TarTar: A Timed Automata Repair Tool

Martin Kolbl!, Stefan Leue!, and Thomas Wies?

Y University of Konstanz, Germany, >New York University, USA

Abstract. We present TARTAR, an automatic repair analysis tool that,
given a timed diagnostic trace (TDT) obtained during the model check-
ing of a timed automaton model, suggests possible syntactic repairs of the
analyzed model. The suggested repairs include modified values for clock
bounds in location invariants and transition guards, adding or removing
clock resets, etc. The proposed repairs guarantee that the given TDT
is no longer feasible in the repaired model, while preserving the overall
functional behavior of the system. We give insights into the design and
architecture of TARTAR, and show that it can successfully repair 69%
of the seeded errors in system models taken from a diverse suite of case
studies.

1 Introduction

A reactive system with requirements pertaining to its timing behavior is often
modeled as a network of timed automata (NTA) [BY03]. Whether a timing
requirement holds in an NTA can be analyzed by timed model checkers such
as Uppaal [BLLT95] or opaal [DHJT11|. In case of a requirement violation, a
model checker returns a timed counterexample, also called a timed diagnostic
trace (TDT). Until now, developers must manually identify and correct such
violations by analyzing the generated TDTs. It is therefore desirable to support
this process by an automated tool set that not only determines whether timing
requirements are met, but also proposes syntactic repairs of the NTA in case
they are not.

In [KLW19] we presented an automated repair analysis that analyzes a TDT
obtained from the violation of a timed safety property and returns syntactic
repair suggestions that avoid the concrete executions of the TDT violating the
property. The analysis performs an additional admissibility check ensuring that
the repaired model is functionally equivalent with the original NTA, which means
that no action traces are added or omitted by the repair.

To illustrate the repair analysis consider the NTA in Figures and
It describes a client that sends a request req to a database db and expects to
receive a response ser within 4 time units after sending the request. The client
contains a clock x that measures the time delay between the request creation and
the receiving of a response in location serReceiving. The NTA allows to execute
a TDT that violates the property, illustrated as a sequence diagram with time
intervals in Figure A time interval in the sequence diagram denotes the
minimal and maximal time delay for the message transmission and processing

initial

x=0
reqCreate timeout ‘ client ‘ ‘ db ‘
| reqAwaiting initial |:| reqAwaiting
req
reqSent w:=0| req?
reqCreate [1’ 2}
serl reqReceived : req()
z==2 y>=1 we=2 Sent reqReveived
z=0 w>=1 reqsen reqProcessingQ[]-a]-}
serReceiving y:=0 I (| — v
regProcessing serReceiving |:| [1, 2}
z<=2 y<=1 :
(a) Timed Automata client (b) Timed Automata db (¢c) TDT tdt

Fig. 1. Network of Timed Automata - Running Example

times in db, respectively. The repair computation analyzes the TDT and pro-
duces several syntactic repairs to the NTA that avoid the property violation.
In [KLW19], the computed repairs aim at the modification of clock bounds in
location invariants and transition guards. An example of such a repair is to re-
duce the bound in the time constraint w < 2 from 2 to 1. The modified bound
constrains the maximal transmit time of the req message so that the resulting
NTA receives all responses within the expected time. This repair eliminates the
problematic executions of the TDT in the original NTA without changing the
functional behavior of the system, which is confirmed by an admissibility test
defined in [KLW19]. However, in general, it may not be possible to repair the
model using only clock bound alterations.

Contributions. We present TARTAR [tar20], which extends the initial prototype
implementation of the clock bound repair analysis presented in [KLW19| to a
more comprehensive NTA repair tool. Specifically, the extended tool implements
new analyses that can suggest a whole range of repairs in addition to clock
bound variation, such as modifying comparison operators in constraints, clock
references, clock resets, and location urgency. Examples of new repairs computed
for the model in Figure [I] are:

— Exchanging the comparison operator in the constraint w > 1 to w < 1
ensures that the time to send a request is below 1 time unit.

— An exchange of clock z in z < 2 with clock y restricts the time of processing
and receiving the response to at most 2 time units.

— To reset the clock y on the previous transition instead ensures that the time
for sending and processing the request is below 1 time unit.

