
Ideal Abstractions for
Well-Structured Transition Systems

Damien Zufferey1, Thomas Wies2, and Thomas A. Henzinger1

1 IST Austria?

2 New York University

Abstract. Many infinite state systems can be seen as well-structured transition
systems (WSTS), i.e., systems equipped with a well-quasi-ordering on states that
is also a simulation relation. WSTS are an attractive target for formal analysis be-
cause there exist generic algorithms that decide interesting verification problems
for this class. Among the most popular algorithms are acceleration-based for-
ward analyses for computing the covering set. Termination of these algorithms
can only be guaranteed for flattable WSTS. Yet, many WSTS of practical interest
are not flattable and the question whether any given WSTS is flattable is itself un-
decidable. We therefore propose an analysis that computes the covering set and
captures the essence of acceleration-based algorithms, but sacrifices precision for
guaranteed termination. Our analysis is an abstract interpretation whose abstract
domain builds on the ideal completion of the well-quasi-ordered state space, and
a widening operator that mimics acceleration and controls the loss of precision of
the analysis. We present instances of our framework for various classes of WSTS.
Our experience with a prototype implementation indicates that, despite the inher-
ent precision loss, our analysis often computes the precise covering set of the
analyzed system.

1 Introduction

One of the great successes in applying model checking techniques to the analysis of
infinite state systems has been achieved by studying the class of well-structured transi-
tion systems (WSTS) [1, 12–16, 19, 20]. A WSTS is a transition system equipped with
a well-quasi-ordering ≤ on its states that satisfies the following monotonicity property:
for all states s, s′, and t if s ≤ t and s→ s′ then there exists a state t′ such that t→ t′

and s′ ≤ t′. In other words,≤ is a simulation relation for the system. Interesting classes
of WSTS include Petri nets [25] and their monotonic extensions [10], lossy channel
systems [3], and dynamic process networks such as depth-bounded processes [22, 28].

Many interesting verification problems are decidable for WSTS. In particular, the
verification of a large class of safety properties can be reduced to the coverability prob-
lem, which is decidable for WSTS that satisfy only a few additional mild assump-
tions [1]. The coverability problem asks whether, given a bad state s, there exists a
reachable state s′ of the system that covers the bad state, i.e., s0 →∗ s′ and s ≤ s′

? This research was supported in part by the European Research Council (ERC) Advanced In-
vestigator Grant QUAREM and by the Austrian Science Fund (FWF) project S11402-N23.

where s0 is an initial state s0 ∈ S0. In this paper, we are not just interested in solving
the coverability problem, but in the more general problem of computing the covering
set of a WSTS T . The covering set Cover(T) is defined as the downward-closure of the
reachable states of the system Cover(T) = ↓post∗(↓S0). With the help of the covering
set one can decide the coverability problem, but also answer other questions of inter-
est such as boundedness (which asks whether Cover(T) is finite) and U -boundedness
(which asks whether Cover(T)∩U is finite for some upward-closed set U). While cov-
erability is decidable for most WSTS, boundedness is not [10], i.e., the covering set is
not always computable. Therefore, our goal is to compute precise over-approximations
of the covering set, instead of computing this set exactly. In this paper, we present a
new analysis based on abstract interpretation [7, 8] that accomplishes this goal.

One might question the rational of using an approximate analysis for solving decid-
able problems such as coverability. However, in practice one often uses coverability to
give approximate answers to verification problems that are undecidable even for WSTS
(such as general reachability). Thus, completeness is not always a primary concern.
Also, one should bear in mind that even though coverability is decidable, its complex-
ity is non-primitive recursive for many classes of WSTS [27], i.e., from a practical
point of view the problem might as well be undecidable. Nevertheless, the techniques
that have been developed for solving the coverability problem provide important algo-
rithmic insights for the design of good approximate analyses.

Among the best understood algorithms for computing the exact covering set of a
WSTS are acceleration-based algorithms such as the Karp-Miller tree construction for
Petri nets [20] or the more general clover algorithm [13]. These algorithms exploit the
fact that every downward-closed subset of a well-quasi-ordering can be effectively rep-
resented as a finite union of order ideals [12, 17]. The covering set is then computed
by identifying sequences of transitions in the system that correspond to loops leading
from smaller to larger states in the ordering, and then computing the exact set of ideals
covering the states reachable by arbitrary many iterations of these loops. This process is
referred to as ω- or lub-acceleration. Since acceleration is exact, these algorithms com-
pute the exact covering set of a WSTS, whenever they terminate. Since the covering
set is not always computable, termination is only guaranteed for so-called flattable sys-
tems [13]. In a flattable WSTS the covering set can be obtained by a finite sequence of
lub-accelerations of finite sequences of transitions. In particular, this means that every
nested loop of transitions can be decomposed into a finite sequence of simple loops.
Many WSTS of practical interest do not satisfy this property. We provide an example
of such a system in the next section.

Contributions. We are the first to propose an abstract interpretation framework that
computes precise approximations of covering sets for WSTS, captures the key insights
of acceleration-based algorithms, yet is guaranteed to terminate even on non-flattable
WSTS. The abstract domain of our analysis is based on the ideal completion of the
well-quasi-ordering of the analyzed WSTS and an accompanying widening operator.
The widening operator mimics the effect of acceleration, but loses enough precision
to guarantee termination. Instead of accelerating loops that lead from sets of smaller
to sets of larger states, our widening operator only accelerates the difference between
these sets of states, independently of the actual sequence of transitions that produced

2

Equations:
client(C, S) = C().client(C, S)⊕ (S(C).0 | client(C, S))

server(S) = S(C).(C().0 | server(S))
env(S) = env(S) | (ν C)client(C, S)

Initial state: (ν S)(server(S) | env(S))

