
19

Data Flow Refinement Type Inference

ZVONIMIR PAVLINOVIC, New York University, USA and Google, USA

YUSEN SU, New York University, USA and University of Waterloo, Canada

THOMAS WIES, New York University, USA

Refinement types enable lightweight verification of functional programs. Algorithms for statically inferring

refinement types typically work by reduction to solving systems of constrained Horn clauses extracted from

typing derivations. An example is Liquid type inference, which solves the extracted constraints using predicate

abstraction. However, the reduction to constraint solving in itself already signifies an abstraction of the

program semantics that affects the precision of the overall static analysis. To better understand this issue, we

study the type inference problem in its entirety through the lens of abstract interpretation. We propose a new

refinement type system that is parametric with the choice of the abstract domain of type refinements as well

as the degree to which it tracks context-sensitive control flow information. We then derive an accompanying

parametric inference algorithm as an abstract interpretation of a novel data flow semantics of functional

programs. We further show that the type system is sound and complete with respect to the constructed

abstract semantics. Our theoretical development reveals the key abstraction steps inherent in refinement type

inference algorithms. The trade-off between precision and efficiency of these abstraction steps is controlled by

the parameters of the type system. Existing refinement type systems and their respective inference algorithms,

such as Liquid types, are captured by concrete parameter instantiations. We have implemented our framework

in a prototype tool and evaluated it for a range of new parameter instantiations (e.g., using octagons and

polyhedra for expressing type refinements). The tool compares favorably against other existing tools. Our

evaluation indicates that our approach can be used to systematically construct new refinement type inference

algorithms that are both robust and precise.

CCS Concepts: • Theory of computation→ Program analysis; Type theory.

Additional Key Words and Phrases: refinement type inference, abstract interpretation, Liquid types

ACM Reference Format:
Zvonimir Pavlinovic, Yusen Su, and Thomas Wies. 2021. Data Flow Refinement Type Inference. Proc. ACM
Program. Lang. 5, POPL, Article 19 (January 2021), 31 pages. https://doi.org/10.1145/3434300

1 INTRODUCTION
Refinement types are at the heart of static type systems that can check a range of safety properties

of functional programs [Champion et al. 2018a; Chugh et al. 2012; Dunfield and Pfenning 2003, 2004;

Freeman and Pfenning 1991; Rondon et al. 2008; Vazou et al. 2014; Vekris et al. 2016; Xi and Pfenning

1999; Zhu and Jagannathan 2013]. Here, basic types are augmented with refinement predicates that
express relational dependencies between inputs and outputs of functions. For example, the contract

Authors’ addresses: Zvonimir Pavlinovic, New York University, USA , Google, USA, zvonimir.pavlinovic@gmail.com; Yusen

Su, New York University, USA , University of Waterloo, Canada, ys3547@nyu.edu; Thomas Wies, New York University,

USA, wies@cs.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2475-1421/2021/1-ART19

https://doi.org/10.1145/3434300

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

https://doi.org/10.1145/3434300
https://doi.org/10.1145/3434300

19:2 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

of an array read operator can be expressed using the refinement type

get :: (𝑎 : 𝛼 array) → (𝑖 : {𝜈 : int | 0 ≤ 𝜈 < length 𝑎}) → 𝛼 .

This type indicates that get is a function that takes an array 𝑎 over some element type 𝛼 and

an index 𝑖 as input and returns a value of type 𝛼 . The type {𝜈 : int | 0 ≤ 𝜈 < length 𝑎} of the
parameter 𝑖 refines the base type int to indicate that 𝑖 must be an index within the bounds of

the array 𝑎. This type can then be used to statically check the absence of erroneous array reads

in a program. However, such a check will only succeed if the index expressions used in calls to

get are also constrained by appropriate refinement types. Therefore, a number of type inference

algorithms have been proposed that relieve programmers of the burden to provide such type

annotations manually. These algorithms deploy a variety of analysis techniques ranging from

predicate abstraction [Rondon et al. 2008; Vazou et al. 2013, 2014] to interpolation [Unno and

Kobayashi 2009; Zhu and Jagannathan 2013] and machine learning [Champion et al. 2018a; Zhu

et al. 2015, 2016]. A common intermediate step of these algorithms is that they reduce the inference

problem to solving a system of constrained Horn clauses that is induced by a typing derivation

for the program to be analyzed. However, this reduction already represents an abstraction of the

program’s higher-order control flow and affects the precision of the overall static analysis.

To better understand the interplay between the various abstraction steps underlying refinement

type inference algorithms, this paper forgoes the usual reduction to constraints and instead studies

the inference problem in its entirety through the lens of abstract interpretation [Cousot and

Cousot 1977, 1979]. We start by introducing a parametric data flow refinement type system. The

type system generalizes from the specific choice of logical predicates by allowing for the use of

arbitrary relational abstract domains as type refinements (including e.g. octagons [Miné 2007],

polyhedra [Bagnara et al. 2008; Cousot and Halbwachs 1978; Singh et al. 2017] and automata-based

domains [Arceri et al. 2019; Kim and Choe 2011]). Moreover, it is parametric in the degree to

which it tracks context-sensitive control flow information. This is achieved through intersection

function types, where the granularity at which such intersections are considered is determined

by how stacks are abstracted at function call sites. Next, we propose a novel concrete data flow

semantics of functional programs that captures the program properties abstracted by refinement

type inference algorithms. From this concrete semantics we then construct an abstract semantics

through a series of Galois abstractions and show that the type system is sound and complete with

respect to this abstract semantics. Finally, we combine the abstract semantics with an appropriate

widening strategy to obtain an accompanying parametric refinement type inference algorithm

that is sound by construction. The resulting analysis framework enables the exploration of the

broader design space of refinement type inference algorithms. Existing algorithms such as Liquid

type inference [Rondon et al. 2008] represent specific points in this design space.

To demonstrate the versatility of our framework, we have implemented it in a verification tool

targeting a subset of OCaml. We have evaluated this tool for a range of new parameter instantiations

and compared it against existing verification tools for functional programs. Our evaluation shows

that the tool compares favorably against the state of the art. In particular, for the higher-order

programs over integers and lists in our benchmark suite, the tool improves over existing tools both

in terms of precision (more benchmarks solved) as well as robustness (no analysis timeouts).

Additional details, including proofs, are available in a companion technical report [Pavlinovic

et al. 2020].

2 MOTIVATION
To motivate our work, we provide an overview of common approaches to inferring refinement

types and discuss their limitations.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:3

Refinement Type Inference. Consider the Fibonacci function defined in OCaml:

let rec fib x = if x >= 2 then fib (x - 1) + fib (x - 2) else 1

The typical refinement type inference algorithm works as follows. First, the analysis performs a

standard Hindley-Milner type inference to infer the basic shape of the refinement type for every

subexpression of the program. For instance, the inferred type for the function fib is int→ int. For
every function type 𝜏1→𝜏2, where 𝜏1 is a base type such as int, the analysis next introduces a fresh
dependency variable 𝑥 which stands for the function parameter, 𝑥 : 𝜏1→𝜏2. The scope of 𝑥 is the

result type 𝜏2, i.e., type refinements inferred for 𝜏2 can express dependencies on the input value by

referring to 𝑥 . Further, every base type 𝜏 is replaced by a refinement type, {𝜈 : 𝜏 | 𝜙 (𝜈, ®𝑥)}, with a

placeholder refinement predicate 𝜙 (𝜈, ®𝑥) that expresses a relation between the members 𝜈 of 𝜏 and

the other variables ®𝑥 in scope of the type. For example, the augmented type for function fib is

𝑥 : {𝜈 : int | 𝜙1 (𝜈)} → {𝜈 : int | 𝜙2 (𝜈, 𝑥)} .

The algorithm then derives, either explicitly or implicitly, a system of Horn clauses modeling the

subtyping constraints imposed on the refinement predicates by the program data flow. For example,

the body of fib induces the following Horn clauses over the refinement predicates in fib’s type:

𝜙1 (𝑥) ∧ 𝑥 ≥ 2 ∧ 𝜈 = 𝑥 − 1⇒ 𝜙1 (𝜈) (1) 𝜙1 (𝑥) ∧ 𝑥 ≥ 2 ∧ 𝜈 = 𝑥 − 2⇒ 𝜙1 (𝜈) (2)
𝜙1 (𝑥) ∧ 𝑥 ≥ 2 ∧ 𝜙2 (𝜈1, 𝑥 − 1) ∧ 𝜙2 (𝜈2, 𝑥 − 2) ∧ 𝜈 = 𝜈1 + 𝜈2 ⇒ 𝜙2 (𝜈, 𝑥) (3)

𝜙1 (𝑥) ∧ 𝑥 < 2 ∧ 𝜈 = 1⇒ 𝜙2 (𝜈, 𝑥) (4) 0 ≤ 𝜈 ⇒ 𝜙1 (𝜈) (5)

Clauses (1) and (2) model the data flow from x to the two recursive calls in the then branch of the

conditional. Clauses (3) and (4) capture the constraints on the result value returned by fib in the

then and else branch. Clause (5) captures an assumption that we make about the external calls to
fib, namely, that these calls always pass non negative values. We note that the inference algorithm

performs a whole program analysis. Hence, when one analyzes a program fragment or individual

function as in this case, one has to specify explicitly any assumptions made about the context.

The analysis then solves the obtained Horn clauses to derive the refinement predicates 𝜙𝑖 . For

instance, Liquid type inference uses monomial predicate abstraction for this purpose. That is, the

analysis assumes a given set of atomic predicates 𝑄 = {𝑝1 (𝜈, ®𝑥1), . . . , 𝑝𝑛 (𝜈, ®𝑥𝑛)}, which are either

provided by the programmer or derived from the program using heuristics, and then infers an

assignment for each 𝜙𝑖 to a conjunction over 𝑄 such that all Horn clauses are valid. This can be

done effectively and efficiently using the Houdini algorithm [Flanagan and Leino 2001; Lahiri and

Qadeer 2009]. For example, if we choose 𝑄 = {0 ≤ 𝜈, 0 > 𝜈, 𝜈 < 2, 𝜈 ≥ 2}, then the final type

inferred for function fib will be: 𝑥 : {𝜈 : int | 0 ≤ 𝜈} → {𝜈 : int | 0 ≤ 𝜈}. The meaning of this

type is tied to the current program, or in this case the assumptions made about the context of the

program fragment being analyzed. In particular, due to the assumption expressed in Clause (5)

the analysis does not infer a more general type that would leave the input parameter x of fib

unconstrained.

Challenges in Inferring Precise Refinement Types. Now, suppose that we want to verify that
function fib is increasing, which can be done by inferring a refinement predicate 𝜙2 (𝜈, 𝑥) for the
return type of fib that implies 𝑥 ≤ 𝜈 . Note that 𝑥 ≤ 𝜈 itself is not inductive for the system of Horn

clauses derived above because clause (3) does not hold for 𝑥 = 2, 𝑣1 = 1, and 𝑣2 = 0. However, if we
strengthen 𝜙2 (𝜈, 𝑥) to 𝑥 ≤ 𝜈 ∧ 1 ≤ 𝜈 , then it is inductive.

One issue with using predicate abstraction for inferring type refinements is that the analysis

needs to guess in advance which auxiliary predicates will be needed, here 1 ≤ 𝜈 . Existing tools

based on this approach, such as DSolve [Rondon et al. 2008] and Liqid Haskell [Vazou et al.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:4 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

1 let apply f x = f x and g y = 2 * y and h y = -2 * y

2 let main z =

3 let v = if 0 <= z then (apply𝑖 g) 𝑗 z else (apply𝑘 h)ℓ z in

4 assert (0 <= v)

Program 1

2018a], use heuristics for this purpose. However, these heuristics tend to be brittle. In fact, both

tools fail to verify that fib is increasing if the predicate 1 ≤ 𝜈 is not explicitly provided by the

user. Other tools such as R_Type [Champion et al. 2018a] are based on more complex analyses that

use counterexamples to inductiveness to automatically infer the necessary auxiliary predicates.

However, these tools no longer guarantee that the analysis terminates. Instead, our approach

enables the use of expressive numerical abstract domains such as polyhedra to infer sufficiently

precise refinement types in practice, without giving up on termination of the analysis or requiring

user annotations (see § 8).

If the goal is to improve precision, one may of course ask why it is necessary to develop a new

refinement type inference analysis from scratch. Is it not sufficient to improve the deployed Horn

clause solvers, e.g. by using better abstract domains? Unfortunately, the answer is “no” [Unno et al.

2013]. The derived Horn clause system already signifies an abstraction of the program’s semantics

and, in general, entails an inherent loss of precision for the overall analysis.

To motivate this issue, consider Program 1. You may ignore the program location labels 𝑖, 𝑗, 𝑘, ℓ

for now. Suppose that the goal is to verify that the assert statement in the last line is safe. The

templates for the refinement types of the top-level functions are as follows:

apply :: (𝑦 : {𝜈 : int | 𝜙1 (𝜈)} → {𝜈 : int | 𝜙2 (𝜈,𝑦)}) → 𝑥 : {𝜈 : int | 𝜙3 (𝜈)} → {𝜈 : int | 𝜙4 (𝜈, 𝑥)}
g :: 𝑦 : {𝜈 : int | 𝜙5 (𝜈)} → {𝜈 : int | 𝜙6 (𝜈,𝑦)} h :: 𝑦 : {𝜈 : int | 𝜙7 (𝜈)} → {𝜈 : int | 𝜙8 (𝜈,𝑦)}

Moreover, the key Horn clauses are:

0 ≤ 𝑧 ∧ 𝜈 = 𝑧 ⇒ 𝜙3 (𝜈) 𝜙5 (𝑦) ∧ 𝜈 = 2𝑦 ⇒ 𝜙6 (𝜈,𝑦) 𝜙3 (𝑥) ⇒ 𝜙1 (𝜈)
0 ≤ 𝑧 ∧ 𝜙1 (𝜈) ⇒ 𝜙5 (𝜈) 0 ≤ 𝑧 ∧ 𝜙6 (𝜈,𝑦) ⇒ 𝜙2 (𝜈,𝑦) 𝜙2 (𝜈, 𝑥) ⇒ 𝜙4 (𝜈, 𝑥)
0 > 𝑧 ∧ 𝜈 = 𝑧 ⇒ 𝜙3 (𝜈) 𝜙7 (𝑦) ∧ 𝜈 = −(2𝑦) ⇒ 𝜙8 (𝜈,𝑦)
0 > 𝑧 ∧ 𝜙1 (𝜈) ⇒ 𝜙7 (𝜈) 0 > 𝑧 ∧ 𝜙8 (𝜈,𝑦) ⇒ 𝜙2 (𝜈,𝑦)

Note that the least solution of these Horn clauses satisfies 𝜙1 (𝜈) = 𝜙3 (𝜈) = 𝜙5 (𝜈) = 𝜙7 (𝜈) = true
and 𝜙2 (𝜈, 𝑥) = 𝜙4 (𝜈, 𝑥) = (𝜈 = 2𝑥 ∨𝜈 = −2𝑥). Specifically, 𝜙4 (𝜈, 𝑥) is too weak to conclude that the
two calls to apply on line 3 always return positive integers. Hence, any analysis based on deriving

a solution to this Horn clause system will fail to infer refinement predicates that are sufficiently

strong to entail the safety of the assertion in main. The problem is that the generated Horn clauses do

not distinguish between the two functions g and h that apply is called with. All existing refinement

type inference tools that follow this approach of generating a context-insensitive Horn clause

abstraction of the program therefore fail to verify Program 1.

To obtain a better understanding where existing refinement type inference algorithms lose

precision, we take a fresh look at this problem through the lens of abstract interpretation.