— Making the location serReceiving urgent reduces the time to receive a re-
sponse to 0.

We call a repair admissible if the repaired system is functionally equivalent to
the unrepaired system. The repair analysis implemented in TARTAR returns the
complete set of admissible repairs.

The repair analysis combines concepts and algorithms from model checking,
constraint solving, and automata theory. A real-time model checker is used to
generate TDT's for a given NTA that violate a given timed safety property. TAR-
TAR translates the TDT into a linear real arithmetic constraint system. An SMT
solver is used to compute a repair for the generated constraint system by solv-
ing a MaxSMT problem. An automata-based language equivalence test checks
whether the repair is admissible in the NTA model. The collaboration between
these subcomponents yields a complex tool architecture. We provide insights into
the design and implementation of this architecture and the underlying infras-
tructure of supporting tools. We evaluate the new repair analyses by applying
TARTAR to a number of NTA models. We systematically inject different mod-
ifications in these correct models and compute repairs for the obtained faulty
models, which results in at least one admissible repair for 69% of the TDTs.

Related Work. Other tools exist that compute repairs. The tool BugAssist [JM11]
analyzes C-code by solving a MaxSMT problem. The tool ReAssert [DDG™ 11|
checks a set of possible modification to repair broken unit tests. Angelix [MYR16],
S3 [LCL™17] and SemFix [NQRC13] compute repairs by symbolic execution and
constraint solving. SketchFix [HZWKI18] is based on lazy candidate generation.
All tools are not repairing broken time constraints. We are not aware of related
work on tools for the repair of timed automata models. A more comprehensive
overview of related work on automated repair is given in [LPR19]. A discussion of
work related to the foundations of our repair analysis can be found in [KLW19).

2 New Types of Repair Analyses

The repair analysis presented in [KLW19] and implemented in the prototype ver-
sion of TARTAR encodes a TDT as a constraint system in linear real arithmetic.
It computes syntactic correct modifications of the underlying NTA by introduc-
ing bound variation variables v. For example, possible bound modifications for a
clock bound x < 2 are expressed by a modified clock bound x < 2+v. The repairs
are computed by solving a partial SMT problem on the TDT constraint system,
involving soft-assert constraints on the bound variation variables. No repair is
computed whenever the soft assertion v = 0 holds, otherwise the computed value
of v characterizes the repair. In the following we sketch the new types of repairs
implemented in TARTAR. For a more comprehensive description, which space
limitations do not allow us to provide here, we refer to [KLW20].

Operator Variation Repair Analysis. This analysis is motivated by the assump-
tion that a wrong comparison operator in a location invariant or transition guard
may cause a property violation. We assume for the repair encoding that the op-
erators ~ are indexed according to their order in the sequence (<, <,=,>,>).
The possible repairs are encoded by a fresh variation variable v?" where the
value of v is the index of the corresponding comparison operator. If z < 4 is
computed as a repair, then v?¥ = 1. Using this repair analysis, TARTAR finds

two admissible repairs for the example in Figures and that replace the
comparison operator in the clock constraint w >= 1 by < or <=, respectively.

Clock Reference Repair Analysis. This analysis aims to repair property violations
resulting from errors that stem from the unintended use of a wrong clock variable.
We enumerate all the positions of clock variables in clock bound constraints using
index 7 and all clock variables using index k. We then introduce for every position
i, a fresh variation variable v” whose value k indicates the clock cj to be used at
that position in the repaired model. For example, if y < 2 is a repaired constraint,
where the position of y in the constraint has index 3 and clock y has index 1,
then v§” = 1. Applying this repair analysis to the examples in Figures
and TARTAR finds 13 admissible clock reference modification repairs, each
involving two modifications. Nine repairs exchange y in the constraints y < 1
and y > 1 by a selection from the set of clocks z, and w. Four repairs exchange
y in the constraint y <1 by w or z, and w in the constraint w > 1 by y or z.

Reset Clock Repair Analysis. This analysis aims to repair a property violation
by adding or removing clock resets. We introduce a variation variable v/} for
each clock ¢; and the transition leaving location A; in the TDT. The reset status
in the extended constraint system is inverted when v7 # 0: if ¢; was not reset
before, it will now be reset, and vice versa. Applying the reset repair analysis
to the examples in Figures and TARTAR finds four admissible repairs.
One repair removes the reset of clock y, another removes the reset of clock z
and two repairs add a reset of clock z either on the transitions towards the state
reqProcessing or the transition towards the state serReceiving.