Fig. 1. A π-calculus process implementing a client-server protocol.

them. We present instances of our framework for the WSTS classes of Petri nets, lossy
channel systems, and depth-bounded process networks. Our experience with a prototype
implementation indicates that, despite its inherent incompleteness, our analysis often
computes the precise covering set of the analyzed system.
Further Related Work. We have already explained, in detail, the connection of our
work with acceleration-based algorithms for computing the covering set. We discuss
further connections with algorithms for solving the related coverability problem. The
simplest algorithm for this problem is a backward analysis described in [1]. In practice,
backward algorithms tend to be less efficient than forward algorithms, especially for dy-
namic process networks where the pre operator is expensive to compute [28]. Therefore,
many attempts have been made at deriving complete forward algorithms for this prob-
lem. The most general solutions are described in [16] and [15]. The expand, enlarge, and
check algorithm [16] decides the covering problem using a combination of an under-
approximating and an over-approximating forward analysis. The over-approximating
analysis relies on a so-called adequate domain of limits for the representation of down-
ward-closed sets, which is actually the ideal completion of the underlying well-quasi
ordering [12]. Ganty et al. propose an alternative algorithm [15] based on abstract in-
terpretation. Unlike our approach, this algorithm uses a finite abstract domain that rep-
resents downward-closed sets by complements of upward-closed sets. The algorithm
then relies on a complete refinement scheme to refine the abstraction for a specific cov-
erability goal. Both algorithms [12,15] compute an over-approximation of the covering
set as a byproduct of the analysis, namely an invariant whose complement contains the
coverability goal. To ensure completeness, the precision of this computed invariant is
geared towards proving the specific instance of the coverability problem. Instead, our
analysis computes a precise approximation of the covering set that is independent of
any specific coverability instance.

An extended version of this paper with additional material (including proofs) is
available as a technical report [30].

2 Motivating Example

We start with an example of a non-flattable system and illustrate how our analysis com-
putes its covering set. Our example is given by the π-calculus process shown in Figure 1.
The process models a concurrent system that implements a client-server protocol using
asynchronous message passing. The process consists of one single server thread, an en-
vironment thread, and an unbounded number of client threads. Each type of threads is

3

server

env

S

client

SS

C

client
S server

env

S
*

client

S

*
S

C

*

C

Fig. 2. Communication graph of the system in Figure 1 and the symbolic representation
of the covering set of this system

defined by a recursive π-calculus equation. In each loop iteration of a client, the client
non-deterministically chooses to either wait for a response from the server on its own
dedicated channel C, or to send a new request to the server. Requests are sent asyn-
chronously and modeled as threads that wait for the server to receive the client’s chan-
nel name over the server’s dedicated channel S and then terminate immediately. In each
iteration of the server loop, the server waits for incoming requests on its own channel
S and then asynchronously sends a response back to the client using the client’s chan-
nel name C received in the request. The environment thread models the fact that new
clients can enter the system at anytime. In each iteration of the environment thread, it
spawns a new client thread with its own dedicated fresh channel name. The initial state
of the system consists only of the server and the environment thread.

The states of a π-calculus process can be represented as a communication graph
with nodes corresponding to threads (labeled by their id) and edges corresponding to
channels (labeled by channel names). The left hand side of Figure 2 shows the commu-
nication graph representing the process:

server(S) | client(C1, S) | S(C1).0 | client(C2, S) | env(S)

The transition relation on processes is monotone with respect to the ordering on pro-
cesses that is induced by subgraph isomorphism between their communication graphs,
i.e., a process represented by a communication graph G can take all transitions of pro-
cesses represented by the subgraphs of G. We call a set of graphs depth-bounded, if
there exists a bound on the length of all simple paths in all graphs in the set. A depth-
bounded process [22] is a process whose set of reachable communication graphs is
depth-bounded. The subgraph isomorphism ordering is a well-quasi-ordering on sets of
depth-bounded graphs, i.e., depth-bounded processes are WSTS. The process defined
in Figure 1 is depth-bounded because the longest simple path in any of its reachable
communication graphs has length at most 2. We now explain our analysis through this
example.

Our analysis computes an over-approximation of the covering set of the analyzed
WSTS, i.e., the downward-closure (with respect to the well-quasi-ordering) of its reach-
able set of states. The elements of the abstract domain of the analysis are the downward-

4

closed sets. In our example, these are sets of communication graphs that are downward-
closed with respect to the subgraph ordering. A finite downward-closed set of graphs
can be represented by the maximal graphs in the set. The downward-closure of a sin-
gle graph is an ideal of the subgraph ordering. Thus, any finite downward-closed set
is a finite union of ideals. For well-quasi-orderings this is true for arbitrary downward-
closed sets, including infinite ones. We symbolically represent the infinite ideals of
the subgraph ordering by graphs where some subgraphs are marked with the symbol
‘*’. These markings of subgraphs can be nested. Such a symbolic graph represents the
downward-closure of all graphs that result from (recursively) unfolding the marked sub-
graphs arbitrarily often. The right hand side of Figure 2 shows such a symbolic graph.
It represents a downward-closed set of communication graphs of our example system
that is also the covering set of the system. The covering set consists of all graphs that
contain one server thread, one environment thread, and arbitrarily many clients with
arbitrarily many unprocessed request and response messages each.