3 PRELIMINARIES
We introduce a few notations and basic definitions that we use throughout the paper.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:5

Notation. We often use meta-level let𝑥 = 𝑡1 in 𝑡0 and conditional if 𝑡0 then 𝑡1 else 𝑡2 constructs in
mathematical definitions.We compress consecutive let bindings let𝑥1 = 𝑡1 in . . . let𝑥𝑛 = 𝑡𝑛 in 𝑡0 as
let𝑥1 = 𝑡1; . . . ; 𝑥𝑛 = 𝑡𝑛 in 𝑡0. We use capital lambda notation (Λ𝑥) for defining mathematical

functions. For a function 𝑓 : 𝑋 → 𝑌 , 𝑥 ∈ 𝑋 , and 𝑦 ∈ 𝑌 , we write 𝑓 [𝑥 ↦→ 𝑦] to denote a function

that maps 𝑥 to 𝑦 and otherwise agrees with 𝑓 on every element of 𝑋 \ {𝑥}. We use the notation

𝑓 .𝑥 : 𝑦 instead of 𝑓 [𝑥 ↦→ 𝑦] if 𝑓 is an environment mapping variables 𝑥 to their bindings 𝑦. For a set

𝑋 we denote its powerset by ℘(𝑋). For a relation 𝑅 ⊆ 𝑋 × 𝑌 over sets 𝑋 , 𝑌 and a natural number

𝑛 > 0, we use ¤𝑅𝑛 to refer to the point-wise lifting of 𝑅 to a relation on 𝑛-tuples 𝑋𝑛 × 𝑌𝑛
. That is

⟨(𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛)⟩ ∈ ¤𝑅𝑛 iff (𝑥𝑖 , 𝑦𝑖) ∈ 𝑅 for all 1 ≤ 𝑖 ≤ 𝑛. Similarly, for any nonempty set 𝑍

we denote by ¤𝑅𝑍 the point-wise lifting of 𝑅 to a relation over (𝑍 → 𝑋) × (𝑍 → 𝑌). More precisely,

if 𝑓1 : 𝑍 → 𝑋 and 𝑓2 : 𝑍 → 𝑌 , then (𝑓1, 𝑓2) ∈ ¤𝑅𝑍 iff ∀𝑧 ∈ 𝑍 . (𝑓1 (𝑧), 𝑓2 (𝑧)) ∈ 𝑅. Typically, we drop
the subscripts from these lifted relations when they are clear from the context.

For sets 𝑋 , 𝑌 and a function 𝑑 : 𝑋 → ℘(𝑌), we use the notation Π𝑥 ∈ 𝑋 .𝑑 (𝑥) to refer to the set

{ 𝑓 : 𝑋 → 𝑌 | ∀𝑥 ∈ 𝑋 . 𝑓 (𝑥) ∈ 𝑑 (𝑥) } of all dependent functions with respect to 𝑑 . Similarly, for

given sets 𝑋 and 𝑌 we use the notation Σ𝑥 ∈ 𝑋 .𝑑 (𝑥) to refer to the set { ⟨𝑥,𝑦⟩ : 𝑋 × 𝑌 | 𝑦 ∈ 𝑑 (𝑥) }
of all dependent pairs with respect to 𝑑 . We use the operators 𝜋1 and 𝜋2 to project to the first, resp.,

second component of a pair.

Abstract interpretation. A partially ordered set (poset) is a pair (𝐿, ⊑) consisting of a set 𝐿 and a

binary relation ⊑ on 𝐿 that is reflexive, transitive, and antisymmetric. Let (𝐿1, ⊑1) and (𝐿2, ⊑2) be
two posets. We say that two functions 𝛼 ∈ 𝐿1 → 𝐿2 and 𝛾 ∈ 𝐿2 → 𝐿1 form a Galois connection iff

∀𝑥 ∈ 𝐿1,∀𝑦 ∈ 𝐿2. 𝛼 (𝑥) ⊑2 𝑦 ⇐⇒ 𝑥 ⊑1 𝛾 (𝑦) .

We call 𝐿1 the concrete domain and 𝐿2 the abstract domain of the Galois connection. Similarly,

𝛼 is called abstraction function (or left adjoint) and 𝛾 concretization function (or right adjoint).

Intuitively, 𝛼 (𝑥) is the most precise approximation of 𝑥 ∈ 𝐿1 in 𝐿2 while 𝛾 (𝑦) is the least precise
element of 𝐿1 that can be approximated by 𝑦 ∈ 𝐿2.
A complete lattice is a tuple ⟨𝐿, ⊑,⊥,⊤,⊔,⊓⟩ where (𝐿, ⊑) is a poset such that for any 𝑋 ⊆ 𝐿,

the least upper bound ⊔𝑋 (join) and greatest lower bound ⊓𝑋 (meet) with respect to ⊑ exist. In

particular, we have ⊥ = ⊓𝐿 and ⊤ = ⊔𝐿. We often identify a complete lattice with its carrier set 𝐿.

Let (𝐿1, ⊑1,⊥1,⊤1,⊔1,⊓1) and (𝐿2, ⊑2,⊥2,⊤2,⊔2,⊓2) be two complete lattices and let (𝛼,𝛾) be
a Galois connection between 𝐿1 and 𝐿2. Each of these functions uniquely determines the other:

𝛼 (𝑥) = ⊓2{𝑦 ∈ 𝐿2 | 𝑥 ⊑1 𝛾 (𝑦)} 𝛾 (𝑦) = ⊔1{𝑥 ∈ 𝐿1 | 𝛼 (𝑥) ⊑2 𝑦}

Also, 𝛼 is a complete join-morphism ∀𝑆 ⊆ 𝐿1. 𝛼 (⊔1𝑆) = ⊔2{𝛼 (𝑥) | 𝑥 ∈ 𝑆}, 𝛼 (⊥1) = ⊥2 and 𝛾 is a

complete meet-morphism ∀𝑆 ⊆ 𝐿2. 𝛾 (⊓2𝑆) = ⊓1{𝛾 (𝑥) | 𝑥 ∈ 𝑆}, 𝛾 (⊤2) = ⊤1. A similar result holds

in the other direction: if 𝛼 is a complete join-morphism and 𝛾 is defined as above, then (𝛼,𝛾) is a
Galois connection between 𝐿1 and 𝐿2. Likewise, if 𝛾 is a complete meet-morphism and 𝛼 is defined

as above, then (𝛼,𝛾) is a Galois connection [Cousot and Cousot 1979].

4 PARAMETRIC DATA FLOW REFINEMENT TYPES
We now introduce our parametric data flow refinement type system. The purpose of this section

is primarily to build intuition. The remainder of the paper will then formally construct the type

system as an abstract interpretation of our new data flow semantics. As a reward, we will also obtain

a parametric algorithm for inferring data flow refinement types that is sound by construction.

Language. Our formal presentation considers a simple untyped lambda calculus:

𝑒 ∈ Exp ::= 𝑐 | 𝑥 | 𝑒1 𝑒2 | 𝜆𝑥 . 𝑒

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:6 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

The language supports constants 𝑐 ∈ Cons (e.g. integers and Booleans), variables 𝑥 ∈ Var , lambda

abstractions, and function applications. An expression 𝑒 is closed if all using occurrences of variables

within 𝑒 are bound in lambda abstractions 𝜆𝑥. 𝑒 ′. A program is a closed expression.

Let 𝑒 be an expression. Each subexpression of 𝑒 is uniquely annotated with a location drawn

from the set 𝐿𝑜𝑐 . We denote locations by ℓ, 𝑖, 𝑗 and use subscript notation to indicate the location

identifying a (sub)expression as in (𝑒𝑖 𝑒 𝑗)ℓ and (𝜆𝑥 .𝑒𝑖)ℓ . The location annotations are omitted

whenever possible to avoid notational clutter. Variables are also locations, i.e. Var ⊆ 𝐿𝑜𝑐 .

In our example programs we often use let constructs. Note that these can be expressed using

lambda abstraction and function application as usual:

let 𝑥 = 𝑒1 in 𝑒2
def
= (𝜆𝑥 . 𝑒2) 𝑒1 .

Types. Our data flow refinement type system takes two parameters: (1) a finite set of abstract stacks

Ŝ, and (2) a (possibly infinite) complete lattice of basic refinement types ⟨Rt, ⊑𝑏,⊥𝑏,⊤𝑏,⊔𝑏,⊓𝑏⟩. We

will discuss the purpose of abstract stacks in a moment. A basic refinement type b ∈ Rt
comes

equipped with an implicit scope 𝑋 ⊆ Var . Intuitively, b represents a relation between primitive

constant values (e.g. integers) and other values bound to the variables in 𝑋 . The partial order ⊑𝑏 is

an abstraction of subset inclusion on such relations. We will make this intuition formally precise

later. For 𝑋 ⊆ Var , we denote by Rt
𝑋
the set of all basic refinement types with scope 𝑋 .

Example 4.1. Let 𝜙 (𝑋) stand for a convex linear constraint over (integer) variables in 𝑋 ∪ {𝜈}.
Then define the set of basic refinement types

R lia
𝑋 ::= ⊥𝑏 | ⊤𝑏 | {𝜈 : int | 𝜙 (𝑋)}

An example of a basic type in R lia
with scope {𝑥} is {𝜈 : int | 𝑥 ≤ 𝜈 ∧ 1 ≤ 𝜈}. The order ⊑𝑏 on R lia

is obtained by lifting the entailment ordering on linear constraints to R lia
in the expected way. If

we identify linear constraints up to equivalence, then ⊑𝑏 induces a complete lattice on R lia
.

The basic refinement types are extended to data flow refinement types as follows:

𝑡 ∈ Vt
𝑋
::= ⊥t | ⊤t | b | 𝑥 : 𝒕 b ∈ Rt

𝑋
𝑥 : 𝒕 ∈ T t

𝑋

def
= Σ𝑥 ∈ Var \ 𝑋 . Ŝ → Vt

𝑋
×Vt

𝑋∪{𝑥 }

A data flow refinement type 𝑡 ∈ Vt
𝑋
also has an implicit scope 𝑋 . We denote byVt =

⋃
𝑋 ⊆Var Vt

𝑋

the set of all such types for all scopes. There are four kinds of types. First, the type ⊥t
should be

interpreted as unreachable or nontermination and the type ⊤t
stands for a type error. We introduce

these types explicitly so that we can later endowVt
with a partial order to form a complete lattice.

In addition to ⊥t
and ⊤t

, we have basic refinement types b and (dependent) function types 𝑥 : 𝒕 .
The latter are pairs consisting of a dependency variable 𝑥 ∈ Var \ 𝑋 and a type table 𝒕 that maps

abstract stack 𝑆 ∈ Ŝ to pairs of types 𝒕 (𝑆) = ⟨𝑡𝑖 , 𝑡𝑜⟩. That is, 𝑥 : 𝒕 can be understood as capturing

a separate dependent function type 𝑥 : 𝑡𝑖 → 𝑡𝑜 per abstract stack 𝑆 . Abstract stacks represent

abstractions of concrete call stacks, enabling function types to case split on different calling contexts

of the represented functions. In this sense, function types resemble intersection types with ad hoc
polymorphism on contexts. Note that the scope of the output type 𝑡𝑜 includes the dependency

variable 𝑥 , thus enabling the output type to capture input/output dependencies.

Let 𝑡 = 𝑥 : 𝒕 be a function type and 𝑆 ∈ Ŝ such that 𝒕 (𝑆) = ⟨𝑡𝑖 , 𝑡𝑜⟩ for some 𝑡𝑖 and 𝑡𝑜 . We denote

𝑡𝑖 by 𝒕 (𝑆)in and 𝑡𝑜 by 𝒕 (𝑆)out. We say that 𝑡 has been called at 𝑆 , denoted 𝑆 ∈ 𝑡 , if 𝒕 (𝑆)in is not ⊥t
.

We denote by 𝒕⊥ the empty type table that maps every abstract stack to the pair ⟨⊥t,⊥t⟩ and write

[𝑆 ⊳ 𝑡𝑖 → 𝑡𝑜] as a short hand for the singleton type table 𝒕⊥ [𝑆 ↦→ ⟨𝑡𝑖 , 𝑡𝑜⟩]. We extend this notation

to tables obtained by explicit enumeration of table entries. Finally, we denote by 𝑡 |𝑆 the function

type 𝑥 : [𝑆 ⊳ 𝑡𝑖 → 𝑡𝑜] obtained from 𝑡 by restricting it to the singleton table for 𝑆 .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:7

Example 4.2. Consider again the set R lia
from Example 4.1. In what follows, we write int for

{𝜈 : int | true} and {𝜈 | 𝜙 (𝑋)} for {𝜈 : int | 𝜙 (𝑋)}. Let further Ŝ0 = {𝜖} be a trivial set of abstract
stacks. We then instantiateVt

with R lia
and Ŝ0

. Since tables only have a single entry, we use the

more familiar notation 𝑥 : 𝑡𝑖 → 𝑡𝑜 for function types, instead of 𝑥 : [𝜖 ⊳ 𝑡𝑖 → 𝑡𝑜]. We can then

represent the type of fib in § 2 by the data flow refinement type

𝑥 : {𝜈 | 0 ≤ 𝜈} → {𝜈 | 𝑥 ≤ 𝜈 ∧ 1 ≤ 𝜈} .

The most precise type that we can infer for function apply in Program 1 is

𝑓 : (𝑦 : int→ int) → 𝑥 : int→ int .

Here, the variables 𝑓 , 𝑥 , and 𝑦 refer to the corresponding parameters of the function apply, re-

spectively, the functions g and h that are passed to parameter 𝑓 of apply. Now, define the set of

abstract stacks Ŝ1 = 𝐿𝑜𝑐 ∪ {𝜖}. Intuitively, we can use the elements of Ŝ1
to distinguish table

entries in function types based on the program locations where the represented functions are called.

Instantiating our set of typesVt
with R lia

and Ŝ1
, we can infer a more precise type for function

apply in Program 1:

𝑓 : [𝑖 ⊳ 𝑦 : [𝑗 ⊳ {𝜈 | 0 ≤ 𝜈} → {𝜈 | 𝜈 = 2𝑦}] → 𝑥 : [𝑗 ⊳ {𝜈 | 0 ≤ 𝜈} → {𝜈 | 𝜈 = 2𝑥}],
𝑘 ⊳ 𝑦 : [ℓ ⊳ {𝜈 | 0 > 𝜈} → {𝜈 | 𝜈 = −2𝑦}] → 𝑥 : [ℓ ⊳ {𝜈 | 0 > 𝜈} → {𝜈 | 𝜈 = −2𝑥}] .

Note that the type provides sufficient information to distinguish between the calls to apply with

functions g and h at call sites 𝑖 and 𝑘 , respectively. This information is sufficient to guarantee the

correctness of the assertion on line 4.

Typing environments and operations on types. Before we can define the typing rules, we first

need to introduce a few operations for constructing and manipulating types. We here only provide

the intuition for these operations through examples. In § 7 we will then explain how to define these

operations in terms of a few simple primitive operations provided by the domain Rt
.

First, the (basic) refinement type abstracting a single constant 𝑐 ∈ Cons is denoted by [𝜈 =𝑐]t.
For instance, for our basic type domain R lia

from Example 4.1 and an integer constant 𝑐 ∈ Z, we
define [𝜈 =𝑐]t = {𝜈 | 𝜈 = 𝑐}. Next, given a type 𝑡 over scope𝑋 and a type 𝑡 ′ over scope𝑋 ′ ⊆ 𝑋 \ {𝑥},
we denote by 𝑡 [𝑥 ← 𝑡 ′] the type obtained from 𝑡 by strengthening the relation to 𝑥 with the

information provided by type 𝑡 ′. Returning to Example 4.1, for two basic types b = {𝜈 | 𝜙 (𝑋)} and
b ′ = {𝜈 | 𝜙 ′(𝑋 ′)}, we have b [𝑥 ← b ′] = {𝜈 | 𝜙 (𝑋) ∧ 𝜙 ′(𝑋 ′) [𝑥/𝜈]}. Finally, for a variable 𝑥 ∈ 𝑋
and 𝑡 ∈ Vt

𝑋
, we assume an operation 𝑡 [𝜈 =𝑥]t that strengthens 𝑡 by enforcing equality between the

value bound to 𝑥 and the value represented by 𝑡 . For instance, for a base type b = {𝜈 | 𝜙 (𝑋)} from
Example 4.1 we have b [𝜈 =𝑥]t = {𝜈 | 𝜙 (𝑋) ∧ 𝜈 = 𝑥}.
A typing environment for scope 𝑋 is a function Γt ∈ (Π𝑥 ∈ 𝑋 .Vt

𝑋\{𝑥 }). We lift 𝑡 [𝑥 ← 𝑡 ′] to an

operation 𝑡 [Γt] that strengthens 𝑡 with the constraints on variables in 𝑋 imposed by the types

bound to these variables in Γt
.

