\rrbracket\ =\ \llbracketb\to\varphi(\overline{v})\rrbracket\\ & \mathsf{hwp}\ (x:=e)\ \llbracket\varphi(\overline{v})\rrbracket\ =\ \llbracket\varphi(\overline{v})[x:=e]\rrbracket\\ & \mathsf{hwp}(e_1f:=e_2)\ \llbracket\varphi(\overline{v})\rrbracket\ =\ \llbracket\varphi(\overline{v})[f:=\lambda\ v\,\text{. if }v=e_1\,\text{then}\,e_2\,\text{else}\,f(v)]\rrbracket. \end{split}$$

< □ ▶ < 同

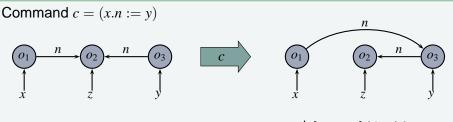
Sac

12/16

Boolean Heaps

Weakest Heap Predicate Preconditions

Example



 $s', [v \mapsto o_1] \not\models n(v) = z$ $s', [v \mapsto o_3] \models n(v) = z$

- 4 ⊒ ▶

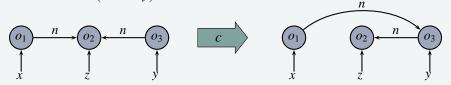
< □ ▶ < @ ▶

₹

Weakest Heap Predicate Preconditions

Example

Command c = (x.n := y)



$$s', [v \mapsto o_1] \not\models n(v) = z$$
$$s', [v \mapsto o_3] \models n(v) = z$$

Image: A matrix

hwp $c [n(v) = z] = [(n(v) = z)[n := \lambda v. \text{ if } v = x \text{ then } y \text{ else } n(v)]]$ $\equiv [v = x \land y = z \lor v \neq x \land n(v) = z]$

Weakest Heap Predicate Preconditions

Example

Command
$$c = (x.n := y)$$

 $0 \xrightarrow{n} 0 \xrightarrow{n} 0$

 $\begin{array}{l} s, [v \mapsto o_1] \not\models \mathsf{hwp} \ c \llbracket n(v) = z \rrbracket \\ s, [v \mapsto o_3] \models \mathsf{hwp} \ c \llbracket n(v) = z \rrbracket \end{array} \qquad \qquad \begin{array}{l} s', [v \mapsto o_1] \not\models n(v) = z \\ s', [v \mapsto o_3] \models n(v) = z \rrbracket \end{array}$

hwp $c [n(v) = z] = [(n(v) = z)[n := \lambda v. \text{ if } v = x \text{ then } y \text{ else } n(v)]]$ $\equiv [v = x \land y = z \lor v \neq x \land n(v) = z]$

· · · 글 · · ·

Image: A matrix and a matrix

5990

14/16

< 口 > < 同 >

Boolean Heaps

Symbolic Abstract Post

Best abstract post can be computed using hwp:

$$\mathsf{post}^{\#} \ c \ \Psi = \bigwedge \{ \Phi \in AbsDom \mid \Psi \models \mathsf{hwp} \ c \ \Phi \}$$

Question: Can it be computed efficiently?

Symbolic Abstract Post

Best abstract post can be computed using hwp:

$$\mathsf{post}^{\#} \ c \ \Psi = \bigwedge \{ \Phi \in AbsDom \mid \Psi \models \mathsf{hwp} \ c \ \Phi \}$$

Question:

Can it be computed efficiently?

Use additional Cartesian abstraction → Boolean heap program

Boolean heap program

Image: A matrix

var V: set of bitvectors over *Pred* for each $\overline{p} \in V$ do for each $p_i \in Pred$ do if $\overline{p} \models$ hwp $c p_i$ then $\overline{p}.p_i :=$ true else if $\overline{p} \models$ hwp $c (\neg p_i)$ then $\overline{p}.p_i :=$ false else $\overline{p}.p_i := *$

Boolean Heaps

9990

14/16

Symbolic Abstract Post

Best abstract post can be computed using hwp:

$$\mathsf{post}^{\#} \ c \ \Psi = \bigwedge \{ \Phi \in AbsDom \mid \Psi \models \mathsf{hwp} \ c \ \Phi \}$$

Question: Can it be computed efficiently?

Use additional Cartesian abstraction

→ Boolean heap program

Boolean heap program

Image: A matrix

var V : set of bitvectors over Pred for each $\overline{p} \in V$ do for each $p_i \in Pred$ do if $\overline{p} \rightarrow hwp^{\#} c p_i$ then $\overline{p}.p_i :=$ true else if $\overline{p} \rightarrow hwp^{\#} c (\neg p_i)$ then $\overline{p}.p_i :=$ false else $\overline{p}.p_i := *$

$$\mathsf{hwp}^{\#} c \ (p(v)) \stackrel{def}{=} \bigwedge \{ \varphi(v) \in \mathcal{BC}(Pred) \mid \varphi(v) \models \mathsf{hwp} \ c \ (p(v)) \}$$

Sac

Tool Demo - Bohne

Boolean heaps - nothing else

- joined work with Martin Rinard's group at MIT
- plugin to Hob framework
- underlying logic: MSOL over trees
- more infos: http://hob.csail.mit.edu

Bohne verifies

procedure contracts (specified in a set specification language)

Sac

15/16

Boolean Heaps

- data structure invariants
- absence of null pointer dereferences.

Conclusion

Main Contributions

- new symbolic approach to shape analysis
- combines key ideas of predicate abstraction and three-valued shape analysis

9990

16/16

Boolean Heaps

< □ ▶ < 同

Future Work

. . .

- inter-procedural analysis
- automated abstraction refinement
- combination with integer arithmetic