Our analysis works as follows: it starts with a set of symbolic communication graphs
that represents the downward-closure of the initial states of the system. Then it iterates
a fixed point functional that is composed of the following two steps: (1) compute the
set of symbolic communication graphs that represent the downward-closure of the post
states of the states represented by the current set of symbolic graphs, and (2) widen
the resulting set of symbolic graphs with respect to the sequence of iterates that have
been computed in the previous steps. The widening step compares the symbolic graphs
in the new iterate pairwise to the symbolic graphs obtained in the previous iterates. If
a symbolic graph in the new iterate is larger than some symbolic graph in a previous
iterate then the larger graph must contain a subgraph that is not contained in the smaller
one. This subgraph in the larger graph is then marked with a ‘*’. The intuition behind
the widening is that, because of monotonicity of the transition relation, the sequence of
transitions that lead from the smaller to the larger graph can be repeated arbitrarily of-
ten, which results in graphs with arbitrarily many copies of the new subgraph. Figure 3
shows a sequence of symbolic graphs obtained during the analysis of the client-server
example. The final symbolic graph in the sequence represents the covering set of the
system. This symbolic graph is also the fixed point obtained by our analysis, i.e., in this
example the analysis does not lose precision.

Note that the covering set of our example system cannot be computed by a finite
number of accelerations of finite sequences of transitions, i.e., the system is not flat-
table. This is reflected by the nesting of marked subgraphs in the symbolic graph that
represents the covering set. To obtain this covering set via acceleration, one would need
to compute the set of states reachable by a transfinite sequence of transitions resulting
from ω-acceleration of a sequence of transition that is already infinite. The infinite se-
quence of transition that is to be accelerated corresponds to the creation of a client by
the environment thread, followed by infinitely many exchanges of request and response
messages between this client and the server. Since acceleration-based algorithms such
as the clover algorithm [13] cannot accelerate infinite sequences of transitions, they do
not terminate on our example system.

5

server

env

S

server

env

S

*
client

S

server

env

S

*

client

S

*
S

C

server

env

S
*

client

S

*
S

C

*

C

Fig. 3. Sequence of symbolic communication graphs produced by the analysis of the
system in Figure 1

3 Preliminaries

Posets, lattices, wqos, and bqos. A quasi-ordering ≤ is a reflexive and transitive rela-
tion ≤ on a set X . In the following X(≤) is a quasi-ordered set. The upward closure
↑ Y of a set Y ⊆ X is ↑ Y = {x ∈ X | ∃y ∈ Y. y ≤ x }. The downward closure ↓Y
of Y is ↓Y = {x ∈ X | ∃y ∈ Y. x ≤ y }. A set Y ⊆ X is upward-closed if Y =↑ Y
and downward-closed if Y = ↓Y . An upper bound x ∈ X of a set Y ⊆ X is such
that for all y ∈ Y , y ≤ x. The notion of lower bound is defined dually. A nonempty
set D ⊆ X is called directed if any two elements in D have a common upper bound in
D. A set I ⊆ X is an ideal of X if I is downward-closed and directed. We denote by
Idl(X) the set of all ideals of X and call Idl(X) the ideal completion of X .

If a quasi-ordering ≤ on a set X is antisymmetric it is called a partial ordering and
X(≤) a poset. A poset L(≤) is called a complete lattice if every subset X ⊆ L has
a least upper bound tX and a greatest lower bound uX in L. In particular, L has a
least element ⊥ = uL and a greatest element > = tL. This lattice will be denoted
by L(≤,>,⊥,t,u). For a function f : X → Y and X ′ ⊆ X we denote by f(X ′)
the set { f(x) | x ∈ X ′ }. A monotone function f : L → L on a complete lattice L(≤
,>,⊥,t,u) is called continuous if for every directed subsetD of L, tf(D) = f(tD).
Recall Kleene’s fixed point theorem which states that if f : L → L is continuous then
its least fixed point lfp≤(f) ∈ L exists and is given by t

{
f i(⊥) | i ∈ N

}
.

Let L1(≤1) and L2(≤2) be posets. A Galois connection between L1(≤1) and
L2(≤2) is a pair of functions α : L1 → L2 and γ : L2 → L1 that satisfy for all
x ∈ L1, y ∈ L2, α(x) ≤2 y iff x ≤1 γ(y). If γ is also injective then (α, γ) is called
Galois insertion.

A quasi-ordering ≤ on a set X is called well-quasi-ordering (wqo) if any infinite
sequence x0, x1, x2, . . . of elements from X contains an increasing pair xi ≤ xj with
i < j. We extend the ordering ≤ to an ordering ≤ on subsets of X as expected: for
Y1, Y2 ⊆ X , we have Y1 ≤ Y2 iff for all y1 ∈ Y1 there exists y2 ∈ Y2 such that y1 ≤ y2.
We will also refer to the notion of better-quasi-ordering. For all intents and purposes in
this paper, it suffices to know that better-quasi-orderings are well-quasi-orderings that
are closed under powerset construction, i.e., if X(≤) is a bqo then P(X)(≤) is also a
bqo. We refer to [23] for the precise (but rather technical) definition of bqos.

6

Well-structured transition system. A transition system is a tuple T = (S, S0,→) where
S is a set of states, S0 ⊆ S a set of initial states, and → ⊆ S × S is a transition
relation. We denote by post : P(S) → P(S) the post operator of T defined by
post(X) = {x′ ∈ S | ∃x ∈ X.x→ x′ }. Note that post is continuous on the complete
lattice P(S)(⊆, S, ∅,∪,∩).

A well-structured transition system (WSTS) is a tuple T = (S, S0,→,≤) where
(S, S0,→) is a transition system and ≤ ⊆ S×S a wqo that is upward-compatible with
respect to→, i.e., for all s1, s2, t1 such that s1 ≤ t1 and s1 → s2, there exists t2 such
that t1 → t2 and s2 ≤ t2. The covering set of a well-structured transition system T ,
denoted Cover(T), is defined by Cover(T) = ↓lfp⊆(λX.↓S0 ∪ post(X)).

4 Ideal Abstraction

We next describe our abstract interpretation framework for computing over-approxi-
mations of the covering sets of WSTS. For this purpose we fix a WSTS T = (S, S0,→
,≤) throughout the rest of this section.