Urgent Location Repair Analysis. This analysis aims to repair cases where a
faulty usage of urgent locations, which are always left with zero delay after en-
tering, causes a property violation. Urgency of a location is modeled in the TDT
constraint system by setting the location delay ¢; to 0. We define a fresh varia-
tion variable v/*” for a location ;. For v/* # 0, the urgency for a location A; is
inverted. Applying the urgency location repair analysis to the examples in Fig-
ures [1(a)| and TARTAR finds two inadmissible repairs. The first one makes
the state reqAwaiting urgent, and another repair makes the state serReceiving
urgent.

3 Usage of TarTar

We have implemented all repair analyses described in [KLW19| and in this paper
in a tool named TARTAR. It provides a graphical user interface, a command-
line interface and a web-interface which enables the execution of this resource
intensive software on compute servers. A user selects one of these interfaces via
arguments provided when invoking the Java library implementing TARTAR. For
real-time model checking, TARTAR relies on Uppaal.

— The argument —web launches the web server and corresponding interface.

— Any other arguments launches the command-line mode. When using the
argument —help, the command-line console prints some help information.

— When no arguments are given, the graphical user interface depicted in Fig-
ure [2(a)| is launched. The interface offers three tabs. New Analysis starts a
repair analysis, New Experiment starts fault seeding which is described later
in Section |p| and Version shows the current version number of TARTAR.

All tool interfaces expect the same types of inputs in order to start a TARTAR
analysis run. The user specifies a file containing the Uppaal model as input
and selects the kind of repair to compute. Optionally, a file with a TDT of
the given Uppaal model can be specified. When no TDT is provided, TARTAR
automatically calls Uppaal to compute a TDT. The result of an analysis is
one repaired model file for every computed repair, as well as a text file that
summarizes which repairs are admissible.

Uppaal: model Repair Computation
Fau!t checking "
{a Seeding . modify
R S
‘ New Analysis | New Experiment Version . “"1},,,,; parse | . 1 j
; oL LN (o)
Select Uppasl bad Model File searchFile | r‘L’l Trace
AN A, Z3: repair ..
LD | E“ """" PPl “leomputation -
Select Uppaal Trace File (Qptional) SearchFile f | R Repair .
Faulty | Repaired : SMT2-Code
Model | Model |
gllzunﬁi'yalui Model : ;
ock Rese | | P
Clock Reference ® Quantifier Elimination ! i Acmss Rt
Urgent Location | 3
Operator i opaal: TS ﬁ, AutomataLib:
Naeemeneees 58 Sreation 1 equivalence checking
Start =
(a) TARTAR GUI (b) TARTAR Architecture

Fig. 2. TARTAR Tool

4 Software Architecture and Implementation of TarTar

The software architecture of TARTAR is depicted in Figure The orange rect-
angles in the figure represent external tools that TARTAR calls in the course of
the repair analysis. Uppaal is a state-of-the-art and closed-source model checking
tool, which TARTAR uses to compute a TDT for a given model and property.
The SMT solver Z3 is used to solve the generated partial MaxSMT
problems. To check the admissibility of a repair, TARTAR uses opaal and the
AutomataLlib component of LearnLib since they conveniently provide
functionality used during admissibility checking.

Data Flow Architecture. TARTAR consists of many computation steps. For ex-
ample, a TDT is parsed internally and stored as a Trace. This Trace is then

modified and exported as SMT-LIB2 [BFT17] code. We define a computation
step of TARTAR as the computation transforming input into result artifacts.
This focus on artifacts ensures a highly cohesive architecture and clear inter-
faces between any two computation steps. Computation steps with identical
objectives are grouped into a project. This results in four projects depicted by

blue rectangles in Figure

HMTI denotes the user interfaces of TARTAR. The user inputs a timed model.
TARTAR then calls the project Repair Computation using a faulty timed
model as a parameter. In case that the model is correct, TARTAR calls the
project Fault Seeding.