We additionally assume that abstract stacks Ŝ come equipped with an abstract concatenation
operation ·̂ : 𝐿𝑜𝑐 × Ŝ → Ŝ that prepends a call site location 𝑖 onto an abstract stack 𝑆 , denoted 𝑖 ·̂ 𝑆 .
For instance, consider again the sets of abstract stacks Ŝ0

and Ŝ1
introduced in Example 4.2. We

define ·̂ on 𝑆 ∈ Ŝ0
as 𝑖 ·̂ 𝑆 = 𝜖 and on 𝑆 ∈ Ŝ1

we define it as 𝑖 ·̂ 𝑆 = 𝑖 . The general specification of ·̂ is
given in § 6.2.

Typing rules. Typing judgements take the form Γt, 𝑆 ⊢ 𝑒 : 𝑡 and rely on the subtype relation 𝑡 <: 𝑡 ′

defined in Fig.1. The rule s-bot states that ⊥t
is a subtype of all other types except ⊤t

. Since ⊤t

denotes a type error, the rules must ensure that we do not have 𝑡 <: ⊤t
for any type 𝑡 . The rule

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:8 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

s-bot

𝑡 ≠ ⊤t

⊥t <: 𝑡

s-base

b1 ⊑𝑏 b2

b1 <: b2
s-fun

𝒕1 (𝑆) = ⟨𝑡𝑖1, 𝑡𝑜1⟩ 𝒕2 (𝑆) = ⟨𝑡𝑖2, 𝑡𝑜2⟩
𝑡𝑖2 <: 𝑡𝑖1 𝑡𝑜1 [𝑥 ← 𝑡𝑖2] <: 𝑡𝑜2 [𝑥 ← 𝑡𝑖2]

𝑥 : 𝒕1 <: 𝑥 : 𝒕2
∀𝑆 ∈ Ŝ

Fig. 1. Data flow refinement subtyping rules

t-var

Γt (𝑥) [𝜈 =𝑥]t [Γt] <: 𝑡 [𝜈 =𝑥]t [Γt]
Γt, 𝑆 ⊢ 𝑥 : 𝑡

t-app

Γt, 𝑆 ⊢ 𝑒𝑖 : 𝑡𝑖 Γt, 𝑆 ⊢ 𝑒 𝑗 : 𝑡 𝑗 𝑡𝑖 <: 𝑥 : [𝑖 ·̂ 𝑆 ⊳ 𝑡 𝑗 → 𝑡]
Γt, 𝑆 ⊢ 𝑒𝑖 𝑒 𝑗 : 𝑡

t-const

[𝜈 =𝑐]t [Γt] <: 𝑡
Γt, 𝑆 ⊢ 𝑐 : 𝑡

t-abs

Γt
𝑖 = Γt.𝑥 : 𝑡𝑥 Γt

𝑖 , 𝑆
′ ⊢ 𝑒𝑖 : 𝑡𝑖 𝑥 : [𝑆 ′ ⊳ 𝑡𝑥 → 𝑡𝑖] <: 𝑡 |𝑆′
Γt, 𝑆 ⊢ 𝜆𝑥 . 𝑒𝑖 : 𝑡

∀𝑆 ′ ∈ 𝑡

Fig. 2. Data flow refinement typing rules

s-base defines subtyping on basic refinement types, which simply defers to the partial order ⊑𝑏 on

Rt
. Finally, the rule s-fun is reminiscent of the familiar contravariant subtyping rule for dependent

function types, except that it quantifies over all entries in the type tables. In § 7.2, we will establish

a formal correspondence between subtyping and the propagation of values along data flow paths.

The rules defining the typing relation Γt, 𝑆 ⊢ 𝑒 : 𝑡 are shown in Fig. 2. We implicitly require

that all free variables of 𝑒 are in the scope of Γt
. The rule t-const for typing constants requires

that [𝜈 =𝑐]t is a subtype of the type 𝑡 , after strengthening it with all constraints on the variables

in scope obtained from Γt
. That is, we push all environmental assumptions into the types. This

way, subtyping can be defined without tracking explicit typing environments. We note that this

formalization does not preclude an implementation of basic refinement types that tracks typing

environments explicitly. The rule t-var for typing variable expressions 𝑥 is similar to the rule

t-const. That is, we require that the type Γt (𝑥) bound to 𝑥 is a subtype of 𝑡 , modulo strengthening

with the equality constraint 𝜈 = 𝑥 and all environmental constraints. Note that we here strengthen

both sides of the subtype relation, which is necessary for completeness of the rules, due to the

bidirectional nature of subtyping for function types.

The rule t-app for typing function applications 𝑒𝑖 𝑒 𝑗 requires that the type 𝑡𝑖 of 𝑒𝑖 must be a

subtype of the function type 𝑥 : [𝑖 ·̂ 𝑆 : 𝑡 𝑗 → 𝑡] where 𝑡 𝑗 is the type of the argument expression 𝑒 𝑗

and 𝑡 is the result type of the function application. Note that the rule extends the abstract stack 𝑆

with the call site location 𝑖 identifying 𝑒𝑖 . The subtype relation then forces 𝑡𝑖 to have an appropriate

entry for the abstract call stack 𝑖 ·̂ 𝑆 . The rule t-abs for typing lambda abstraction is as usual, except

that it universally quantifies over all abstract stacks 𝑆 ′ at which 𝑡 has been called. The side condition

∀𝑆 ′ ∈ 𝑡 implicitly constrains 𝑡 to be a function type.

5 DATA FLOW SEMANTICS
Our goal is to construct our type system from a concrete semantics of functional programs, following

the usual calculational approach taken in abstract interpretation. This imposes some constraints on

our development. In particular, given that the typing rules are defined by structural recursion over

the syntax of the evaluated expression, the same should be true for the concrete semantics that

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:9

we take as the starting point of our construction. This requirement rules out standard operational

semantics for higher-order programs (e.g. based on function closures) because they evaluate function

bodies at call sites rather than definition sites, making these semantics nonstructural. Amore natural

choice is a standard denotational semantics (e.g. one that interprets lambda terms by mathematical

functions). However, the problem with denotational semantics is that it is inherently compositional;

functions are given meaning irrespective of the context in which they appear. However, as we have

discussed in § 2, the function types inferred by algorithms such as Liquid types only consider the

inputs to functions that are observed in the program under consideration. Denotational semantics

are therefore ill-suited for capturing the program properties abstracted by these type systems.

Hence, we introduce a new data flow refinement type semantics. Like standard denotational

semantics, it is fully structural in the program syntax but without being compositional. That is, it

captures the intuition behind refinement type inference algorithms that view a function value as a

table that records all inputs the function will receive from this point onwards as it continues to flow

through the program.

5.1 Semantic Domains
We start with the semantic domains used for giving meaning to expressions 𝑒 ∈ Exp:

𝑛 ∈ N def
= N𝑒 ∪ N𝑥 N𝑒

def
= 𝐿𝑜𝑐 × E N𝑥

def
= Var × E × S

𝑆 ∈ S def
= 𝐿𝑜𝑐∗ 𝐸 ∈ E def

= Var ⇀fin N𝑥 𝑀 ∈ M def
= N → V

𝑣 ∈ V ::= ⊥ | ⊤ | 𝑐 | 𝒗 𝒗 ∈ T def
= S → V ×V

Nodes, stacks, and environments. Every intermediate point of a program’s execution is uniquely

identified by an (execution) node, 𝑛 ∈ N , a concept which we adapt from [Jagannathan and Weeks

1995]. We distinguish expression nodesN𝑒 and variable nodesN𝑥 . An expression node ⟨ℓ, 𝐸⟩, denoted
ℓ⋄𝐸, captures the execution point where a subexpression 𝑒ℓ is evaluated in the environment 𝐸. An

environment 𝐸 is a (finite) partial map binding variables to variable nodes. A variable node ⟨𝑥, 𝐸, 𝑆⟩,
denoted 𝑥⋄𝐸⋄𝑆 , is created at each execution point where an argument value is bound to a formal

parameter 𝑥 of a function at a call site. Here, 𝐸 is the environment at the point where the function is

defined and 𝑆 is the call site stack1 of the variable node. Note that we define nodes and environments

using mutual recursion where the base cases are defined using the empty environment 𝜖 . The

call site stack captures the sequence of program locations of all pending function calls before this

variable node was created. That is, intuitively, 𝑆 can be thought of as recording the return addresses

of these pending calls. We write ℓ · 𝑆 to denote the stack obtained from 𝑆 by prepending ℓ . Call site

stacks are used to uniquely identify each variable binding.

We explain the role of expression and variable nodes in more detail later. For any node 𝑛, we

denote by 𝑙𝑜𝑐 (𝑛) the location of 𝑛 and by 𝑒𝑛𝑣 (𝑛) its environment. If 𝑛 is a variable node, we denote

its stack component by 𝑠𝑡𝑎𝑐𝑘 (𝑛). A pair ⟨𝑒, 𝐸⟩ is called well-formed if 𝐸 (𝑥) is defined for every

variable 𝑥 that occurs free in 𝑒 .

Values and execution maps. Similar to our data flow refinement types, there are four kinds

of (data flow) values 𝑣 ∈ V . First, every constant 𝑐 is also a value. The value ⊥ stands for non-

termination or unreachability of a node, and the value ⊤ models execution errors. Functions are

represented by tables. A table 𝒗 maintains an input/output value pair 𝑇 (𝑆) = ⟨𝑣𝑖 , 𝑣𝑜⟩ for each call

site stack 𝑆 . We adapt similar notation for concrete function tables as we introduced for type tables

in § 4. In particular, we denote by 𝒗⊥ the table that maps every call site stack to the pair ⟨⊥,⊥⟩.

1
referred to as contour in [Jagannathan and Weeks 1995]

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:10 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

We say that a value 𝑣 is safe, denoted safe (𝑣), if ⊤ does not occur anywhere in 𝑣 , i.e., 𝑣 ≠ ⊤ and if

𝑣 ∈ T then for all 𝑆 , both 𝑣 (𝑆)in and 𝑣 (𝑆)out are safe.

The data flow semantics computes execution maps𝑀 ∈ M, which map nodes to values. We write

𝑀⊥ (𝑀⊤) for the execution map that assigns ⊥ (⊤) to every node.

As a precursor to defining the data flow semantics, we define a computational order ⊑ on values.

In this order, ⊥ is the smallest element, ⊤ is the largest element, and tables are ordered recursively

on the pairs of values for each call site:

𝑣1 ⊑ 𝑣2
def⇐⇒ 𝑣1 = ⊥ ∨ 𝑣2 = ⊤ ∨ (𝑣1, 𝑣2 ∈ Cons ∧ 𝑣1 = 𝑣2) ∨ (𝑣1, 𝑣2 ∈ T ∧ ∀𝑆. 𝑣1 (𝑆) ¤⊑ 𝑣2 (𝑆))

Defining the error value as the largest element of the order is nonessential but simplifies the

presentation. This definition ensures that the least upper bounds (lub) of arbitrary sets of values

exist, denoted by the join operator ⊔. In fact, ⊑ is a partial order that induces a complete lattice on

values which can be lifted point-wise to execution maps.

Example 5.1. Let us provide intuition for the execution maps through an example. To this end,

consider Program 2. The middle shows the corresponding expression in our simple language with

each subexpression annotated with its unique location. E.g., the using occurrence of x on line 1 is

annotated with location 𝑘 .

The program’s execution map is given on the right. We abbreviate call stacks occurring in

table entries by the last location pushed onto the stack (e.g. writing just 𝑎 instead of 𝑎𝑑ℎ). This

simplification preserves the uniqueness of call stacks for this specific program. We similarly denote

a node just by its location if this already uniquely identifies the node. During the execution of

Program 2, the lambda abstraction at location 𝑜 is called twice whereas all other functions are

called once. Due to the two calls to the function at 𝑜 (which is later bound to id), the variable x is
bound twice and the subexpression at location 𝑘 is also evaluated two times. This is reflected in

the execution map by entries for two distinct variable nodes associated with x and two distinct

expression nodes associated with 𝑘 . We use superscript notation to indicate the environment

associated with these nodes. For instance, 𝑘𝑞 is the expression node that records the value obtained

from the subexpression at location 𝑘 when it is evaluated in the environment binding x to the

variable node x𝑞 . In turn, x𝑞 records the binding of x for the function call at location 𝑞.

The cumulative entry u, 𝑓 , 𝑔, x𝑞, 𝑘𝑞 ↦→ 1 in the executionmap indicates that the result computed at

nodes u, 𝑓 ,𝑔, and 𝑘𝑞 is 1, respectively, that 𝑥 is bound to 1 for the call at location𝑞. Some of the nodes

are mapped to function values. The function id is represented by the table [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2]
that stores input-output values for the two calls to id at 𝑞 and 𝑎. The nodes corresponding to the

two usages of id are also mapped to tables. However, these tables only have a single entry each.

Intuitively, id takes two separate data flow paths in the program starting from its definition at 𝑜 .

For each node on these two paths, the associated table captures how id will be used at the nodes on

any data flow path that continues from that point onward. The tables stored at nodes 𝑞 and 𝑎 thus

only contain information about the input and output for the respective call site whereas the table

stored at id captures both call sites because the node for the definition of id occurs on both paths.

Some additional examples involving higher-order functions and recursion can be found in the

companion report [Pavlinovic et al. 2020, § A] .

5.2 Concrete Semantics
We define the data flow semantics of a higher-order program 𝑒 formally as the least fixpoint of a

concrete transformer, step, on execution maps.

Concrete Transformer. The idea is that we start with the map𝑀⊥ and then use step to consecu-

tively update the map with new values as more and more nodes are reached during the execution

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:11

1 let id x = x𝑘 in

2 let u = (id𝑞 1𝑓)𝑔 in

3 (id𝑎 2𝑏)𝑐

((𝜆id. (𝜆u. (id𝑎 2𝑏)𝑐)𝑑
(id𝑞 1𝑓)𝑔)ℎ

(𝜆𝑥. 𝑥𝑘)𝑜)𝑝

ℎ ↦→ [ℎ ⊳ [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2] → 2]
id, 𝑜 ↦→ [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2] 𝑑 ↦→ [𝑑 ⊳ 1→ 2]
𝑞 ↦→ [𝑞 ⊳ 1→ 1] 𝑎 ↦→ [𝑎 ⊳ 2→ 2]
u, 𝑓 , 𝑔, x𝑞, 𝑘𝑞 ↦→ 1 𝑏, 𝑐,𝑑,ℎ, x𝑎, 𝑘𝑎, 𝑝 ↦→ 2

Program 2. The right side shows the program’s execution map

(0) _ ↦→ ⊥ (1) ℎ ↦→ [ℎ ⊳ 𝒗⊥ → ⊥]
𝑜 ↦→ 𝒗⊥

(2) id ↦→ 𝒗⊥
𝑑 ↦→ 𝒗⊥

(3) 𝑞 ↦→ [𝑞 ⊳ 1→ ⊥]
𝑓 ↦→ 1

(4)
id ↦→ [𝑞 ⊳ 1→ ⊥]
ℎ ↦→ [ℎ ⊳ [𝑞 ⊳ 1→ ⊥] → ⊥]
𝑜 ↦→ [𝑞 ⊳ 1→ ⊥]

(5) x𝑞 ↦→ 1 (6)
𝑘𝑞 ↦→ 1
𝑜 ↦→ [𝑞 ⊳ 1→ 1]
ℎ ↦→ [ℎ ⊳ [𝑞 ⊳ 1→ 1] → ⊥]

(7) id ↦→ [𝑞 ⊳ 1→ 1]

(8)
𝑞 ↦→ [𝑞 ⊳ 1→ 1]
𝑔 ↦→ 1
𝑑 ↦→ [𝑑 ⊳ 1→ ⊥]

(9)
u ↦→ 1
𝑏 ↦→ 2
𝑎 ↦→ [𝑎 ⊳ 2→ ⊥]

(10)
id ↦→ [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ ⊥]
ℎ ↦→ [ℎ ⊳ [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ ⊥] → ⊥]
𝑜 ↦→ [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ ⊥]

(11) x𝑎 ↦→ 2

(12)
𝑘𝑎 ↦→ 2
𝑜 ↦→ [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2]
ℎ ↦→ [ℎ ⊳ [. . . , 𝑎 ⊳ 2→ 2] → ⊥]

(13) id ↦→ [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2] (14)

𝑐, 𝑔, 𝑝 ↦→ 2
𝑎 ↦→ [𝑎 ⊳ 2→ 2]
𝑑 ↦→ [𝑑 ⊳ 1→ 2]
ℎ ↦→ [ℎ ⊳ [. . .] → 2]

Program 3. Fixpoint iterates of the data flow semantics for Program 2

of 𝑒 . The signature of step is as follows:

step : Exp → E × S →M →V ×M

It takes an expression 𝑒ℓ , an environment 𝐸, and a stack 𝑆 , and returns a transformer stepJ𝑒ℓK(𝐸, 𝑆) :
M →V×M on execution maps. Given an input map𝑀 , the transformer stepJ𝑒ℓK(𝐸, 𝑆) returns the
new value 𝑣 ′ computed at node ℓ⋄𝐸 together with the updated execution map𝑀 ′. That is, we always
have𝑀 ′(ℓ⋄𝐸) = 𝑣 ′. We could have defined the transformer so that it returns only the updated map

𝑀 ′, but returning 𝑣 ′ in addition yields a more concise definition: observe thatM →V ×M is the

type of the computation of a state monad [Wadler 1990]. We exploit this observation and define

step using monadic composition of primitive state transformers. This allows us to hide the stateful

nature of the definition and make it easier to see the connection to the type system later.