4.1 Concrete and Abstract Domain

Following the framework of abstract interpretation [7, 8], a static analysis is defined by
lattice-theoretic domains and by fixed point iteration over the domains. The concrete
domain D of our analysis is the powerset domain over the states S of WSTS T :

D def= P(S)(⊆, ∅, S,∪,∩)

Since our analysis is to compute an over-approximation of the covering set of T , which
is a downward-closed set, we define the abstract domainD↓ as the set of all downward-
closed subsets of S, again ordered by subset inclusion:

D↓
def= { ↓X | X ⊆ S } (⊆, ∅, S,∪,∩)

One can easily verify that D↓ is a complete lattice. This choice of the abstract domain
suggests the following abstraction function α↓ : D → D↓ and concretization function
γ↓ : D↓ → D defined as α↓(X) def= ↓X and γ↓(Y) def= Y .

Proposition 1. The pair (α↓, γ↓) forms a Galois insertion between domainsD andD↓.

According to [8], the Galois insertion (α↓, γ↓) defines the best abstract post opera-
tor post↓ on the abstract domain D↓:

post↓
def= α↓ ◦ post ◦ γ↓

We next show that we can effectively represent the elements of D↓ and, for all
practical purposes, effectively compute post↓ on this representation. To obtain this rep-
resentation, we exploit the fact that any downward-closed subset of a wqo-set S(≤) is
a finite union of ideals of S(≤).

7

Denote by Pfin(Idl(S)) the finite sets of ideals of S(≤) and define the quasi-
ordering v on Pfin(Idl(S)) as the point-wise extension of ⊆ from the ideal completion
Idl(S) of S(≤) to Pfin(Idl(S)):

L1 v L2
def⇐⇒ ∀I1 ∈ L1.∃I2 ∈ L2. I1 ⊆ I2

Let DIdl be the quotient of Pfin(Idl(S)) with respect to the equivalence relation v
∩ v−1. For notational convenience we use the same symbol v for the quasi-ordering
on Pfin(Idl(S)) and the partial ordering that it defines on the quotient DIdl . We further
identify the elements ofDIdl with the finite sets of maximal ideals, i.e., for all L ∈ DIdl

and I1, I2 ∈ L, if I1 ⊆ I2 then I1 = I2.
Now, define the function γIdl : DIdl → D↓ as γIdl(L) def=

⋃
L.

Proposition 2. The function γIdl is an order-isomorphism.

Let t and u be the least upper bound and greatest lower bound operators on the
poset DIdl(v). These operators exist because D↓ is a complete lattice and D↓ and
DIdl are order-isomorphic according to Proposition 2. The following proposition then
follows immediately.

Proposition 3. DIdl(v, ∅, {S} ,t,u) is a complete lattice.

Let αIdl : D↓ → DIdl be the inverse of γIdl . Since γIdl is an order-isomorphism,
the pair (αIdl , γIdl) forms a Galois insertion between D↓ and DIdl .

Let α = αIdl ◦α↓ and γ = γ↓ ◦ γIdl . Then (α, γ) forms a Galois insertion between
concrete domainD and abstract domainDIdl . Let postIdl = α◦post◦γ be the induced
best abstract post operator on DIdl and let FIdl be the function FIdl = λL. α(S0) t
postIdl(L). The following proposition is then a simple consequence of Proposition 2.

Proposition 4. The least fixed point of FIdl on DIdl is the covering set of T :

γ(lfpv(FIdl)) = Cover(T) .

Can we compute lfpv(FIdl)? In general the answer is “no” for various reasons.
First, we may not be able to compute the iterates of the abstract functional FIdl , respec-
tively, decide the fixed point test on the abstract domain. However, for the classes of
WSTS that are of practical interest, this is not a problem: We say that the ideal com-
pletion Idl(S) of a WSTS T = (S, S0,→,≤) is effective if (i) for all I1, I2 ∈ Idl(S),
checking I1 ⊆ I2 is decidable, and (ii) for all I ∈ Idl(S), postIdl({I}) is computable.
It follows from [12, Theorem 3.4] that all WSTS with a so called effective adequate
domain of limits [16] also have an effective ideal completion. Classes of WSTS with
this property include, e.g., Petri nets and their monotone extensions [16], lossy channel
systems [12], and depth-bounded processes [28].

Thus, assume that T has an effective ideal completion. Then, for any L ∈ DIdl we
can compute FIdl(L) and decide FIdl(L) v L. However, this is not yet sufficient for
guaranteeing termination. In general, the covering set of a WSTS is not computable,
i.e., we cannot expect that the sequence of iterates (

⊔
i≤n F

i
Idl(∅))n∈N stabilizes. In

fact, even if the exact covering set Cover(T) is computable for a particular WSTS, the
sequence of fixed point iterates might not stabilize because the abstract domain DIdl

has (typically) infinite height. To ensure termination of our analysis, we next define an
appropriate widening operator for the abstract domain DIdl .

8

4.2 Widening

Let us first recall the notion of set-widening operators [9]. A set-widening operator for
a poset X(≤) is a partial function ∇ : P(X) ⇀ X that satisfies the following two
conditions:

– Covering: For all Y ⊆ X , if ∇(Y) is defined then for all y ∈ Y , y ≤ ∇(Y).
– Termination: For every ascending chain {xi}i∈N in X(≤), the sequence y0 = x0,
yi = ∇({x0, . . . , xi}), for all i > 0, is well-defined and an ascending stabilizing
chain.

In the following, we define a general set-widening operator for the abstract domain
DIdl . The reason for using a set-widening operator instead of the more popular pair
widening operator is that we want to enable the widening operator to take into account
the whole history of the previous iterates of the fixed point computation. This allows us
to use widening to mimic the effect of acceleration for computing the exact covering
set of flattable WSTS.