Fault Seeding seeds faults into a correct model and then repairs the faulty
model by computing repairs using Repair Computation. We use this analysis
in Section [p|in order to benchmark the Repair Computation analyses.
Repair Computation computes candidate repairs for a faulty timed model,
applies these repairs to the model and finally automatically calls the Admis-
sibility Test.

Admissibility Test checks for every repaired model whether the computed
repair is also admissible.

Control Flow Architecture. TARTAR computes iteratively a set of repairs for a
given faulty Uppaal model and a given property II using the following steps:

0.

Counterexample Creation. TARTAR calls Uppaal to verify the model against
II. In case II is violated, it stores a shortest symbolic TDT witnessing the
violation in XML format.

. Diagnostic Trace Creation. TARTAR parses the model and the TDT into a

data structure Trace. To add potential repairs, TARTAR copies the trace and
replaces the constraints that will potentially be subject to a repair by their
modified variants. The modified trace is then translated to a logic constraint
system, represented in SMT-LIB2 code.

Repair Computation. Z3 [dMBO0S§| then solves a MaxSMT problem on the
modified trace constraint system, computing a repair in which the number of
unmodified constraints on the variation variables of type v = 0 is maximized.
Since Z3 can solve a MaxSMT problem only for quantifier-free linear real
arithmetic, TARTAR first runs a quantifier elimination on the constraint
system. It then solves the MaxSMT problem with soft constraints requiring
v = 0 for all variation variables. For a more comprehensive presentation
of this construction we refer the reader to [KLW20]. In case no solution is
found, TARTAR terminates. Otherwise, TARTAR applies the repair to the
faulty model and returns a repaired model.

Admissibility Check. TARTAR checks the admissibility of a repair and com-
pares the untimed languages of the faulty and repaired models. TARTAR
calls the model checker opaal in order to compute the timed transition sys-
tems (TTS) of the original and the repaired Uppaal model. We modified
the opaal model checker in such a way that it returns the TTS for a model.

TARTAR then checks whether the two TTS have equivalent untimed lan-
guages, in which case the repair is admissible. This check is implemented
using the library Automatalib. In case the two TTS are not equivalent, the
admissibility test returns a trace as a witness for the difference.

4. Iteration. TARTAR enumerates all repairs, i.e., all combinations of constraint
modifications that correct the TDT. The repairs are iteratively enumerated
starting with the ones that require the smallest number of modifications to
the model. After a repair is computed, the combination of modified variables
that has been found is prevented from being reconsidered for future repairs
by setting these modification variables to 0 using hard asserts. TARTAR
then proceeds with attempting to compute further, previously unconsidered
repairs.

Component Architecture. We imple-
mented TARTAR with the general in-

frastructure depicted in Figure[3} The Web
interface Job provides a general ab- runs input

) P 28 G || session|—>! ob |$—= pescritin
straction for an algorithm and spec- result

ifies the necessary input and result [command-Line |

values of the algorithm by the class

Description. TARTAR contains a Job Fig. 3. TARTAR Component Architecture
for the projects Fault Seeding, Repair

Computations and Admissibility Test.

The class Session executes a Job and derivations of Session provide the different
interfaces to the user. With this infrastructure, the analysis implementation in
TARTAR is independent from the implementation of the user interfaces, thus
reducing coupling and improving modifiability of the code.

Implementation Details. We implemented the different projects that constitute
TARTAR in Java and use the build-management tool maven [Mav19| to manage
the dependencies between the projects. TARTAR interacts differently with the
external tools that are needed for different purposes. It calls Uppaal via the
command-line interface in order to generate a TDT and calls Z3 via its API to
compute a repair. For the admissibility check, it calls opaal using a command-line
script and the AutomataLib as an included Java library. For the implementation
of the TARTAR analyses the following two details are essential.

We modify constraints in an Uppaal model in order to apply a repair or
to seed a fault. Since neither clock constraints nor transitions possess explicit
unique identifiers in an Uppaal model, it is not obvious which constraint to
change. We therefore uniquely identify a constraint by traversing the constraints
in the sequence stored in the Uppaal model file and use the constraint index in
this sequence as its identifier.