The primitive state transformers and composition operations are defined in Fig. 3. For instance,

the transformer !𝑛 reads the value at node 𝑛 in the current execution map𝑀 and returns that value

together with the unchanged map. Similarly, the transformer 𝑛 := 𝑣 updates the entry at node 𝑛 in

the current map𝑀 by taking the join of the current value at 𝑛 with 𝑣 , returning the obtained new

value 𝑣 ′ and the updated map. We compress a sequence of update operations 𝑛1 := 𝑣1, . . . , 𝑛𝑛 := 𝑣𝑛 ,

by using the shorter notation 𝑛1, . . . , 𝑛𝑛 := 𝑣1, . . . , 𝑣𝑛 to reduce clutter. We point out that the result

of this sequenced update operation is the result of the last update 𝑛𝑛 := 𝑣𝑛 .

The operation bind(𝐹,𝐺) defines the usual composition of stateful computations 𝐹 and𝐺 in the

state monad, where 𝐹 ∈ M → 𝛼 ×M and𝐺 ∈ 𝛼 →M → 𝛽 ×M for some 𝛼 and 𝛽 . Note that the

composition is short-circuiting in the case where the intermediate value𝑢 produced by 𝐹 is⊤ (i.e. an

error occurred). We use Haskell-style monad comprehension syntax for applications of bind at the

meta-level. That is, we write do𝑥 ← 𝐹 ; 𝐺 for bind(𝐹,Λ𝑥 .𝐺). We similarly write do𝑥 ← 𝐹 if 𝑃 ; 𝐺
for bind(𝐹,Λ𝑥 . if 𝑃 then𝐺 else return⊥) and we shorten do𝑥 ← 𝐹 ; 𝐺 to just do 𝐹 ; 𝐺 in cases

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:12 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

where 𝑥 does not occur free in 𝐺 . Moreover, we write do𝑥1 ← 𝐹1; . . . ; 𝑥𝑛 ← 𝐹𝑛; 𝐺 for the

comprehension sequence do𝑥1 ← 𝐹1; (. . . ; (do𝑥𝑛 ← 𝐹𝑛; 𝐺) . . .). We also freely mix the monad

comprehension syntax with standard let binding syntax and omit the semicolons whenever this

causes no confusion.

The definition of stepJ𝑒K(𝐸, 𝑆) is given in Fig. 4 using induction over the structure of 𝑒 . As we

discussed earlier, the structural definition of the transformer enables an easier formal connection

to the data flow refinement typing rules. Note that in the definition we implicitly assume that ⟨𝑒, 𝐸⟩
is well-formed. We discuss the cases of the definition one at a time using Program 2 as our running

example. Figure 3 shows the fixpoint iterates of stepJ𝑒K(𝜖, 𝜖) starting from the execution map𝑀⊥
where 𝑒 is Program 2 and 𝜖 refers to both the empty environment and empty stack. For each iterate

(𝑖), we only show the entries in the execution map that change in that iteration. We will refer to

this figure throughout our discussion below.

Constant 𝑒 = 𝑐ℓ . Here, we simply set the current node 𝑛 to the join of its current value𝑀 (𝑛) and the
value 𝑐 . For example, in Fig. 3, when execution reaches the subexpression at location 𝑓 in iteration

(2), the corresponding entry for the node 𝑛 identified by 𝑓 is updated to𝑀 (𝑛) ⊔ 1 = ⊥ ⊔ 1 = 1.

Variable 𝑒 = 𝑥ℓ . This case implements the data flow propagation between the variable node 𝑛𝑥
binding 𝑥 and the current expression node 𝑛 where 𝑥 is used. This is realized using the propagation
function ⋉. Let 𝑣𝑥 = Γ(𝑥) = 𝑀 (𝑛𝑥) and 𝑣 = 𝑀 (𝑛) be the current values stored at the two nodes in

𝑀 . The function ⋉ takes these values as input and propagates information between them, returning

two new values 𝑣 ′𝑥 and 𝑣 ′ which are then stored back into𝑀 . The propagation function is defined

in Fig. 5 and works as follows. If 𝑣𝑥 is a constant or the error value and 𝑣 is still ⊥, then we simply

propagate 𝑣𝑥 forward, replacing 𝑣 and leaving 𝑣𝑥 unchanged. The interesting cases are when we

propagate information between tables. The idea is that inputs in a table 𝑣 flow backward to 𝑣𝑥
whereas outputs for these inputs flow forward from 𝑣𝑥 to 𝑣 . For example, consider the evaluation

of the occurrence of variable id at location 𝑎 in step (10) of Fig. 3. Here, the expression node 𝑛 is

identified by 𝑎 and the variable node 𝑛𝑥 by id. Moreover, we have 𝑣 = [𝑎 ⊳ 2→ ⊥] from step (9)
and 𝑣𝑥 = [𝑞 ⊳ 1→ 1] from step (7). We then obtain

𝑣𝑥 ⋉
t 𝑣 = [𝑞 ⊳ 1→ 1] ⋉t [𝑎 ⊳ 2→ ⊥] = ⟨[𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ ⊥], [𝑎 ⊳ 2→ ⊥]⟩

That is, the propagation causes the entry in the execution map for the node identified by id to be

updated to [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ ⊥].
In general, if 𝑣𝑥 is a table but 𝑣 is still ⊥, we initialize 𝑣 to the empty table 𝒗⊥ and leave 𝑣𝑥

unchanged (because we have not yet accumulated any inputs in 𝑣). If both 𝑣𝑥 and 𝑣 are tables,

𝑣𝑥 ⋉
t 𝑣 propagates inputs and outputs as described above by calling ⋉ recursively for every call site

𝑆 ∈ 𝑣 . Note how the recursive call for the propagation of the inputs 𝑣2𝑖 ⋉ 𝑣1𝑖 inverts the direction
of the propagation. This has the affect that information about argument values propagate from the

call site to the definition site of the function being called, as is the case for the input value 2 at call

site 𝑎 in our example above. Conversely, output values are propagated in the other direction from

function definition sites to call sites. For example, in step (14) of Fig. 3, the occurrence of id at

location 𝑎 is evaluated again, but now we have 𝑣𝑥 = [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2] from step (13) whereas
𝑣 is as before. In this case, the propagation yields

𝑣𝑥 ⋉
t 𝑣 = [𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2] ⋉t [𝑎 ⊳ 2→ ⊥] = ⟨[𝑞 ⊳ 1→ 1, 𝑎 ⊳ 2→ 2], [𝑎 ⊳ 2→ 2]⟩

That is, the information about the output value 2 for the input value 2 has finally arrived at the call

site 𝑎. As we shall see, the dataflow propagation between tables closely relates to contravariant

subtyping of function types (cf. Lemma 7.5).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:13

!𝑛
def
= Λ𝑀. ⟨𝑀 (𝑛), 𝑀⟩

𝑛 := 𝑣
def
= Λ𝑀. let 𝑣 ′ = 𝑀 (𝑛) ⊔ 𝑣 in if safe (𝑣 ′) then ⟨𝑣 ′, 𝑀 [𝑛 ↦→ 𝑣 ′]⟩ else ⟨⊤, 𝑀⊤⟩

env(𝐸) def
= Λ𝑀. ⟨𝑀 ◦ 𝐸,𝑀⟩

assert(𝑃) def
= Λ𝑀. if 𝑃 then ⟨⊥, 𝑀⟩ else ⟨⊤, 𝑀⊤⟩

for 𝒗 do 𝐹 def
= Λ𝑀.

¤⊔
𝑆 ∈𝒗

𝐹 (𝑆) (𝑀)
return 𝑣 def

= Λ𝑀. ⟨𝑣,𝑀⟩
bind(𝐹,𝐺) def

= Λ𝑀. let ⟨𝑢,𝑀 ′⟩ = 𝐹 (𝑀) in if 𝑢 = ⊤ then ⟨⊤, 𝑀⊤⟩ else𝐺 (𝑢) (𝑀 ′)

Fig. 3. Primitive transformers on state monad for computations over execution maps

stepJ𝑐ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; 𝑣 ′← 𝑛 := 𝑐 ; return 𝑣 ′

stepJ𝑥ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; 𝑣 ← !𝑛 ; 𝑛𝑥 = 𝐸 (𝑥) ; Γ ← env(𝐸)
𝑣 ′← 𝑛𝑥 , 𝑛 := Γ(𝑥) ⋉ 𝑣

return 𝑣 ′

stepJ(𝑒𝑖 𝑒 𝑗)ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; 𝑛𝑖 = 𝑖⋄𝐸 ; 𝑛 𝑗 = 𝑗⋄𝐸 ; 𝑣 ← !𝑛

𝑣𝑖 ← stepJ𝑒𝑖K(𝐸, 𝑆) if 𝑣𝑖 ≠ ⊥
assert(𝑣𝑖 ∈ T)
𝑣 𝑗 ← stepJ𝑒 𝑗 K(𝐸, 𝑆)
𝑣 ′𝑖 , [𝑖 · 𝑆 ⊳ 𝑣 ′𝑗 → 𝑣 ′] = 𝑣𝑖 ⋉ [𝑖 · 𝑆 ⊳ 𝑣 𝑗 → 𝑣]
𝑣 ′′← 𝑛𝑖 , 𝑛 𝑗 , 𝑛 := 𝑣 ′𝑖 , 𝑣

′
𝑗 , 𝑣
′

return 𝑣 ′′

stepJ(𝜆𝑥 .𝑒𝑖)ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; 𝒗 ← 𝑛 := 𝒗⊥
𝒗 ′← for 𝒗 do body(𝑥, 𝑒𝑖 , 𝐸, 𝒗)
𝒗 ′′← 𝑛 := 𝒗 ′

return 𝒗 ′′

body(𝑥, 𝑒𝑖 , 𝐸, 𝒗) (𝑆 ′)
def
=

do𝑛𝑥 = 𝑥⋄𝐸⋄𝑆 ′ ; 𝐸𝑖 = 𝐸.𝑥 :𝑛𝑥 ; 𝑛𝑖 = 𝑖⋄𝐸𝑖
𝑣𝑥 ← !𝑛𝑥

𝑣𝑖 ← stepJ𝑒𝑖K(𝐸𝑖 , 𝑆 ′)
[𝑆 ′ ⊳ 𝑣 ′𝑥 → 𝑣 ′𝑖], 𝒗 ′ = [𝑆 ′ ⊳ 𝑣𝑥 → 𝑣𝑖] ⋉ 𝒗 |𝑆′
𝑛𝑥 , 𝑛𝑖 := 𝑣 ′𝑥 , 𝑣

′
𝑖

return 𝒗 ′

Fig. 4. Transformer for the concrete data flow semantics

𝒗1 ⋉ 𝒗2
def
=

let 𝒗 ′ = Λ𝑆.

if 𝑆 ∉ 𝒗2 then ⟨𝒗1 (𝑆), 𝒗2 (𝑆)⟩ else
let ⟨𝑣1𝑖 , 𝑣1𝑜⟩ = 𝒗1 (𝑆); ⟨𝑣2𝑖 , 𝑣2𝑜⟩ = 𝒗2 (𝑆)
⟨𝑣 ′2𝑖 , 𝑣 ′1𝑖⟩ = 𝑣2𝑖 ⋉ 𝑣1𝑖 ; ⟨𝑣 ′1𝑜 , 𝑣 ′2𝑜⟩ = 𝑣1𝑜 ⋉ 𝑣2𝑜

in (⟨𝑣 ′1𝑖 , 𝑣 ′1𝑜⟩, ⟨𝑣 ′2𝑖 , 𝑣 ′2𝑜⟩)
in ⟨Λ𝑆. 𝜋1 (𝒗 ′(𝑆)),Λ𝑆. 𝜋2 (𝒗 ′(𝑆))⟩

𝒗 ⋉ ⊥ def
= ⟨𝒗, 𝒗⊥⟩

𝒗 ⋉ ⊤ def
= ⟨⊤,⊤⟩

𝑣1 ⋉ 𝑣2
def
= ⟨𝑣1, 𝑣1 ⊔ 𝑣2⟩ (otherwise)

Fig. 5. Value propagation in the concrete data flow semantics

Function application 𝑒 = (𝑒𝑖 𝑒 𝑗)ℓ . We first evaluate 𝑒𝑖 to obtain the updated map and extract the

new value 𝑣𝑖 stored at the corresponding expression node 𝑛𝑖 . If 𝑣𝑖 is not a table, then we must be

attempting an unsafe call, in which case the monadic operations return the error map𝑀⊤. If 𝑣𝑖 is a
table, we continue evaluation of 𝑒 𝑗 obtaining the new value 𝑣 𝑗 at the associated expression node

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:14 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

𝑛 𝑗 . We next need to propagate the information between this call site 𝑛𝑖 and 𝑣𝑖 . To this end, we use

the return value 𝑣 for the node 𝑛 of 𝑒 computed thus far and create a singleton table [𝑆 ′ ⊳ 𝑣 𝑗 → 𝑣]
where 𝑆 ′ = 𝑖 · 𝑆 is the extended call stack that will be used for the evaluation of this function call.

We then propagate between 𝑣𝑖 and this table to obtain the new value 𝑣 ′𝑖 and table 𝒗 ′. Note that
this propagation boils down to (1) the propagation between 𝑣 𝑗 and the input of 𝑣𝑖 at 𝑆

′
and (2)

the propagation between the output of 𝑣𝑖 at 𝑆
′
and the return value 𝑣 . The updated table 𝒗 ′ hence

contains the updated input and output values 𝑣 ′𝑗 and 𝑣
′
at 𝑆 ′. All of these values are stored back into

the execution map. Intuitively, 𝑣 ′𝑖 contains the information that the corresponding function received

an input coming from the call site identified by 𝑆 ′. This information is ultimately propagated back

to the function definition where the call is actually evaluated.