The set-widening operator on the abstract domainDIdl is obtained by lifting a given
set-widening operator for the ideal completion Idl(S). This underlying widening op-
erator on ideals is a parameter of the analysis because it is domain-specific for each
class of WSTS. In the next section, we will describe several such widening operators
for common classes of WSTS.

In general, extending a widening operator from a base domain to its finite powerset
is non-trivial [5]. We can simplify this task by making a stronger assumption about
the ordering ≤ on the base set S: we assume that S(≤) is not just a wqo, but a bqo.
This ensures that the ideal completion Idl(S) is itself a bqo with respect to the subset
inclusion ordering. Using this fact we can then lift the set-widening operator on ideals
to sets of ideals. From a practical point of view, requiring a bqo is not a real restriction,
since all wqos of WSTS occurring in practice are actually bqos.

Assume that ∇S is a set-widening operator on the poset Idl(S)(⊆). Then define
the operator ∇ : P(DIdl) ⇀ DIdl as follows: for C ⊆ DIdl , if C is a finite ascending
chain C = {Li}0≤i≤n in DIdl(v) let∇(C) be defined recursively by

∇({L0}) = L0

∇({L0, . . . , Li}) = ∇({L0, . . . , Li−1}) t
{∇S(I) | I maximal ascending chain in∇({L0, . . . , Li−1}) }

for all 0 < i ≤ n. In all other cases let∇(C) be undefined.

Proposition 5. If S(≤) is a bqo then ∇ is a set-widening operator for DIdl(v).

We now define our analysis in terms of the widening sequence {Wi}i∈N as follows:

W0 = ∅ and Wi+1 = ∇({W0, . . . ,Wi, FIdl(Wi) tWi})

Note that for computing the image of ∇ in step i + 1 we can reuse Wi. The properties
of set-widening operators, Proposition 4, and Proposition 5 imply the soundness and
termination of the analysis.

9

Theorem 6. If S(≤) is a bqo then the sequence {Wi}i∈N stabilizes and its least upper
bound approximates the covering set of T , i.e., Cover(T) ⊆ γ(

⋃
{Wi}i∈N).

Trace Partitioning. Note that, unlike acceleration, the widening operator ∇ does not
take into account whether each widened chain of ideals is actually correlated by some
sequence of transition in the system. This incurs an additional loss of precision that is
not needed to ensure termination of the analysis. To avoid this loss of precision, we
can refine the above analysis via combination with an appropriate trace partitioning do-
main [26]. The resulting analysis is a generalized Karp-Miller tree construction where
acceleration has been replaced by widening.

5 Set-Widening Operators for Ideal Completions

We now discuss several instantiations of our analysis for different classes of WSTS by
presenting the corresponding ideal completions and set-widening operators on ideals.
We discuss, in turn, Petri nets, lossy channel systems, and depth-bounded processes.

5.1 Petri Nets

A Petri net is a tuple (S, T,W) where S is a finite set of places, T is a finite set of
transitions, and W : (S, T) ∪ (T, S) → N is a (multi)set of arcs. A marking M is a
map: S → N. We denote byM(S) the set of all markings over S. A transition t ∈ T
is fireable at M iff for all s ∈ S, M(s) ≥ W (s, t). Firing t at M gives M ′ defined as
M ′(s) = M(s)−W (s, t)+W (t, s). The point-wise ordering of markings is a bqo [23].
The ideal completion Idl(M(S)) of the markings of a Petri net can be represented by
extended markings, which are functions S → N ∪ {ω} [17]. The ordering on extended
markings is given by M ≤ M ′ iff for all s ∈ S, M ′(s) = ω or M(s) ∈ N and
M(s) ≤M ′(s).
Widening for Petri Nets. The set-widening operator ∇PN for a Petri Net corresponds
to the usual acceleration used in the Karp-Miller tree construction for Petri nets. For a
finite ascending chain {Mi}0≤i≤n we define ∇PN({Mi}0≤i≤n) = M where M(s) =
ω if Mn(s) > M0(s) and Mn(s) otherwise. Clearly this set-widening operator satisfies
the covering condition. It also satisfies termination, since the set of places S is finite.
Precision of the Widening and Monotonic Extensions of Petri Nets. For standard Petri
nets the above widening operator corresponds to the acceleration used in the Karp-
Miller tree construction. In fact, for this class of WSTS our analysis does not lose pre-
cision. The reason is that in Petri nets sequences of firing transitions σ that increase the
value of a marking M by some δ, σ(M) = M + δ, do the same for all larger markings
M ′ ≥M , i.e., σ(M ′) = M ′ + δ.

For monotonic extensions of Petri nets, such as transfer nets and reset nets, the
situation is more complicated. In a transfer net a transition can transfer all the tokens
from one place to another place in a single step. In both cases we can use the same
widening as for standard Petri nets, but the analysis may lose precision because neither
transfer nets nor reset nets are flattable, in general. However, for a concrete net the loss
of precision does not depend on the flattability of the net in consideration, i.e., there are

10

non-flattable nets where the result of the analysis is exact and flat nets were the analysis
over-approximates the actual covering set.

5.2 Lossy Channel Systems

A lossy channel system (LCS) [3] is a tuple (S, s0, C,M, δ) where S is a finite set
of control locations, s0 is the initial location, C is a finite set of channels, M is a
finite set of messages, and δ is a set of transitions. A state of an LCS is a tuple (s, w)
where s ∈ S and w is a mapping C → M∗ denoting the content of the channels.
A transition t is a tuple (s1, Op, s2) where s1, s2 ∈ S and Op is of the form c !/?m
(c ∈ C,m ∈M). The system can go from state (s1, w1) to (s2, w2) by firing transition
t iff Op = c!m ∧ w2(c) ≤ w1(c)m or Op = c?m ∧ mw2(c) ≤ w1(c), the remaining
channels are unchanged. The systems are called lossy because messages can be dropped
from channels before and after performing a send or receive operation. The ordering on
states≤ is defined as (s, w) ≤ (s′, w′) iff s = s′ and for all c ∈ C,w(c) is a subword of
w′(c). The subword ordering is a bqo [23] and thus so is the ordering≤ on states. In the
following we describe a widening on the content of individual channels. Its extension
to states is defined as expected.