The complexity of the algorithms for solving quantifier elimination and the
MaxSMT problem increase exponentially with the number of variables in the
SMT model [KLW19]. We therefore reduce the number of variables by exploit-
ing implied equality constraints. For example, a variable c¢; is created for every

clock c in every step j of the TDT. We eliminate c; explicitly before quantifier
elimination by replacing it with the term - j d;, where d; is the time delay
at step ¢ in the trace and r is the last step before j where ¢ was reset.

5 Evaluation

Evaluation Strategy. In order to evaluate the repair analyses both qualitatively
and quantitatively, we need to synthesize a set of faulty timed automata. To the
best of our knowledge, no benchmark suite for faulty timed automata exists. We
therefore create faulty models by using the fault seeding strategy from [KLW19)
which is motivated by ideas from mutation testing [JH11]. Mutation testing eval-
uates the quality of a test suite for a given program by systematically corrupting
program code and determining the ratio of corruptions that the test suite is able
to detect. We apply the same principle to evaluate the quality of our repair
technique. As proposed in [KLW19], fault seeding modifies a single clock con-
straint so that the result is a set of models that violate a given property. During
the seeding, the bound of a single clock constraint is modified by an amount
of {—10,—1,+1,40.1M,+M}, where M is the maximal clock bound occurring
in a given model. Our observation was that making either small modifications
that are close to the bound value or modifications in the order of the maximal
bound value M often introduce actual errors in the model. We have extended
fault seeding to the new types of repairs. In particular, fault seeding addition-
ally exchanges the comparison operator in a clock constraint by {<, <,=, >, >},
swap a referenced clock with all other clocks occurring in the given model, mod-
ify the reset clocks of any transition, and switch for any location whether it is
urgent. TARTAR checks automatically whether a modified TA violates a given
property. If this is the case, it performs all of the above defined repair analyses.

Results. We applied fault seeding to the models in [KLW 19| and analyzed the ob-
tained TDT's using the above described repair analyses implemented in TARTAR.
All analyses were performed on a computer with an i7-6700K CPU (4.00GHz),
60GB of RAM and a 64 bit Linux operating system. We summarize the results
of the experiment per considered model (Table [1)) and per type of considered
repair (Table . Column Sd contains the count of seeded faults that result in

[Repair H#Sd[#T[TUp [Ln[#R [#A[#S[Tor [#O[Tr [Mpr [#Vr[#Cn[Tadm [MA[
db rep. 110| 13]0.016| 4| 229|138| 9| 89.346| 2]0.911|14.53 30 91| 2.080| 45
csma 191| 10{0.012| 2 70| 26| 8| 0.049| 0]0.023| 0.58 16 72| 1.825| 75
elevator 88| 5(0.011] 1 7| 5| 4| 0.049| 0]0.020| 0.53 6 28| 1.665| 17
viking 310f 9(0.015| 18 9| 7| 5| 86.539| 21|1.436(20.07| 120| 180| 1.952| 543
bando 1,955| 40(0.111|279|4,061|209| 21| 31.555| 46|4.922(20.86|1,156|8,144| 19.57|1251
Pacemaker||1,187| 12|0.022| 9 62| 19| 10| 0.663| 20|0.325| 2.59| 116| 988| 1.994| 206
SBR 353| 50(0.027| 84| 751|660| 31|117.057| 86|2.686|37.16| 765|1,211|138.004| 211
FDDI 314| 36(0.014| 11| 166|105| 34| 29.859| 51|3.074| 9.70| 116| 272| 2.241| 128

Table 1. Experimental results according to model.

[Repair H #R [#A[#S[Tor [#O[Tr [Mg [#Vr[#Cn[T Adm [Ma]
Bound Modification|| 533|364 85| 15.209| 8[4.922[20.86|1,156(2,498[138.004| 525
Operator Variation [[3,929| 96| 51|117.057| 44|2.686|37.16| 996|8,144| 59.117| 543
Clock Reference 693|625| 35| 33.282| 61[3.074|14.13|1,120(5,355|116.944| 206
Reset Clock 45| 37| 13| 89.346|113|0.911|14.53| 996|2,836| 2.051 45
Urgent Location 155| 47| 37| 0.107| 0]0.135| 3.16|1,120|2,502| 58.551|1,251

Table 2. Experimental results according to type of repair.