As an example, consider the evaluation of the function application at location 𝑔 in step (3) of
Fig. 3. That is, node 𝑛 is identified by 𝑔 and we have 𝑖 = 𝑞, 𝑗 = 𝑓 , 𝑆 = ℎ, and 𝑣 = ⊥. Moreover,

we initially have 𝑀 (𝑛𝑖) = ⊥ and 𝑀 (𝑛 𝑗) = ⊥. The recursive evaluation of 𝑒𝑖 will propagate the

information that id is a table to location 𝑞, i.e., the recursive call to step returns 𝑣𝑖 = 𝒗⊥. Since 𝑣𝑖
is a table, we proceed with the recursive evaluation of 1𝑓 , after which we obtain𝑀 (𝑛𝑓) = 𝑣 𝑗 = 1.
Next we compute

𝑣𝑖 ⋉ [𝑖 · 𝑆 ⊳ 𝑣 𝑗 → 𝑣] = 𝒗⊥ ⋉ [𝑞ℎ ⊳ 1→ ⊥] = ⟨[𝑞ℎ ⊳ 1→ ⊥], [𝑞ℎ ⊳ 1→ ⊥]⟩

That is, 𝑀 (𝑛𝑖) is updated to 𝑣 ′𝑖 = [𝑞ℎ ⊳ 1→ ⊥]2. Note that we still have 𝑣 ′ = ⊥ at this point. The

final value 1 at location 𝑔 is obtained later when this subexpression is reevaluated in step (8).
Lambda abstraction 𝑒 = (𝜆𝑥 .𝑒𝑖)ℓ . We first extract the table 𝒗 computed for the function thus far.

Then, for every call stack 𝑆 ′ for which an input has already been back-propagated to 𝒗, we analyze
the body by evaluating body(𝑥, 𝑒𝑖 , 𝐸, 𝒗) (𝑆 ′), as follows. First, we create a variable node 𝑛𝑥 that

will store the input value that was recorded for the call site stack 𝑆 ′. Note that if this value is

a table, indicating that the function being evaluated was called with another function as input,

then any inputs to the argument function that will be seen while evaluating the body 𝑒𝑖 will be

back-propagated to the table stored at 𝑛𝑥 and then further to the node generating the call stack 𝑆 ′.
By incorporating 𝑆 ′ into variable nodes, we guarantee that there is a unique node for each call.

We next evaluate the function body 𝑒𝑖 with the input associated with stack 𝑆 ′. To this end,

we extend the environment 𝐸 to 𝐸𝑖 by binding 𝑥 to the variable node 𝑛𝑥 . We then propagate the

information between the values stored at the node 𝑛𝑖 , i.e., the result of evaluating the body 𝑒𝑖 , the

nodes 𝑛𝑥 for the bound variable, and the table 𝒗. That is, we propagate information from (1) the

input of 𝒗 at 𝑆 ′ and the value at node 𝑛𝑥 , and (2) the value assigned to the function body under the

updated environment 𝐸𝑖 and 𝒗 (𝑆 ′)out, the output value at 𝒗 (𝑆 ′). Finally, the updated tables 𝒗 ′ for
all call site stacks 𝑆 ′ are joined together and stored back at node 𝑛.

As an example, consider the evaluation of the lambda abstraction at location 𝑜 in step (5) of
Fig. 3. Here, 𝑛 is identified by 𝑜 and we initially have𝑀 (𝑛) = 𝒗 = [𝑞ℎ ⊳ 1→ ⊥]. Thus, we evaluate
a single call to body for 𝑒𝑖 = x𝑘 and 𝑆 ′ = 𝑞ℎ. In this call we initially have 𝑀 (𝑛𝑥) = 𝑀 (x𝑞) = ⊥.
Hence, the recursive evaluation of 𝑒𝑖 does not yet have any effect and we still obtain 𝑣𝑖 = ⊥ at this

point. However, the final propagation step in body yields:

[𝑆 ′ ⊳ 𝑣𝑥 → 𝑣𝑖] ⋉ 𝒗 (𝑆 ′) = [𝑞ℎ ⊳ ⊥ → ⊥] ⋉ [𝑞ℎ ⊳ 1→ ⊥] = ⟨[𝑞ℎ ⊳ 1→ ⊥], [𝑞ℎ ⊳ 1→ ⊥]⟩

and we then update𝑀 (𝑛𝑥) to 𝑣 ′𝑥 = 1. In step (6), when the lambda abstraction at 𝑜 is once more

evaluated, we now have initially𝑀 (𝑛𝑥) = 𝑀 (x𝑞) = 1 and the recursive evaluation of 𝑒𝑖 = x𝑘 will

update the entry for 𝑘𝑞 in the execution map to 1. Thus, we also obtain 𝑣𝑖 = 1. The final propagation

2
Recall that in Fig. 3 we abbreviate the call stack 𝑞ℎ by just 𝑞.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:15

step in body now yields:

[𝑆 ′ ⊳ 𝑣𝑥 → 𝑣𝑖] ⋉ 𝒗 (𝑆 ′) = [𝑞ℎ ⊳ 1→ 1] ⋉ [𝑞ℎ ⊳ 1→ ⊥] = ⟨[𝑞ℎ ⊳ 1→ 1], [𝑞ℎ ⊳ 1→ 1]⟩

which will cause the execution map entry for 𝑛 (identified by 𝑜) to be updated to [𝑞ℎ ⊳ 1→ 1].
Observe that the evaluation of a lambda abstraction for a new input value always takes at least

two iterations of step. This can be optimized by performing the propagation in body both before

and after the recursive evaluation of 𝑒𝑖 . However, we omit this optimization here for the sake of

maintaining a closer resemblance to the typing rule for lambda abstractions.

Lemma 5.2. The function ⋉ is monotone and increasing.

Lemma 5.3. For every 𝑒 ∈ Exp, 𝐸 ∈ E, and 𝑆 ∈ S such that ⟨𝑒, 𝐸⟩ is well-formed, stepJ𝑒K(𝐸, 𝑆) is
monotone and increasing.

We define the semantics SJ𝑒K of a program 𝑒 as the least fixpoint of step over the complete lattice

of execution maps:

SJ𝑒K def
= lfp

¤⊑
𝑀⊥

Λ𝑀. let ⟨_, 𝑀 ′⟩ = stepJ𝑒K(𝜖, 𝜖) (𝑀) in𝑀 ′

Lemma 5.3 guarantees that SJ𝑒K is well-defined by Knaster-Tarski. We note that the above

semantics does not precisely model certain non-terminating programs where tables grow infinitely

deep. The semantics of such programs is simply𝑀⊤. A more precise semantics can be defined using

step-indexing [Appel and McAllester 2001]. However, we omit this for ease of presentation and

note that our semantics is adequate for capturing refinement type systems and inference algorithms

à la Liquid types, which do not support infinitely nested function types.

Properties and collecting semantics. As we shall see, data flow refinement types abstract

programs by properties 𝑃 ∈ P, which are sets of execution maps: P def
= ℘(M). Properties form

the concrete lattice of our abstract interpretation and are ordered by subset inclusion. That is, the

concrete semantics of our abstract interpretation is the collecting semantics C : Exp → P that

maps programs to properties: CJ𝑒K def
= {SJ𝑒K}. An example of a property is safety: let 𝑃safe consist

of all execution maps that map all nodes to safe values. Then a program 𝑒 is safe if CJ𝑒K ⊆ 𝑃safe.

6 INTERMEDIATE ABSTRACT SEMANTICS
We next present two abstract semantics that represent crucial abstraction steps when calculating

our data flow refinement type system from the concrete data flow semantics. Our formal exposition

focuses mostly on the aspects of these semantics that are instrumental in understanding the loss of

precision introduced by these intermediate abstractions. Other technical details can be found in

the designated appendices of the companion report [Pavlinovic et al. 2020] .

6.1 Relational Semantics
A critical abstraction step performed by the type system is to conflate the information in tables that

are propagated back from different call sites to function definitions. That is, a pair of input/output

values that has been collected from one call site will also be considered as a possible input/output

pair at other call sites to which that function flows. To circumvent a catastrophic loss of precision

caused by this abstraction step, we first introduce an intermediate semantics that explicitly captures

the relational dependencies between input and output values of functions. We refer to this semantics

as the relational data flow semantics.
Abstract domains. The definitions of nodes, stacks, and environments in the relational semantics

are the same as in the concrete semantics. Similar to data flow refinement types, the relational

abstractions of values, constants, and tables are defined with respect to scopes 𝑋 ⊆fin Var . The

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:16 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

variables in scopes are used to track how a value computed at a specific node in the execution

map relates to the other values bound in the current environment. We also use scopes to capture

how function output values depend on the input values, similar to the way input-output relations

are captured in dependent function types. The scope of a node 𝑛, denoted 𝑋𝑛 , is the domain of 𝑛’s

environment: 𝑋𝑛
def
= dom(𝑒𝑛𝑣 (𝑛)). The new semantic domains are defined as follows:

𝑢 ∈ Vr
𝑋 ::= ⊥r | ⊤r | 𝑟 | 𝑥 : 𝒖 𝑑 ∈ Dr

𝑋

def
= 𝑋 ∪ {𝜈} → Cons ∪ {F}

𝑟 ∈ Rr
𝑋

def
= ℘(Dr

𝑋) 𝑥 : 𝒖 ∈ T r
𝑋

def
= Σ𝑥 ∈ (Var \ 𝑋).S → Vr

𝑋 ×Vr
𝑋∪{𝑥 }

𝑀 r ∈ Mr def
= Π𝑛 ∈ N . Vr

𝑋𝑛

Relational values 𝑢 ∈ Vr
𝑋
model how concrete values, stored at some node, depend on the concrete

values of nodes in the current scope 𝑋 . The relational value ⊥r
again models nontermination or

unreachability and imposes no constraints on the values in its scope. The relational value⊤r
models

every possible concrete value, including ⊤. Concrete constant values are abstracted by relations

𝑟 , which are sets of dependency vectors 𝑑 . A dependency vector tracks the dependency between a

constant value associated with the special symbol 𝜈 , and the values bound to the variables in scope

𝑋 . Here, we assume that 𝜈 is never contained in 𝑋 .

We only track dependencies between constant values precisely: if a node in the scope stores

a table, we abstract it by the symbol F which stands for an arbitrary concrete table. We assume

F to be distinct from all other constants Cons . We also require that for all 𝑑 ∈ 𝑟 , 𝑑 (𝜈) ∈ Cons .
Relational tables ⟨𝑥, 𝒖⟩, denoted 𝑥 : 𝒖, are defined analogously to concrete tables except that 𝒖 now

maps call site stacks 𝑆 to pairs of relational values ⟨𝑢𝑖 , 𝑢𝑜⟩. As for dependent function types, we

add a dependency variable 𝑥 to every relational table to track input-output dependencies. Note

that we consider relational tables to be equal up to 𝛼-renaming of dependency variables. Relational

execution maps𝑀 r
assign each node 𝑛 a relational value with scope 𝑋𝑛 .

The relational semantics of a program is the relational execution map obtained as the least

fixpoint of a Galois abstraction of the concrete transformer step. The formal definition is mostly

straightforward, so we delegate it to the companion report [Pavlinovic et al. 2020, § B] .

Example 6.1. The relational execution map obtained for Program 2 is as follows (we only show

the entries for the nodes id, 𝑞, and 𝑎):

id ↦→ 𝑥 : [𝑞 ⊳ {(𝜈 : 1)} → {(𝑥 : 1, 𝜈 : 1)}, 𝑎 ⊳ {(𝜈 : 2)} → {(𝑥 : 2, 𝜈 : 2)}]
𝑞 ↦→ 𝑥 : [𝑞 ⊳ {(id : F, 𝜈 : 1)} → {(id : F, 𝑥 : 1, 𝜈 : 1)}]
𝑎 ↦→ 𝑥 : [𝑎 ⊳ {(id : F, u : 1, 𝜈 : 2)} → {(id : F, u : 1, 𝑥 : 2, 𝜈 : 2)}]

Each concrete value 𝑣 in the concrete execution map shown to the right of Program 2 is abstracted

by a relational value that relates 𝑣 with the values bound to the variables that are in the scope of

the node where 𝑣 was observed. Consider the entry for node id. As expected, this entry is a table

that has seen inputs at call site stacks identified with 𝑞 and 𝑎. The actual input stored for call site

stack 𝑞 is now a relation consisting of the single row (𝜈 : 1), and similarly for call site stack 𝑎.

As the node id has no other variables in its scope, these input relations are simply representing

the original concrete input values 1 and 2. We associate these original values with the symbol 𝜈 .

The output relation for 𝑞 consists of the single row (𝑥 : 1, 𝜈 : 1), stating that for the input value 1
(associated with 𝑥), the output value is also 1 (associated with 𝜈). Observe how we use 𝑥 to capture

explicitly the dependencies between the input and output values.

The entry in the relational execution map for the node identified by 𝑞 is similar to the one for id,

except that the relation also has an additional entry id : F. This is because id is in the scope of 𝑞.

The value of id in the execution map is a table, which the relational values abstract by the symbolic

value F. That is, the relational semantics only tracks relational dependencies between primitive

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:17

values precisely whereas function values are abstracted by F. The relational table stored at node 𝑎

is similar, except that we now also have the variable u which is bound to value 1. As in the concrete

execution map, the relational tables for 𝑞 and 𝑎 contain fewer entries than the table stored at id.

Abstraction. We formalize the meaning of relational execution maps in terms of a Galois connec-

tion betweenMr
and the complete lattice of sets of concrete execution maps ℘(M). The details of

this construction and the resulting abstract transformer of the relational semantics can be found

in [Pavlinovic et al. 2020, § B] . We here focus on the key idea of the abstraction by formalizing the

intuitive meaning of relational values given above. Our formalization uses a family of concretization

functions 𝛾 r
𝑋
: Vr

𝑋
→ ℘((𝑋 →V) ×V), parameterized by scopes 𝑋 , that map relational values to

sets of pairs ⟨Γ, 𝑣⟩ where Γ maps the variables in scope 𝑋 to values inV:

𝛾 r
𝑋 (⊥r) def

= (𝑋 →V) × {⊥} 𝛾 r
𝑋 (⊤r) def

= (𝑋 →V) ×V
𝛾 r
𝑋 (𝑟)

def
= {⟨Γ, 𝑐⟩ | 𝑑∈𝑟 ∧ 𝑑 (𝜈) = 𝑐 ∧ ∀𝑥∈𝑋 . Γ(𝑥) ∈ 𝛾d (𝑑 (𝑥))} ∪ 𝛾 r

𝑋 (⊥r)
𝛾 r
𝑋 (𝑥 : 𝒖) def

= {⟨Γ, 𝒗⟩ | ∀𝑆. 𝒗 (𝑆) = ⟨𝑣𝑖 , 𝑣𝑜⟩ ∧ 𝒖 (𝑆) = ⟨𝑢𝑖 , 𝑢𝑜⟩∧
⟨Γ, 𝑣𝑖⟩ ∈ 𝛾 r

𝑋 (𝑢𝑖) ∧ ⟨Γ [𝑥 ↦→ 𝑣𝑖], 𝑣𝑜⟩ ∈ 𝛾 r
𝑋∪{𝑥 } (𝑢𝑜)} ∪ 𝛾

r
𝑋 (⊥r)

Here, the function 𝛾d
, which we use to give meaning to dependency relations, is defined by

𝛾d (𝑐) = {𝑐} and 𝛾d (F) = T . The meaning of relational execution maps is then given by the function

𝛾 r (𝑀 r) def
= {𝑀 | ∀𝑛 ∈ N . ⟨Γ, 𝑣⟩ ∈ 𝛾 r

𝑋𝑛
(𝑀 r (𝑛)) ∧ Γ = 𝑀 ◦ 𝑒𝑛𝑣 (𝑛) ∧ 𝑣 = 𝑀 (𝑛)} .

6.2 Collapsed Semantics
We now describe a key abstraction step in the construction of our data flow refinement type seman-

tics. We formalize this step in terms of a collapsed (relational data flow) semantics, which collapses

function tables to a bounded number of entries while controlling how much stack information is

being lost, thereby allowing for different notions of call-site context sensitivity.