The downward-closed sets of the subword ordering are exactly the languages of
simple regular expressions (SRE) [2], which are defined by the following grammar:

atom ::= (m+ ε) | (m1 + . . .+mn)∗

product ::= ε | atom product

SRE ::= product [+ SRE]

The ideals of the subword ordering are the languages denoted by the products in SRE.
The ordering on the ideals is language inclusion.

Widening for LCS. The first step in defining the widening operator on channel contents
is to define a notion of difference on the corresponding ideals. For a product pwe denote
by |p| the number of atoms appearing in p and for 1 ≤ i ≤ |p| we denote by p[i] the ith
atom of p.

Let p, q be products. If p ≤ q then we can find a mapping ι : [1, |p|] → [1, |q|]
such that (i) ι is monotone, i.e., for all i, j ∈ [1, |p|] if i ≤ j then ι(i) ≤ ι(j), (ii) for
all i ∈ [1, |p|] the language of p[i] is included in the language of q[ι(i)], and (iii) for
all i, j ∈ [1, |p|] if ι(i) = ι(j) and q[ι(i)] is of the form (a + ε) then i = j. We call ι
an inclusion mapping for p ≤ q. Note that we consider an interval [l, r] to be empty if
l > r, i.e., if p = ε then the inclusion mapping exists trivially.

Let p and q be atoms such that p ≤ q and let ι be an inclusion mapping for p ≤ q.
We define an extrapolation operator χLCS for p, q and ι as follows. If p = ε then
χLCS(p, q, ι) = (

∑
i q[i])

∗. Otherwise, let i1, . . . , in be the increasing sequence of in-
dices in the range of ι. For each j ∈ [1, n−1] define the interval dj = [ij+1, ij+1−1].
Furthermore, define d0 = [1, i1 − 1] and dn = [in, |q|]. For all j ∈ [0, n], define
sj =

(∑
i∈dj

q[i]
)∗

. Note that sj is equivalent to ε if dj is empty and, otherwise, sj is

equivalent to an atom of the form
(∑

kmk

)∗
where themk are the messages appearing

in the atoms q[i] for i ∈ dj . Then define χLCS(p, q, ι) = s0 q[i1] . . . sk−1 q[ik] sk.

11

Inclusion mappings are not necessarily unique. We therefore fix for each ascending
sequence of products p1 ≤ p2 . . . a corresponding sequence ι1, ι2, . . . such that (1) for
all i, ιi is an inclusion mapping for pi ≤ pi+1, and (2) for every two ascending chains
of products that share a common prefix, the corresponding sequences of inclusion map-
pings agree on this prefix.

Let π = {pi}0≤i≤n be an ascending chain of products with n > 0. The set-widening
of π is then defined as ∇LCS(π) = χLCS(p0, pn, ι0,n) where ι0,n is the composition of
the fixed sequence of inclusion mappings for π, ι0,n = ιn−1 ◦ · · · ◦ ι0.

Note that one cannot use the operator χLCS to define a standard pair widening opera-
tor∇ on ideals of the subword ordering:∇(p, q) = χLCS(p, q, ι) where ι is an inclusion
mapping for p ≤ q. As a counterexample for termination of this operator consider the
following sequence of ideals: x0 = ε, x1 = (a+ ε), x2 = a∗(b+ ε), x3 = a∗b∗(a+ ε),
etc. Applying ∇ pairwise on consecutive elements of the sequence leads to the follow-
ing diverging sequence: y0 = x0 = ε, y1 = ∇(y0, x1) = a∗, y2 = ∇(y1, x2) = a∗b∗,
y3 = ∇(a∗b∗, x3) = a∗b∗a∗, etc. On the other hand, the set-widening operator ∇LCS

produces the stabilizing sequence: y0 = x0 = ε, y1 = ∇LCS({x0, x1}) = a∗, y2 =
∇LCS({x0, x1, x2}) = (a+ b)∗, y3 = ∇LCS({x0, x1, x2, x3}) = (a+ b)∗, etc. For ter-
mination, it is crucial that the maximal length of the products provided as first argument
of χLCS is bounded throughout all widening steps. This is for instance ensured by fixing
the first argument of χLCS to one particular element of the widened sequence (e.g., the
first element as in the definition of∇LCS). For a more detailed discussion and the proof
of termination for the operator∇LCS we refer to the technical report [30].

5.3 Depth-Bounded Processes

Depth bounded processes (DBP) [22] form the largest known fragment of the π-calculus
for which non-trivial verification problems are still decidable. In particular, we proved
in [28] that the covering problem is decidable for this class. As for many other classes
of WSTS, the coverability problem has non-primitive recursive complexity. This makes
DBP a particularly interesting target for approximate analysis. We have already infor-
mally introduced DBP in Section 2 and explained how our analysis works for this class
of WSTS. In the following, we explain the analysis of DBP in more detail. We outline
an analysis that operates directly on process terms, instead of communication graphs.

We assume basic knowledge of the syntax and semantics of the π-calculus and refer
the reader to [24] for a detailed introduction. We consider π-calculus processes that are
described by finite systems of recursive π-calculus equations together with a process
term denoting the initial state. We denote by ≡ the usual syntactic congruence relation
on π-calculus process terms.