a number #T of faulty models. Typ is the maximal time that Uppaal needs to
create a TDT for the faulty models, and the longest TDT has a length of Ln.
TARTAR computed for the TDTs overall a number # R repairs of which #A are
admissible. An admissible repair is found for #5 of the TDTs. The computa-
tion effort for a repair analysis is given by the time Tgg for successful quantifier
elimination, the number of timeouts # O of quantifier eliminations after 10 min-
utes, the average time Tg to compute a repair and the memory consumption
Mp. The constraint system that Z3 solves has the count # Vr of variables and
Cn of constraints. The effort for the admissibility check is given in time T'44,
and memory M 4. All times are given in seconds and memory consumption in
MB. Notice that we omit the columns pertaining to the fault seeding and TDT
computation in Table [2] as they are irrelevant here.

Overall, TARTAR seeded 4.508 faults. This resulted in 175 TDTs in total
(60 TDTs due to bound modification, 72 due to operator variation, 27 due to
changing the clock reference, 8 due to complementing the reset of clocks and
8 due to the switching of urgent locations). TARTAR found 5,355 repairs, out
of which 1,169 were admissible. It found at least one admissible repair for 122
of the TDTs. The maximal number of modified constraints in the admissible
repairs computed for a single TDT using all types of analysis was 25.

Interpretation. Few of the seeded faults resulted in a property violation. TARTAR
seeded 4.508 faults which led to 175 TDTs, thus only 3.9% of these faults result in
a TDT. This supports the hypothesis that, in practice, often times only few time
constraints have an impact on a property violation. TARTAR computes at least
one admissible repair by bound modification for 85 (48%) of the 175 TDTs, by
operator variation for 51 (29%), by clock reference for 35 (20%), by clock reset for
13 (7%) and by urgent location for 37 (21%). Every analysis on its own computes
less admissible repairs than the combination of all repair analyses, which solves
122 (69%) of the 175 TDTs. The largest number of modified constraints in all
the admissible repairs for a single TDT was 25, which is less than anticipated.
This low number of modified constraints infer that, for the examples that we
considered, only a few constraints of each TDT combined to admissible repairs.
The number of modified constraints determines the number of possible repairs
that have an impact on whether a property is violated or not. Since it was
observed in [KLW19] that the computational effort for the repair computation is
largely determined by the quantifier elimination step, we expect that in light of
the observed 226 timeouts a more efficient quantifier elimination would lead to
a significantly higher number of repairs. Furthermore, the number of timeouts,

and thus the computation time needed for the repair, rises with the length of
the analyzed TDT. The model SBR has the most timeouts with 86 and the
third longest trace with a length of 84 steps. The model bando has the third
most timeouts with 46 and the longest trace. Obviously, the longer the TDT,
the larger the resulting constraint system, leading to increased computational
effort. The bando model has the largest constraint system with 1,156 variables
and 8, 144 constraints. The SBR model has the second largest constraint system
with 765 variables and 1,211 constraints. The model FDDI has a shorter trace
of length of 11 and a much smaller constraint system with 116 variables and
272 constraints. From this we conclude that the complexity of a repair depends
not only on the trace length, but also on the intrinsic complexity of the model.
Modifying states from urgent to non-urgent during fault seeding resulted in
only 8 TDTs. This low number is due to the observation that the considered
models contain only few urgent states. Modifying non-urgent states to urgent
ones, however, did not lead to a single property violation resulting in a TDT.
The rationale is that urgency ensures to leave a state immediately without a
delay which leads to a restriction rather than a relaxation regarding the time
budget spent along an execution trace. As a consequence, making a state urgent
does not cause a property violation in many models since the type of the checked
properties is typically time bounded reachability, and a restricted time budget
does not make it more likely that the property is violated. We finally observe
that the admissibility check requires more computation resources than the repair
computation. The maximal memory used for the admissibility test was 1,251MB
in contrast to 37.16MB for the repair computation. This is in line with our
expectation since the admissibility test searches the state space of the full NTA,
while the repair analyses only considers a single TDT.