Abstract domains. The collapsed semantics is parameterized by a finite set of abstract stacks
𝑆 ∈ Ŝ, a stack abstraction function 𝜌 : S → Ŝ, and an abstract stack concatenation operation

·̂ : 𝐿𝑜𝑐 × Ŝ → Ŝ. Stack abstraction must be homomorphic with respect to concatenation: for all

ℓ ∈ 𝐿𝑜𝑐 and 𝑆 ∈ S, 𝜌 (ℓ · 𝑆) = ℓ ·̂ 𝜌 (𝑆).
Abstract stacks induce sets of abstract nodes and abstract environments following the same

structure as in the concrete semantics

𝑛 ∈ N̂ def
= N̂𝑒 ∪ N̂𝑥 N̂𝑒

def
= Loc × Ê N̂𝑥

def
= Var × Ê × Ŝ 𝐸 ∈ Ê def

= Var ⇀fin N̂𝑥

We lift 𝜌 from stacks to nodes and environments in the expected way. In particular, for variable

nodes 𝑛𝑥 = ℓ⋄𝐸⋄𝑆 , we recursively define 𝜌 (𝑛𝑥)
def
= ℓ⋄(𝜌 ◦ 𝐸)⋄𝜌 (𝑆). Analogous to concrete nodes,

we define the scope of an abstract node as 𝑋𝑛 = dom(𝑒𝑛𝑣 (𝑛)).
The definition of values and executionmaps remains largely unchanged. In particular, dependency

vectors and relational values are inherited from the relational semantics. Only the definition of

tables changes, which now range over abstract stacks rather than concrete stacks:

𝑢 ∈ V r̂
𝑋
::= ⊥r̂ | ⊤r̂ | 𝑟 | 𝑥 : 𝒖 𝑥 : 𝒖 ∈ T r̂

𝑋

def
= Σ𝑥 ∈ (Var \ 𝑋). Ŝ → V r̂

𝑋
×V r̂

𝑋∪{𝑥 }

𝑀 r̂ ∈ M r̂ def
= Π𝑛 ∈ N̂ . V r̂

𝑋𝑛

Example 6.2. We use Program 2 again to provide intuition for the new semantics. To this end, we

first define a family of sets of abstract stacks which we can use to instantiate the collapsed semantics.

Let 𝑘 ∈ N and define Ŝ𝑘 = 𝐿𝑜𝑐𝑘 where 𝐿𝑜𝑐𝑘 is the set of all sequences of locations of length at

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:18 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

most 𝑘 . Moreover, for 𝑆 ∈ Ŝ𝑘 define ℓ ·̂ 𝑆 = (ℓ · 𝑆) [0, 𝑘] where (ℓ1 . . . ℓ𝑛) [0, 𝑘] is 𝜖 if 𝑘 = 0, ℓ1 . . . ℓ𝑘 if

0 < 𝑘 < 𝑛, and ℓ1 . . . ℓ𝑛 otherwise. Note that this definition generalizes the definitions of Ŝ0
and Ŝ1

from Example 4.2. An abstract stack in Ŝ𝑘 only maintains the return locations of the 𝑘 most recent

pending calls, thus yielding a 𝑘-context-sensitive analysis. In particular, instantiating our collapsed

semantics with Ŝ0
yields a context-insensitive analysis. Applying this analysis to Program 2, we

obtain the following collapsed execution map, which abstracts the relational execution map for this

program shown in Example 6.1:

id ↦→ 𝑥 : {(𝜈 : 1), (𝜈 : 2)} → {(𝑥 : 1, 𝜈 : 1), (𝑥 : 2, 𝜈 : 2)}
𝑞 ↦→ 𝑥 : {(id : F, 𝜈 : 1)} → {(id : F, 𝑥 : 1, 𝜈 : 1)}
𝑎 ↦→ 𝑥 : {(id : F, u : 1, 𝜈 : 2)} → {(id : F, u : 1, 𝑥 : 2, 𝜈 : 2)}

Again, we only show some of the entries and for economy of notation, we omit the abstract stack 𝜖

in the singleton tables. Since the semantics does not maintain any stack information, the collapsed
tables no longer track where functions are being called in the program. For instance, the entry

for id indicates that id is a function called at some concrete call sites with inputs 1 and 2. While

the precise call site stack information of id is no longer maintained, the symbolic variable 𝑥 still

captures the relational dependency between the input and output values for all the calls to id.

If we chose to maintain more information in Ŝ, the collapsed semantics is also more precise.

For instance, a 1-context-sensitive analysis is obtained by instantiating the collapsed semantics

with Ŝ1
. Analyzing Program 2 using this instantiation of the collapsed semantics yields a collapsed

execution map that is isomorphic to the relational execution map shown in Example 6.1 (i.e., the

analysis does not lose precision in this case).

Abstraction. Similar to the relational semantics, we formalize the meaning of the collapsed

semantics in terms of a Galois connection between the complete lattices of relational execution

mapsMr
and collapsed execution mapsM r̂

. Again, we only provide the definition of the right

adjoint 𝛾 r̂ :M r̂ →Mr
here. Similar to the relational semantics, 𝛾 r̂

is defined in terms of a family

of concretization functions 𝛾 r̂
𝑋
: V r̂

𝑋
→Vr

𝑋
mapping collapsed values to relational values:

¤𝛾 r̂ (𝑀 r̂) def
= Λ𝑛 ∈ N . (𝛾 r̂

𝑋𝜌 (𝑛)
◦𝑀 r̂ ◦ 𝜌) (𝑛) 𝛾 r̂

𝑋 (⊥r̂) def
= ⊥r 𝛾 r̂

𝑋 (⊤r̂) def
= ⊤r 𝛾 r̂

𝑋 (𝑟)
def
= 𝑟

𝛾 r̂
𝑋 (𝑥 : 𝒖) def

= 𝑥 : Λ𝑆 ∈ S. let ⟨𝑢𝑖 , 𝑢𝑜⟩ = (𝒖 ◦ 𝜌) (𝑆) in ⟨𝛾 r̂
𝑋 (𝑢𝑖), 𝛾 r̂

𝑋∪{𝑥 } (𝑢𝑜)⟩

More details on the collapsed semantics including its abstract transformer are provided in the

companion report [Pavlinovic et al. 2020, § C] .

7 PARAMETRIC DATA FLOW REFINEMENT TYPE SEMANTICS
At last, we obtain our parametric data flow refinement type semantics from the collapsed relational

semantics by abstracting dependency relations over concrete constants by abstract relations drawn

from some relational abstract domain. In § 7.2, we will then show that our data flow refinement type

system introduced in § 4 is sound and complete with respect to this abstract semantics. Finally, in

§ 7.3 we obtain a generic type inference algorithm from our abstract semantics by using widening

to enforce finite convergence of the fixpoint iteration sequence.

7.1 Type Semantics

Abstract domains. The abstract domains of our data flow refinement type semantics build on

the set of types Vt
𝑋
defined in § 4. Recall that Vt

𝑋
is parametric with a set of abstract stacks Ŝ

and a complete lattice of basic refinement types ⟨Rt, ⊑𝑏,⊥𝑏,⊤𝑏,⊔𝑏,⊓𝑏⟩, which can be viewed as a

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:19

union of sets Rt
𝑋
for each scope 𝑋 . We require that each Rt

𝑋
forms a complete sublattice of Rt

and

that there exists a family of Galois connections
3 ⟨𝛼𝑏

𝑋
, 𝛾𝑏

𝑋
⟩ between Rt

𝑋
and the complete lattice of

dependency relations ⟨Rr
𝑋
, ⊆, ∅,Dr

𝑋
,∪,∩⟩. For instance, for the domain R lia

from Example 4.1, the

concretization function 𝛾𝑏
𝑋
is naturally obtained from the satisfaction relation for linear integer

constraints.

We lift the partial order ⊑𝑏 on basic refinement types to a preorder ⊑t
on types as follows:

𝑡1 ⊑t 𝑡2
def⇐⇒ 𝑡1 = ⊥t ∨ 𝑡2 = ⊤t ∨ (𝑡1, 𝑡2 ∈ Rt ∧ 𝑡1 ⊑𝑏 𝑡2) ∨ (𝑡1, 𝑡2 ∈ T t ∧ ∀𝑆. 𝑡1 (𝑆) ¤⊑t

𝑡2 (𝑆))

By implicitly taking the quotient of types modulo 𝛼-renaming of dependency variables in function

types we obtain a partial order that induces a complete lattice ⟨Vt
𝑋
, ⊑t,⊥t,⊤t,⊔t,⊓t⟩. We lift this

partial order point-wise to refinement type mapsMt def
= Π𝑛 ∈ N̂ . Vt

𝑋𝑛
and obtain a complete

lattice ⟨Mt, ¤⊑t
, 𝑀t
⊥, 𝑀

t
⊤, ¤⊔t, ¤⊓t⟩.

Galois connection. The meaning of refinement types is given by a function 𝛾 t
𝑋
: Vt

𝑋
→ V r̂

𝑋
that

extends 𝛾𝑏 on basic refinement types. This function is then lifted to type maps as before:

𝛾 t
𝑋
(⊥t) def

= ⊥r̂ 𝛾 t
𝑋
(⊤t) def

= ⊤r̂ 𝛾 t
𝑋
(𝑥 : 𝒕) def

= 𝑥 : Λ𝑆. let ⟨𝑡𝑖 , 𝑡𝑜⟩ = 𝒕 (𝑆) in ⟨𝛾 t
𝑋
(𝑡𝑖), 𝛾 t

𝑋∪{𝑥 } (𝑡𝑜)⟩
𝛾 t (𝑀t) def

= Λ𝑛. (𝛾 t
𝑋𝑛
◦𝑀t) (𝑛)

Abstract domain operations. We briefly revisit the abstract domain operations on types introduced

in § 4 and provide their formal specifications needed for the correctness of our data flow refinement

type semantics.

We define these operations in terms of three simpler operations on basic refinement types. First,

for 𝑥,𝑦 ∈ 𝑋 ∪ {𝜈} and b ∈ Rt
𝑋
, let b [𝑥 = 𝑦] be an abstraction of the concrete operation that

strengthens the dependency relations described by b with an equality constraint 𝑥 = 𝑦. That is,

we require 𝛾𝑏
𝑋
(b [𝑥 = 𝑦]) ⊇ {𝑑 ∈ 𝛾𝑏

𝑋
(b) | 𝑑 (𝑥) = 𝑑 (𝑦)}. Similarly, for 𝑐 ∈ Cons ∪ {F} we assume

that b [𝑥 = 𝑐] is an abstraction of the concrete operation that strengthens b with the equality 𝑥 = 𝑐 ,

i.e. we require 𝛾𝑏
𝑋
(b [𝑥 = 𝑐]) ⊇ {𝑑 ∈ 𝛾𝑏

𝑋
(b) | 𝑑 (𝑥) = 𝑐}. Lastly, we assume an abstract variable

substitution operation, b [𝑥/𝜈], which must be an abstraction of variable substitution on dependency

relations: 𝛾𝑏
𝑋
(b [𝑥/𝜈]) ⊇ {𝑑 [𝜈 ↦→ 𝑐, 𝑥 ↦→ 𝑑 (𝜈)] | 𝑑 ∈ 𝛾𝑏

𝑋
(b), 𝑐 ∈ Cons}. We lift these operations to

general refinement types 𝑡 in the expected way. For instance, we define

𝑡 [𝑥 = 𝑐] def
=

𝑡 [𝑥 = 𝑐] if 𝑡 ∈ R
𝑧 : Λ𝑆. ⟨𝒕 (𝑆)in [𝑥 = 𝑐], 𝒕 (𝑆)out [𝑥 = 𝑐]⟩ if 𝑡 = 𝑧 : 𝒕 ∧ 𝑥 ≠ 𝜈

𝑡 otherwise

Note that in the second case of the definition, the fact that 𝑥 is in the scope of 𝑡 implies 𝑥 ≠ 𝑧.

We then define the function that yields the abstraction of a constant 𝑐 ∈ Cons as [𝜈 = 𝑐]t def
=

⊤𝑏 [𝜈 = 𝑐]. The strengthening operation 𝑡 [𝑥 ← 𝑡 ′] is defined recursively over the structure of types
as follows:

𝑡 [𝑥 ← 𝑡 ′] def
=

⊥t if 𝑡 ′ = ⊥t

𝑡 [𝑥 = F] else if 𝑡 ′ ∈ T t

𝑡 ⊓𝑏 𝑡 ′[𝑥/𝜈] else if 𝑡 ∈ R
𝑧 : Λ𝑆. ⟨𝒕 (𝑆)in [𝑥 ← 𝑡 ′], 𝒕 (𝑆)out [𝑥 ← 𝑡 ′]⟩ else if 𝑡 = 𝑧 : 𝒕

𝑡 otherwise

3
In fact, we can relax this condition and only require a concretization function, thus supporting abstract refinement domains

such as polyhedra [Cousot and Halbwachs 1978].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:20 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

𝑥 : 𝒕1 ⋉t 𝑥 : 𝒕2
def
= let 𝒕 = Λ𝑆.

let ⟨𝑡1𝑖 , 𝑡1𝑜⟩ = 𝒕1 (𝑆); ⟨𝑡2𝑖 , 𝑡2𝑜⟩ = 𝒕2 (𝑆) 𝑥 : 𝒕 ⋉t ⊥t def
= ⟨𝑥 : 𝒕, 𝑥 : 𝒕⊥⟩

⟨𝑡 ′2𝑖 , 𝑡 ′1𝑖⟩ = 𝑡2𝑖 ⋉
t 𝑡1𝑖 𝑥 : 𝒕 ⋉t ⊤t def

= ⟨⊤t,⊤t⟩
⟨𝑡 ′1𝑜 , 𝑡 ′2𝑜⟩ = 𝑡1𝑜 [𝑥 ← 𝑡2𝑖] ⋉t 𝑡2𝑜 [𝑥 ← 𝑡2𝑖] 𝑡1 ⋉

t 𝑡2
def
= ⟨𝑡1, 𝑡1 ⊔t 𝑡2⟩

in ⟨⟨𝑡 ′1𝑖 , 𝑡1𝑜 ⊔t 𝑡 ′1𝑜⟩, ⟨𝑡 ′2𝑖 , 𝑡2𝑜 ⊔t 𝑡 ′2𝑜⟩⟩ (otherwise)
in ⟨𝑥 : Λ𝑆. 𝜋1 (𝒕 (𝑆)), 𝑥 : Λ𝑆. 𝜋2 (𝒕 (𝑆))⟩

Fig. 6. Abstract value propagation in the data flow refinement type semantics

steptJ𝑐ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; Γt ← env(𝐸) ; 𝑡 ′← 𝑛 := [𝜈 =𝑐]t [Γt]
return 𝑡 ′

steptJ𝑥ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; 𝑡 ← !𝑛 ; 𝑛𝑥 = 𝐸 (𝑥) ; Γt ← env(𝐸)
𝑡 ′← 𝑛𝑥 , 𝑛 := Γt (𝑥) [𝜈 =𝑥]t [Γt] ⋉t 𝑡 [𝜈 =𝑥]t [Γt]

return 𝑡 ′

steptJ(𝑒𝑖 𝑒 𝑗)ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; 𝑛𝑖 = 𝑖⋄𝐸 ; 𝑛 𝑗 = 𝑗⋄𝐸 ; 𝑡 ← !𝑛

𝑡𝑖 ← steptJ𝑒𝑖K(𝐸, 𝑆) ; assert(𝑡𝑖 ∈ T t)
𝑡 𝑗 ← steptJ𝑒 𝑗 K(𝐸, 𝑆)
𝑡 ′𝑖 , 𝑥 : [𝑖 ·̂ 𝑆 ⊳ 𝑡 ′𝑗 → 𝑡 ′] = 𝑡𝑖 ⋉

t 𝑥 : [𝑖 ·̂ 𝑆 ⊳ 𝑡 𝑗 → 𝑡]
𝑡 ′′← 𝑛𝑖 , 𝑛 𝑗 , 𝑛 := 𝑡 ′𝑖 , 𝑡

′
𝑗 , 𝑡
′

return 𝑡 ′′

steptJ(𝜆𝑥 .𝑒𝑖)ℓK(𝐸, 𝑆)
def
=

do𝑛 = ℓ⋄𝐸 ; 𝑡 ← 𝑛 := 𝑥 : 𝒕⊥

𝑡 ′← for 𝑡 do bodyt (𝑥, 𝑒𝑖 , 𝐸, 𝑡)
𝑡 ′′← 𝑛 := 𝑡 ′

return 𝑡 ′′

bodyt (𝑥, 𝑒𝑖 , 𝐸, 𝑡) (𝑆 ′)
def
=

do𝑛𝑥 = 𝑥⋄𝐸⋄𝑆 ′ ; 𝐸𝑖 = 𝐸.𝑥 :𝑛𝑥 ; 𝑛𝑖 = 𝑖⋄𝐸𝑖
𝑡𝑥 ← !𝑛𝑥 ; 𝑡𝑖 ← steptJ𝑒𝑖K(𝐸𝑖 , 𝑆 ′)
𝑥 : [𝑆 ′ ⊳ 𝑡 ′𝑥 → 𝑡 ′𝑖], 𝑡 ′ =
𝑥 : [𝑆 ′ ⊳ 𝑡𝑥 → 𝑡𝑖] ⋉t 𝑡 |𝑆′

𝑛𝑥 , 𝑛𝑖 := 𝑡 ′𝑥 , 𝑡
′
𝑖

return 𝑡 ′

Fig. 7. Abstract transformer for the data flow refinement type semantics

Finally, we lift 𝑡 [𝑥 ← 𝑡 ′] to the operation 𝑡 [Γt] that strengthens 𝑡 with respect to a type environment

Γt
by defining 𝑡 [Γt] def

=
dt

𝑥 ∈dom(Γt) 𝑡 [𝑥 ← Γt (𝑥)].
Abstract propagation and transformer. The propagation operation ⋉t

on refinement types,

shown in Fig. 6, is then obtained from ⋉ in Fig. 5 by replacing all operations on concrete values

with their counterparts on types. In a similar fashion, we obtain the new abstract transformer stept

for the refinement type semantics from the concrete transformer step. We again use a state monad

to hide the manipulation of type execution maps. The corresponding operations are variants of

those used in the concrete transformer, which are summarized in Fig. 7. The abstract transformer

closely resembles the concrete one. The only major differences are in the cases for constant values

and variables. Here, we strengthen the computed types with the relational information about the

variables in scope obtained from the current environment Γt = 𝑀t ◦ 𝐸.
Abstract semantics. We identify abstract properties Pt

in the data flow refinement type semantics

with type maps, Pt def
= Mt

and define 𝛾 : Pt → P, which maps abstract properties to concrete

properties by 𝛾
def
= 𝛾 r ◦ 𝛾 r̂ ◦ 𝛾 t

.