The nesting of restrictions nestν of a process term is measured recursively as fol-
lows nestν(0) = nestν(A(x)) = 0, nestν((νx)P) = 1 + nestν(P), and nestν(P1 |
P2) = max {nestν(P1),nestν(P2)}. The depth of a process term P is the minimal
nesting of restrictions of process terms in the congruence class of P : depth(P) =
min {nestν(Q) | Q ≡ P }. A set of process terms P is called depth-bounded if there
is kD ∈ N such that depth(P) ≤ kD for all P ∈ P . A process is called depth-bounded
if its set of reachable process terms is depth-bounded. As shown in [22], this definition

12

is equivalent to the definition of depth-bounded processes that is given in Section 2 and
refers to communication graphs.

We define the following natural quasi-ordering≤ on process terms: let P ≡ (νx)P ′

and Q be process terms then P ≤ Q if and only if Q ≡ (νx)(P ′ | F) for some process
term F . The ordering ≤ defines a bqo on sets of depth-bounded process terms. We
have shown in [28] that the ideals of this bqo can be represented by extending process
terms with a replication operator ! to encode that certain subprocesses may be repeated
arbitrarily often. We call these terms limit process terms. For instance the covering set
of the example discussed in Section 2 is denoted by the following limit process term:

(νS)(server(S) | env(S) | !(νC)(client(C, S) | !(S(C).0) | !(C().0)))

The ordering≤ is extended to limit process terms by extending the congruence relation
≡ with additional axioms for replication. The resulting congruence relation (which we
also denote by ≡) corresponds to the extended congruence relation studied in [11],
where it is also shown to be decidable.
Widening for Depth-Bounded Processes. We first describe an extrapolation operator
χDBP on pairs of limit process terms, which is then lifted to a set-widening operator
∇DBP. The extrapolation operator relies on a set of inference rules for checking validity
of clauses of the form P ≤ Qwhere P,Q are limit process terms. The inference rules do
not just proveP ≤ Q but do a bit more: givenP andQ, the rules derive judgments of the
form x, R, F ` P ≤ Q. The semantics of these judgments is that if x, R, F . P ‖ Q ≡
can be derived then (νx)R ≡ P and (νx)(R | F) ≡ Q. We call F an anti-frame3 of
P ≤ Q. The anti-frame captures the difference between process terms P and Q. The
basic idea of extrapolation is that if x, R, F ` P ≤ Q can be derived then χDBP(P,Q)
is given by (νx)(R | !F). The set-widening operator ∇DBP then applies extrapolation
recursively on the input chain. A detailed description of the operators χDBP and ∇DBP

can be found in the technical report [30].
The intuition behind the termination argument for the operator ∇DBP is that for an

infinite ascending chain of limit processes, ∇DBP gradually saturates the finitely many
nesting levels of restrictions in the elements of the chain. It is important to realize that
the extrapolation operator χDBP is not a pair-widening operator for limit process terms.
The recursion built into the set-widening operator∇DBP ensures that a sufficiently high
nesting depth of the replication operator is achieved. Intuitively, this recursion approx-
imates the acceleration of infinite traces that correspond to unfoldings of inner loops
within nested loops of the analyzed system. This is crucial for the termination of the
analysis on non-flattable WSTS, such as the example presented in Section 2.

6 Implementation and Evaluation

We have implemented a prototype tool called PICASSO and applied it to a set of example
programs. PICASSO combines our ideal abstraction domain with a trace partitioning
domain [26]. The resulting analysis is a generalized Karp-Miller tree construction with
widening instead of acceleration. The implementation is parameterized by the concrete

3 The term “anti-frame” refers to abduction in entailment provers for separation logic [6].

13

ideal completion and the widening operator on ideals that are used in the analysis. The
tool PICASSO and the example programs are available on-line [29].

For the analysis of our examples we have implemented a generalization of the
ideal abstraction domain and widening operator for depth-bounded processes that we
described in Sec. 5.3. The representation of ideals used in the implementation more
closely resembles the communication graphs with nested repeated substructures de-
scribed in Sec. 2. This representation admits process nodes in communication graphs
with arbitrarily many outgoing edges. Such nodes correspond to process identifiers in
π-calculus process terms with unbounded (but unordered) parameter lists. To represent
the limit elements we annotate the nodes in the graph with natural numbers indicating
the nesting depth of the nodes. Testing the ordering on states is done by computing mor-
phisms between the corresponding graphs. The morphisms take into account the nesting
structure by allowing mappings to nodes of higher nesting depth to be non-injective. The
actual test is encoded into a set of Boolean constraints and passed to a SAT solver. The
morphisms are then reconstructed from the obtained satisfying assignments. The algo-
rithm constructs a Karp-Miller tree using a depth-first search. When the tree is extended
with a new node, widening is applied to the chains on the path to the root of the tree that
contain the new node. Among the smaller ancestors of a node, not all are used for the
widening. Instead, nodes are selected using an exponential back-off strategy. When the
depth of the constructed tree becomes too large, the algorithm tends to slow down sig-
nificantly. For such cases, we have implemented a restart policy. When a restart occurs,
the leaves of the current tree are used as roots to construct new trees. The restart policy
ensures that, for larger examples, the analysis terminates within reasonable time. The
current implementation uses restart intervals of 5 minutes. The implementation exploits
parallelism and makes use of multiple cores when possible.