6 Conclusion

We have presented the TARTAR tool, its architecture and implementation, and
illustrated its application to a number of significant case studies. In the course
of our work we have extended the repair analysis that is implemented in TAR-
TAR for bound modification to modifications of comparison operators, clock
references, reset of clocks and missing urgencies. The evaluation of the repair
analyses showed that an admissible repair is computed for at least 69% of the
analyzed TDTs. The integration of various tools with heterogeneous interfaces
posed a particular challenge to the architecture of TARTAR which we addressed
by the definition of intermediate artifacts.

In future work we plan to explore the interplay between different repairs that
are computed for a repaired system that still violates a property, and develop
refined strategies to select promising repairs from a repair set. A further gener-
alization of the analysis is to not only compute clock constraint modifications
for faulty models but also to compute possible relaxations of clock constraints
for correct models in order to support design space exploration.

10

References

BFT17.

BLL"95.

BYO03.

DDG™T11.

DHJ*t11.

dMBOS8.

HZWK18.

THS15.

JH11.

JM11.

KLW19.

KLW20.

LCL*17.

LPR19.

Mav19.
MYRI16.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. = SMT-lib, 2017.
http://smtlib.cs.uiowa.edu/language.shtml.

Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. Uppaal - a tool suite for automatic verification of real-
time systems. In Hybrid Systems, volume 1066 of Lecture Notes in Computer
Science, pages 232—243. Springer, 1995.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Lectures on Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, pages 87—124. Springer, 2003.

Brett Daniel, Danny Dig, Tihomir Gvero, Vilas Jagannath, Johnston Jiaa,
Damion Mitchell, Jurand Nogiec, Shin Hwei Tan, and Darko Marinov. Re-
assert: a tool for repairing broken unit tests. In ICSE, pages 1010-1012.
ACM, 2011.

Andreas FEngelbredt Dalsgaard, René Rydhof Hansen, Kenneth Yrke
Jorgensen, Kim Guldstrand Larsen, Mads Chr. Olesen, Petur Olsen, and
Jiri Srba. opaal: A lattice model checker. In NASA Formal Methods, vol-
ume 6617 of Lecture Notes in Computer Science, pages 487-493. Springer,
2011.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: an efficient SMT
solver. In TACAS, volume 4963 of Lecture Notes in Computer Science,
pages 337-340. Springer, 2008.

Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. Sketch-
fix: a tool for automated program repair approach using lazy candidate
generation. In ESEC/SIGSOFT FSE, pages 888-891. ACM, 2018.

Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learnlib
- A framework for active automata learning. In CAV (1), volume 9206 of
Lecture Notes in Computer Science, pages 487—-495. Springer, 2015.

Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEE Trans. Software Eng., 37(5):649-678, 2011.

Manu Jose and Rupak Majumdar. Bug-assist: Assisting fault localization
in ANSI-C programs. In CAV, volume 6806 of Lecture Notes in Computer
Science, pages 504-509. Springer, 2011.

Martin Koélbl, Stefan Leue, and Thomas Wies. Clock bound repair for timed
systems. In CAV (1), volume 11561 of Lecture Notes in Computer Science,
pages 79-96. Springer, 2019.

Martin Kolbl, Stefan Leue, and Thomas Wies. Tartar: A timed automata
repair tool. CoRR, abs/2002.02760, 2020. Also available from URL https:
//www.sen.uni-konstanz.de/publications!

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem
Visser. S3: syntax- and semantic-guided repair synthesis via programming
by examples. In ESEC/SIGSOFT FSE, pages 593-604. ACM, 2017.
Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated
program repair. Commun. ACM, 62(12):56-65, 2019.

Apache Software Foundation. Maven, 2019. https://maven.apache.org/.
Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: scalable
multiline program patch synthesis via symbolic analysis. In ICSE, pages
691-701. ACM, 2016.

11

https://www.sen.uni-konstanz.de/publications
https://www.sen.uni-konstanz.de/publications

NQRC13. Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. Semfix: program repair via semantic analysis. In ICSE, pages
772-781. IEEE Computer Society, 2013.

tar20. Tartar, 2019-2020. https://github.com/sen-uni-kn/tartar.

12

	TarTar: A Timed Automata Repair Tool
	Introduction
	New Types of Repair Analyses
	Usage of TarTar
	Software Architecture and Implementation of TarTar
	Evaluation
	Conclusion