Lemma 7.1. The function 𝛾 is a complete meet-morphism between Pt and P.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:21

It follows that 𝛾 induces a Galois connection between concrete and abstract properties. The data

flow refinement semantics CtJ·K : Exp → Pt
is then defined as the least fixpoint of stept

:

CtJ𝑒K def
= lfp

¤⊑t

𝑀t
⊥
Λ𝑀t. let ⟨_, 𝑀t ′⟩ = steptJ𝑒K(𝜖, 𝜖) (𝑀t) in𝑀t ′

Theorem 7.2. The refinement type semantics is sound, i.e. CJ𝑒K ⊆ 𝛾 (CtJ𝑒K).

The soundness proof follows from the calculational design of our abstraction and the properties

of the involved Galois connections.

We say that a type 𝑡 is safe if it does not contain ⊤t
, i.e. 𝑡 ≠ ⊤t

and if 𝑡 = 𝑥 : 𝒕 then for all 𝑆 ∈ Ŝ,
𝒕 (𝑆)in and 𝒕 (𝑆)out are safe. Similarly, a type map𝑀t

is safe if all its entries are safe. The next lemma

states that safe type maps yield safe properties. It follows immediately from the definitions of the

concretizations.

Lemma 7.3. For all safe type maps𝑀t, 𝛾 (𝑀t) ⊆ 𝑃safe.

A direct corollary of this lemma and the soundness theorems for our abstract semantics is that

any safe approximation of the refinement type semantics can be used to prove program safety.

Corollary 7.4. For all programs 𝑒 and safe type maps𝑀t, if CtJ𝑒K ¤⊑t
𝑀t, then 𝑒 is safe.

7.2 Soundness and Completeness of Type System
It is worth to pause for a moment and appreciate the resemblance between the subtyping and

typing rules introduced in § 4 on one hand, and the abstract propagation operator ⋉t
and abstract

transformer stept
on the other hand. We now make this resemblance formally precise by showing

that the type system exactly captures the safe fixpoints of the abstract transformer. This implies

the soundness and completeness of our type system with respect to the abstract semantics.

We start by formally relating the subtype relation and type propagation. The following lemma

states that subtyping precisely captures the safe fixpoints of type propagation.

Lemma 7.5. For all 𝑡1, 𝑡2 ∈ Vt
𝑋
, 𝑡1 <: 𝑡2 iff ⟨𝑡1, 𝑡2⟩ = 𝑡1 ⋉

t 𝑡2 and 𝑡1, 𝑡2 are safe.

We use this fact to show that any derivation of a typing judgment Γt, 𝑆 ⊢ 𝑒 : 𝑡 represents a safe
fixpoint of stept

on 𝑒 , and vice versa, for any safe fixpoint of stept
on 𝑒 , we can obtain a typing

derivation. To state the soundness theorem we need one more definition: we say that a typing

environment is valid if it does not map any variable to ⊥t
or ⊤t

.

Theorem 7.6 (Soundness). Let 𝑒 be an expression, Γt a valid typing environment, 𝑆 an abstract
stack, and 𝑡 ∈ Vt. If Γt, 𝑆 ⊢ 𝑒 : 𝑡 , then there exist 𝑀t, 𝐸 such that 𝑀t is safe, Γt = 𝑀t ◦ 𝐸 and
⟨𝑡, 𝑀t⟩ = steptJ𝑒K(𝐸, 𝑆) (𝑀t).

Theorem 7.7 (Completeness). Let 𝑒 be an expression, 𝐸 an environment, 𝑆 ∈ Ŝ,𝑀t a type map,
and 𝑡 ∈ Vt. If steptJ𝑒K(𝐸, 𝑆) (𝑀t) = ⟨𝑡, 𝑀t⟩ and𝑀t is safe, then Γt, 𝑆 ⊢ 𝑒 : 𝑡 where Γt = 𝑀t ◦ 𝐸.

7.3 Type Inference
The idea for the generic type inference algorithm is to iteratively compute CtJ𝑒K, which captures

the most precise typing for 𝑒 as we have established above. Unfortunately, there is no guarantee

that the fixpoint iterates of stept
converge towards CtJ𝑒K in finitely many steps. The reasons

are two-fold. First, the domain Rt
may not satisfy the ascending chain condition (i.e. it may have

infinite height). To solve this first issue, we simply assume that Rt
comes equipped with a family

of widening operators ▽t
𝑋

: Rt
𝑋
× Rt

𝑋
→ Rt

𝑋
for its scoped sublattices. Recall that a widening

operator for a complete lattice ⟨𝐿, ⊑,⊥,⊤,⊔,⊓⟩ is a function ▽ : 𝐿 × 𝐿 → 𝐿 such that: (1) ▽ is an

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:22 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

upper bound operator, i.e., for all 𝑥,𝑦 ∈ 𝐿, 𝑥 ⊔ 𝑦 ⊑ 𝑥 ▽𝑦, and (2) for all infinite ascending chains

𝑥0 ⊑ 𝑥1 ⊑ . . . in 𝐿, the chain 𝑦0 ⊑ 𝑦1 ⊑ . . . eventually stabilizes, where 𝑦0
def
= 𝑥0 and 𝑦𝑖

def
= 𝑦𝑖−1 ▽𝑥𝑖

for all 𝑖 > 0 [Cousot and Cousot 1977].

The second issue is that there is in general no bound on the depth of function tables recorded in

the fixpoint iterates. This phenomenon can be observed, e.g., in the following program
4
:

1 let rec hungry x = hungry and loop f = loop (f ()) in

2 loop hungry

To solve this second issue, we introduce a shape widening operator that enforces a bound on the

depth of tables. The two widening operators will then be combined to yield a widening operator

forVt
𝑋
. In order to define shape widening, we first define the shape of a type using the function

sh : Vt
𝑋
→Vt

𝑋
defined as follows:

sh(⊥t) def
= ⊥t sh(⊤t) def

= ⊤t sh(𝑟 t) def
= ⊥t sh(𝑥 : 𝒕) def

= 𝑥 : Λ𝑆. ⟨sh(𝒕 (𝑆)in), sh(𝒕 (𝑆)out)⟩

A shape widening operator is a function ▽sh
𝑋

: Vt
𝑋
× Vt

𝑋
→ Vt

𝑋
such that (1) ▽sh

𝑋
is an upper

bound operator and (2) for every infinite ascending chain 𝑡0 ⊑t
𝑋
𝑡1 ⊑t

𝑋
. . . , the chain sh(𝑡 ′0) ⊑t

𝑋

sh(𝑡 ′1) ⊑t
𝑋
. . . stabilizes, where 𝑡 ′0

def
= 𝑡0 and 𝑡

′
𝑖

def
= 𝑡 ′𝑖−1 ▽

sh
𝑋
𝑡𝑖 for 𝑖 > 0.

Example 7.8. The occurs check performed when unifying type variables in type inference for

Hindley-Milner-style type systems serves a similar purpose as shape widening. In fact, we can

define a shape widening operator that mimics the occurs check. To this end, suppose that each

dependency variable 𝑥 is tagged with a finite set of pairs ⟨ℓ, 𝑆⟩. We denote this set by tag (𝑥).
Moreover, when computing joins over function types 𝑥 : 𝒕 and 𝑦 : 𝒕 , first 𝛼-rename 𝑥 , respectively,

𝑦 by some fresh 𝑧 such that tag (𝑧) = tag (𝑥) ∪ tag (𝑦). We proceed similarly when applying ⋉t

to function types. Finally, assume that each fresh dependency variable 𝑥 generated by stept
for

the function type at a call expression 𝑒𝑖 𝑒 𝑗 has tag (𝑥) = {⟨𝑖, 𝑆⟩} where 𝑆 is the abstract call stack

at this point. Then to obtain 𝑡1 ▽
sh
𝑋
𝑡2, first define 𝑡 = 𝑡1 ⊔t

𝑋
𝑡2. If 𝑡 contains two distinct bindings

of dependency variables 𝑥 and 𝑦 such that tag (𝑥) = tag (𝑦), define 𝑡1 ▽sh
𝑋
𝑡2 = ⊤t

and otherwise

𝑡1 ▽
sh
𝑋
𝑡2 = 𝑡 . Clearly this is a shape widening operator if we only consider the finitely many tag

sets that can be constructed from the locations in the analyzed program.

In what follows, let ▽sh
𝑋

be a shape widening operator. First, we lift the ▽t
𝑋
on Rt

to an upper

bound operator ▽ra
𝑋
onVt

𝑋
:

𝑡 ▽ra
𝑋 𝑡 ′

def
=

𝑡 ▽t

𝑋
𝑡 ′ if 𝑡, 𝑡 ′ ∈ Rt

𝑥 : Λ𝑆. let ⟨𝑡𝑖 , 𝑡𝑜⟩ = 𝒕 (𝑆); ⟨𝑡 ′𝑖 , 𝑡 ′𝑜⟩ = 𝒕 ′(𝑆)
in ⟨𝑡𝑖 ▽ra

𝑋
𝑡 ′𝑖 , 𝑡𝑜 ▽

ra
𝑋∪{𝑥 } 𝑡

′
𝑜⟩

if 𝑡 = 𝑥 : 𝒕 ∧ 𝑡 ′ = 𝑥 : 𝒕 ′

𝑡 ⊔t 𝑡 ′ otherwise

We then define ▽t
𝑋

: Vt
𝑋
× Vt

𝑋
→ Vt

𝑋
as the composition of ▽sh

𝑋
and ▽ra

𝑋
, that is, 𝑡 ▽t

𝑋
𝑡 ′

def
=

𝑡 ▽ra
𝑋
(𝑡 ▽sh

𝑋
𝑡 ′).

Lemma 7.9. ▽t
𝑋
is a widening operator.

We lift the widening operators ▽t
𝑋
pointwise to an upper bound operator ¤▽t:Mt ×Mt →Mt

and define a widened data flow refinement semantics Ct
▽J·K : Exp → Pt

as the least fixpoint of the

widened iterates of stept
:

Ct
▽J𝑒K

def
= lfp

¤⊑t

𝑀t
⊥
Λ𝑀t. let ⟨_, 𝑀t ′⟩ = steptJ𝑒K(𝜖, 𝜖) (𝑀t) in (𝑀t ¤▽t 𝑀t ′) (1)

4
We here assume that recursive functions are encoded using the 𝑌 combinator.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:23

The following theorem then follows directly from Lemma 7.9 and [Cousot and Cousot 1977].

Theorem 7.10. The widened refinement type semantics is sound and terminating, i.e., for all
programs 𝑒 , Ct

▽J𝑒K converges in finitely many iterations. Moreover, CtJ𝑒K ¤⊑t Ct
▽J𝑒K.

Our parametric type inference algorithm thus computes Ct
▽J𝑒K iteratively according to (1). By

Theorem 7.10 and Corollary 7.4, if the resulting type map is safe, then so is 𝑒 .

8 IMPLEMENTATION AND EVALUATION
We have implemented a prototype of our parametric data flow refinement type inference analysis in

a tool called Drift
5
. The tool is written in OCaml and builds on top of the Apron library [Jeannet

and Miné 2009] to support various numerical abstract domains of type refinements. We have

implemented two versions of the analysis: a context-insensitive version in which all entries in

tables are collapsed to a single one (as in Liquid type inference) and a 1-context-sensitive analysis

that distinguishes table entries based on the most recent call site locations. For the widening on basic

refinement types, we consider two variants: plain widening and widening with thresholds [Blanchet

et al. 2007]. Both variants use Apron’s widening operators for the individual refinement domains.

The tool takes programs written in a subset of OCaml as input. This subset supports higher-order

recursive functions, operations on primitive types such as integers and Booleans, as well as lists

and arrays. We note that the abstract and concrete transformers of our semantics can be easily

extended to handle recursive function definitions directly. As of now, the tool does not yet support

user-defined algebraic data types. Drift automatically checks whether all array accesses are within

bounds. In addition, the tool supports the verification of user-provided assertions. Type refinements

for lists can express constraints on both the list’s length and its elements.

To evaluate Drift we conducted two experiments that aim to answer the following questions:

(1) What is the trade-off between efficiency and precision for different instantiations of our

parametric analysis framework?

(2) How does our new analysis compare with other state-of-the-art automated verification tools

for higher-order programs?

Benchmarks and Setup. We collected a benchmark suite of OCaml programs by combining several

sources of programs from prior work and augmenting it with our own new programs. Specifically,

we included the programs used in the evaluation of theDOrder [Zhu et al. 2016] and R_Type [Cham-

pion et al. 2018a] tools, excluding only those programs that involve algebraic data types or certain

OCaml standard library functions that our tool currently does not yet support. We generated a few

additional variations of some of these programs by adding or modifying user-provided assertions,

or by replacing concrete test inputs for the program’s main function by unconstrained parameters.

In general, the programs are small (up to 86 lines) but intricate. We partitioned the programs

into five categories: first-order arithmetic programs (FO), higher-order arithmetic programs (HO),

higher-order programs that were obtained by reducing program termination to safety checking

(T), array programs (A), and list programs (L). All programs except two in the T category are safe.

We separated these two erroneous programs out into a sixth category (E) which we augmented by

additional unsafe programs obtained by modifying safe programs so that they contain implementa-

tion bugs or faulty specifications. The benchmark suite is available in the tool’s Github repository.

All our experiments were conducted on a desktop computer with an Intel(R) Core(TM) i7-4770

CPU and 16 GB memory running Linux.

5
https://github.com/nyu-acsys/drift/

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

https://github.com/nyu-acsys/drift/

19:24 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

Table 1. Summary of Experiment 1. For each benchmark category, we provide the number of programs
within that category in parentheses. For each benchmark category and configuration, we list: the number
of programs successfully analyzed (succ) and the total accumulated running time across all benchmarks in
seconds (total). In the E category, an analysis run is considered successful if it flags the type error/assertion
violation present in the benchmark. The numbers given in parenthesis in the total rows indicate the number
of benchmarks that failed due to timeouts (if any). These benchmarks are excluded from the calculation of
the cumulative running times. The timeout threshold was 300s per benchmark.