We ran our experiments on a machine with two AMD Opteron 2431 processors
and a total of 12 cores. We found that memory consumption was not an issue for the
analysis of our examples. The examples that we have considered are depth-bounded
processes, which are inspired by Scala programs. These Scala programs use the Scala
actor library [18] for the implementation of dynamic process networks. Table 1 sum-
marizes the results of our experiments. The ping-pong example is the “Hello World”
of actor programming and is taken from the tutorial for the Scala actor library. All re-
maining examples follow a client-server type of communication with an unbounded
number of clients. These examples cover common patterns that arise in message pass-
ing programs. The second and third program are variations of the example presented
in Section 2. In the third program, we added a timeout to the receive operations of
clients. We model the timeout by letting the clients send Timeout messages to them-
selves. This pattern is often used in programs based on the Scala actor library. The
genericComputeServer example is the message passing skeleton of a tutorial for
remote actors [4]. The example implements a compute server that accepts computation
tasks from clients and then executes them. The second version uses actors to model the
closures that are sent to the server. This model is obtained using the usual reduction
of high-order π-calculus to the standard π-calculus. The liftChatLike example is
the message-passing skeleton extracted from a chat application based on the lift web
framework [21]. Since our implementation does not yet support collections, the broad-

14

Name tree size cov. set size time

ping-pong 17 14 0.6 s
client-server 25 2 1.9 s
client-server-with-TO 184 5 12.8 s
genericComputeServer 57 4 4.6 s
genericComputeServer-fctAsActor 98 8 14.8 s
liftChatLike 1846 21 1830.9 s
round robin 2 830 63 48.8 s
round robin 3 3775 259 737.8 s

Table 1. Experimental results: the columns indicate the number of nodes in the Karp-
Miller tree, the number of ideals in the covering set, and the running time.

cast pattern that is used in the original implementation has been changed into a polling
pattern. The round robin k example is a load balancer that routes requests to a pool
of k workers. Increasing the value of k greatly increase the number of interleavings
that the analysis has to consider. With added support for collections, we can analyze a
generic round robin k, which should also reduce the symmetry in the model.

Our experiments indicate that our analysis produces sufficiently precise approxima-
tions of the covering set to be useful for program verification and program understand-
ing. The main bottle neck of our analysis is the explosion caused by interleavings of the
transitions of individual processes. We did not yet explore techniques such as partial
order reduction to tackle this problem.

7 Conclusion

We proposed a novel abstract interpretation framework to compute precise approxima-
tions of the covering set of WSTS. Our analysis captures the essence of acceleration-
based algorithms that compute the exact covering set but only terminate on flattable
systems. By replacing acceleration with widening we ensure that our analysis always
terminates. We discussed several concrete instances of our framework including the
application to depth-bounded process networks, which are typically non-flattable. Our
experience with a prototype implementation shows that the analysis is often precise,
which makes it a useful tool for verification and program analysis.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In LICS, pages 313–321, 1996.

2. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reacha-
bility analysis for verification of lossy channel systems. FMSD, 25(1):39–65, 2004.

3. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In LICS, pages
160–170, 1993.

4. T. Azzopardi. Generic compute server in Scala using remote actors. http://tiny.cc/
yjzva, 2008. Accessed Nov 2011.

15

5. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Soft-
ware Tools for Technology Transfer, 8(4/5):449–466, 2006.

6. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape analysis by
means of bi-abduction. In POPL, pages 289–300, 2009.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL,
pages 269–282. ACM, 1979.

9. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-
tation, 2(4):511–547, 1992.

10. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and undecid-
ability. In ICALP, pages 103–115, 1998.

11. J. Engelfriet and T. Gelsema. Multisets and structural congruence of the pi-calculus with
replication. Theor. Comput. Sci., 211(1-2):311–337, 1999.

12. A. Finkel and J. Goubault-Larrecq. Forward Analysis for WSTS, Part I: Completions. In
STACS, volume 09001 of Dagstuhl Sem. Proc., pages 433–444, 2009.

13. A. Finkel and J. Goubault-Larrecq. Forward Analysis for WSTS, Part II: Complete WSTS.
In ICALP (2), pages 188–199, 2009.

14. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theor. Com-
put. Sci., 256(1-2):63–92, 2001.

15. P. Ganty, J.-F. Raskin, and L. V. Begin. A Complete Abstract Interpretation Framework for
Coverability Properties of WSTS. In VMCAI, pages 49–64, 2006.

16. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and Check: New algorithms
for the coverability problem of WSTS. J. Comput. Syst. Sci., 72(1):180–203, 2006.

17. J. Goubault-Larrecq. On noetherian spaces. In LICS, pages 453–462. IEEE Computer Soci-
ety, 2007.

18. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based program-
ming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

19. S. Joshi and B. König. Applying the graph minor theorem to the verification of graph trans-
formation systems. In CAV, pages 214–226, 2008.

20. R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci., 3(2):147–195,
1969.

21. Lift. Lift web framework. http://liftweb.net/.
22. R. Meyer. On boundedness in depth in the pi-calculus. In IFIP TCS, volume 273 of IFIP,

pages 477–489. Springer, 2008.
23. E. C. Milner. Basic wqo- and bqo-theory. Graphs and order, 1985.
24. R. Milner. The polyadic pi-calculus: A tutorial. In Logic and Algebra of Specification,

Computer and Systems Sciences. Springer, 1993.
25. C. A. Petri and W. Reisig. Scholarpedia, 3(4):6477. http://www.scholarpedia.

org/article/Petri_net, 2008.
26. X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM Trans. Program.

Lang. Syst., 29(5), 2007.
27. P. Schnoebelen. Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset

Petri Nets. In MFCS, pages 616–628, 2010.
28. T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded processes. In

FoSSaCS 2010, volume 4349 of LNCS, pages 94–108. Springer, 2010.
29. D. Zufferey and T. Wies. Picasso Analyzer. http://ist.ac.at/˜zufferey/

picasso/.
30. D. Zufferey, T. Wies, and T. A. Henzinger. On ideal abstractions for well-structured transition

systems. Technical Report IST-2011-0010, IST Austria, November 2011.

16