Benchmark

category

Configuration

Version context-insensitive 1-context-sensitive

Domain Oct Polka strict Polka loose Oct Polka strict Polka loose

Widening w tw w tw w tw w tw w tw w tw

FO (73) succ 25 39 39 51 39 51 33 46 47 58 47 59

loc: 11 total 10.40 46.94 17.37 46.42(1) 15.82 42.88(1) 67.38 129.80 92.37 138.00(1) 87.27 138.33

HO (62) succ 33 48 42 55 42 55 42 51 48 60 48 60

loc: 10 total 8.53 49.97 14.97 60.67 14.03 54.71 83.56 282.57 119.10 345.03 112.05 316.18

T (80) succ 72 72 72 72 72 72 79 79 78 79 78 79

loc: 44 total 806.24 842.70 952.53 994.52 882.21 924.00 1297.13(1) 1398.25(1) 1467.09(1) 1566.11(1) 1397.71(1) 1497.28(1)

A (13) succ 6 6 8 8 8 8 8 8 11 11 11 11

loc: 17 total 4.30 23.43 7.66 25.04 7.19 23.38 17.99 41.66 28.07 47.77 26.84 45.94

L (20) succ 8 14 10 14 10 14 11 18 10 18 10 18

loc: 16 total 1.62 12.02 4.00 12.52 3.45 10.97 5.73 27.01 11.46 29.01 10.32 26.43

E (17) succ 17 17 17 17 17 17 17 17 17 17 17 17

loc: 21 total 8.04 14.89 12.72 19.44 12.01 18.28 17.90 28.76 24.96 34.24 23.75 32.71

Experiment 1: Comparing different configurations of Drift. We consider the two versions of our

tool (context-insensitive and 1-context-sensitive) and instantiate each with two different relational

abstract domains implemented in Apron: Octagons [Miné 2007] (Oct), and Convex Polyhedra and

Linear Equalities [Cousot and Halbwachs 1978] (Polka). For the Polka domain we consider both its

loose configuration, which only captures non-strict inequalities, as well as its strict configuration
which can also represent strict inequalities. We note that the analysis of function calls critically

relies on the abstract domain’s ability to handle equality constraints precisely. We therefore do

not consider the interval domain as it cannot express such relational constraints. For each abstract

domain, we further consider two different widening configurations: standard widening (w) and

widening with thresholds (tw). For widening with thresholds [Blanchet et al. 2007], we use a simple

heuristic that chooses the conditional expressions in the analyzed program as well as pair-wise

inequalities between the variables and numerical constants in scope as threshold constraints.

Table 1 summarizes the results of the experiment. First, note that all configurations successfully

flag all erroneous benchmarks (as one should expect from a sound analysis). Moreover, the context-

sensitive version of the analysis is in general more precise than the context-insensitive one. The

extra precision comes at the cost of an increase in the analysis time by a factor of 1.8 on average. The

1-context-sensitive version with Polka loose/tw performed best, solving 244 out of 265 benchmarks.

There are two programs for which some of the configurations produced timeouts. However, each

of these programs can be successfully verified by at least one configuration. As expected, using

Octagon is more efficient than using loose polyhedra, which in turn is more efficient than strict

polyhedra. We anticipate that the differences in running times for the different domains will be

more pronounced on larger programs. In general, one can use different domains for different parts

of the program as is common practice in static analyzers such as Astrée [Cousot et al. 2009].

We conducted a detailed analysis of the 20 benchmarks that Drift could not solve using any

of the configurations that we have considered. To verify the 16 failing benchmarks in the FO and

HO categories, one needs to infer type refinements that involve either non-linear or non-convex

constraints, neither of which is currently supported by the tool. This can be addressed e.g. by further

increasing context-sensitivity, by using more expressive domains such as interval polyhedra [Chen

et al. 2009], or by incorporating techniques such as trace partitioning to reduce loss of precision due

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:25

to joins [Mauborgne and Rival 2005]. The two failing benchmarks in the array category require the

analysis to capture universally quantified invariants about the elements stored in arrays. However,

our implementation currently only tracks array length constraints. It is relatively straightforward to

extend the analysis in order to capture constraints on elements as has been proposed e.g. in [Vazou

et al. 2013].

We further conducted a more detailed analysis of the running times by profiling the execution of

the tool. This analysis determined that most of the time is spent in the strengthening of output

types with input types when propagating recursively between function types in ⋉t
. This happens

particularly often when analyzing programs that involve applications of curried functions, which

are currently handled rather naively, causing a quadratic blowup that can be avoided with a more

careful implementation. Notably, the programs in the T category involve deeply curried functions.

This appears to be the primary reason why the tool is considerably slower on these programs.

Moreover, the implementation of the fixpoint loop is still rather naive as it calls ⋉t
even if the

arguments have not changed since the previous fixpoint iteration. We believe that by avoiding

redundant calls to ⋉t
the running times can be notably improved.

Experiment 2: Comparing with other Tools. Overall, the results of Experiment 1 suggest that the

1-context-sensitive version of Drift instantiated with the loose Polka domain and threshold

widening provides a good balance between precision and efficiency. In our second experiment, we

compare this configuration with several other existing tools. We consider three other automated

verification tools: DSolve, R_Type, and MoCHi. DSolve is the original implementation of the

Liquid type inference algorithm proposed in [Rondon et al. 2008] (cf. § 2). R_Type [Champion

et al. 2018a] improves upon DSolve by replacing the Houdini-based fixpoint algorithm of [Rondon

et al. 2008] with the Horn clause solver HoIce [Champion et al. 2018b]. HoIce uses an ICE-style

machine learning algorithm [Garg et al. 2014] that, unlike Houdini, can also infer disjunctive

refinement predicates. We note that R_Type does not support arrays or lists and hence we omit it

from these categories. Finally,MoCHi [Kobayashi et al. 2011] is a software model checker based on

higher-order recursion schemes, which also uses HoIce as its default back-end Horn clause solver.

We used the most recent version of each tool at the time when the experiments were conducted

and we ran all tools in their default configurations. More precise information about the specific

tool versions used can be found in the tools’ Github repository.

We initially also considered DOrder [Zhu et al. 2016] in our comparison. This tool builds on

the same basic algorithm as DSolve but also learns candidate predicates from concrete program

executions via machine learning. However, the tool primarily targets programs that manipulate

algebraic data types.Moreover,DOrder relies on user-provided test inputs for its predicate inference.

As our benchmarks work with unconstrained input parameters and we explicitly exclude programs

manipulating ADTs from our benchmark set, this puts DOrder decidedly at a disadvantage. To

keep the comparison fair, we therefore excluded DOrder from the experiment.

Table 2 summarizes the results of our comparison. Drift and MoCHi perform similarly overall

and significantly better than the other two tools. In particular, we note that only Drift andMoCHi

can verify the second program discussed in § 2. The evaluation also indicates complementary

strengths of these tools. In terms of number of verified benchmarks, Drift performs best in the

HO, A, and L categories with MoCHi scoring a close second place. For the FO and T categories the

roles are reversed. In the FO category,MoCHi benefits from its ability to infer non-convex type

refinements, which are needed to verify some of the benchmarks in this category. Nevertheless there

are five programs in this category that only Drift can verify. Unlike our current implementation,

MoCHi does not appear to suffer from inefficient handling of deeply curried functions, which leads

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:26 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

Table 2. Summary of Experiment 2. In addition to the cumulative running time for each category, we provide
the average (avg) and median (med) running time per benchmark (in s). Timeouts are reported as in Table 1.
The timeout threshold was 300s per benchmark across all tools. In the (succ) column, we additionally provide
in parentheses the number of benchmarks that were only solved by that tool (if any).

Bench-

mark cat.

Drift R_Type DSolve MoCHi

succ full avg med succ full avg med succ full avg med succ full avg med

FO (73) 59(5) 138.33 1.89 0.26 44 5.78(15) 0.08 0.06 49 16.27 0.22 0.12 62 332.39(9) 4.55 21.50

HO (62) 60 316.18 5.10 1.77 49 9.19(5) 0.15 0.03 41 9.76 0.16 0.24 58 276.37(4) 4.46 15.18

T (80) 79 1497.28(1) 18.72 0.00 73 13.18 0.16 0.04 30 26.26 0.33 0.45 80 41.56 0.52 0.11

A (13) 11 45.94 3.53 3.70 - - - - 8 7.15 0.55 0.77 9(1) 2.44 0.19 0.10

L (20) 18(2) 26.43 1.32 1.23 - - - - 8 6.10 0.30 0.26 17 455.28(3) 22.76 19.81

E (17) 17 32.71 1.92 0.39 17 1.22 0.07 0.05 14 8.22 0.48 0.17 14 95.95(3) 5.64 43.41

to significantly better cumulative running times in the T category. On the other hand, Drift is

faster than MoCHi in the L category.

We note that there are two benchmarks in the FO category and four benchmarks in the A

category for whichMoCHi produces false alarms. However, this appears to be due to the use of

certain language features that are unsupported by the tool (such as OCaml’s mod operator).

None of the tools produced unsound results in the E category. The failing benchmarks forMoCHi

are due to timeouts and the ones for DSolve are due to crashes. The considered timeout was 300

seconds per benchmark for all tools. Across all benchmarks, R_Type timed out on 20 andMoCHi

on 19 programs. Drift timed out on only one benchmark in the T category. We attribute the good

responsiveness of Drift to the use of infinite refinement domains with widening in favor of the

counterexample-guided abstraction refinement approach used by R_Type and MoCHi, which does

not guarantee termination of the analysis.

9 RELATEDWORK

Refinement type inference. Early work on refinement type systems supported dependent types

with unions and intersections based on a modular bidirectional type checking algorithm [Dun-

field and Pfenning 2003, 2004; Freeman and Pfenning 1991]. These algorithms require some type

annotations. Instead, the focus of this paper is on fully automated refinement type inference algo-

rithms that perform a whole program analysis. Many existing algorithms in this category can be

obtained by instantiating our parametric framework. Specifically, Liquid type inference [Rondon

et al. 2008; Vazou et al. 2015, 2013, 2014] performs a context-insensitive analysis over a mono-

mial predicate abstraction domain of type refinements. Similarly, Zhu and Jagannathan [2013]

propose a 1-context sensitive analysis with predicate abstraction, augmented with an additional

counterexample-guided refinement loop, an idea that has also inspired recent techniques for ana-

lyzing pointer programs [Toman et al. 2020]. Our work generalizes these algorithms to arbitrary

abstract domains of type refinements (including domains of infinite height) and provides parametric

and constructive soundness and completeness results for the obtained type systems. Orthogonal

to our work are extensions of static inference algorithms with data-driven approaches for infer-

ring refinement predicates [Champion et al. 2018a; Zhu et al. 2015, 2016]. Gradual Liquid type

inference [Vazou et al. 2018b] addresses the issue of how to apply whole program analysis to infer

modular specifications and improve error reporting. Our framework is in principle compatible with

this approach. We note that Galois connections are used in [Garcia et al. 2016; Kazerounian et al.

2018; Lehmann and Tanter 2017; Vazou et al. 2018b; Vekris et al. 2016] to relate dynamic gradual

refinement types and static refinement types. However, the resulting gradual type systems are not

calculationally constructed as abstract interpretations of concrete program semantics.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

Data Flow Refinement Type Inference 19:27

Semantics of higher-order programs. The techniques introduced in [Jagannathan and Weeks

1995] and [Plevyak and Chien 1995] use flow graphs to assign concrete meaning to higher-order

programs. Nodes in these graphs closely relate to the nodes in our data flow semantics. Their

semantics represents functions as expression nodes storing the location of the function expression.

Hence, these semantics have to make non-local changes when analyzing function applications. Our

data flow semantics treats functions as tables and the concrete transformer is defined structurally

on program syntax, which is more suitable for deriving type inference analyses. The idea of

modeling functions as tables that only track inputs observed during program execution was first

explored in the minimal function graph semantics [Jones and Mycroft 1986; Jones and Rosendahl

1997]. However, that semantics does not explicitly model data flow in a program, and is hence

not well suited for constructing refinement type inference algorithms. There is a large body of

work on control and data flow analysis of higher-order programs and the concrete semantics

they overapproximate [Cousot and Cousot 1994; Horn and Might 2011; Jones and Andersen 2007;

Midtgaard 2012; Mossin 1998; Nielson and Nielson 1997]. However, these semantics either do

not capture data flow properties or rely on non-structural concrete transformers. An interesting

direction for future work is to reconcile our collapsed semantics with control flow analyses that

enjoy pushdown precision such as [Gilray et al. 2016; Reps 1998; Vardoulakis and Shivers 2011a,b].

Temporal logic for higher-order programs [Okuyama et al. 2019] and higher-order recursion

schemes [Kobayashi et al. 2011; Ong 2015] provide alternative bases for verifying functional

programs. Unlike our framework, these approaches use finite state abstractions and model checking.

In particular, they rely on abstraction refinement to support infinite height data domains, giving up

on guaranteed termination of the analysis. On the other hand, they are not restricted to proving

safety properties.

Types as abstract interpretations. The formal connection between types and abstract interpreta-

tion is studied by Cousot [1997]. The paper shows how to construct standard (modular) polymorphic

type systems via a sequence of abstractions of denotational call-by-value semantics. Similarly,

Monsuez [1992, 1993, 1995a,b] uses abstract interpretation to design polymorphic type systems for

call-by-name semantics and model advanced type systems such as System F. Gori and Levi [2002,

2003] use abstract interpretation to design new type inference algorithms for ML-like languages

by incorporating more precise widening operators for analyzing recursive functions. None of

these works address refinement type inference. Harper introduces a framework for constructing

dependent type systems from operational semantics based on the PER model of types [Harper 1992].

Although this work does not use abstract interpretation, it views types as an overapproximation of

program behaviors derived using a suitable notion of abstraction.

10 CONCLUSION
In this work, we systematically develop a parametric refinement type systems as an abstract

interpretation of a new concrete data flow semantics. This development unveils the design space of

refinement type analyses that infer data flow invariants for functional programs. Our prototype

implementation and experimental evaluation indicate that our framework can be used to implement

new refinement type inference algorithms that are both robust and precise.

ACKNOWLEDGMENTS
This work is funded in parts by the National Science Foundation under grants CCF-1350574 and

CCF-1618059. We thank the anonymous reviewers for their feedback on an earlier draft of this

paper.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

19:28 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

REFERENCES
Andrew W. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657–683. https://doi.org/10.1145/504709.504712

Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni. 2019. Completeness of Abstract Domains for

String Analysis of JavaScript Programs. In Theoretical Aspects of Computing - ICTAC 2019 - 16th International Colloquium,
Hammamet, Tunisia, October 31 - November 4, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11884), Robert M.

Hierons and Mohamed Mosbah (Eds.). Springer, 255–272. https://doi.org/10.1007/978-3-030-32505-3_15

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2008. The Parma Polyhedra Library: Toward a complete set of

numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72, 1-2
(2008), 3–21. https://doi.org/10.1016/j.scico.2007.08.001

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and

Xavier Rival. 2007. A Static Analyzer for Large Safety-Critical Software. CoRR abs/cs/0701193 (2007). arXiv:cs/0701193

http://arxiv.org/abs/cs/0701193

Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. 2018a. ICE-Based Refinement Type Discovery

for Higher-Order Functional Programs. In Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10805), Dirk
Beyer and Marieke Huisman (Eds.). Springer, 365–384. https://doi.org/10.1007/978-3-319-89960-2_20

Adrien Champion, Naoki Kobayashi, and Ryosuke Sato. 2018b. HoIce: An ICE-Based Non-linear Horn Clause Solver.

In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December
2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 146–156. https:

//doi.org/10.1007/978-3-030-02768-1_8

Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. 2009. Interval Polyhedra: An Abstract Domain to Infer Interval

Linear Relationships. In Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings (Lecture Notes in Computer Science, Vol. 5673), Jens Palsberg and Zhendong Su (Eds.). Springer, 309–325.

https://doi.org/10.1007/978-3-642-03237-0_21

Ravi Chugh, David Herman, and Ranjit Jhala. 2012. Dependent types for JavaScript. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, part
of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens and Matthew B. Dwyer (Eds.). ACM, 587–606.

https://doi.org/10.1145/2384616.2384659

Patrick Cousot. 1997. Types as abstract interpretations. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 316–331.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. ACM, 238–252.

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings of the 6th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages. ACM, 269–282.

Patrick Cousot and Radhia Cousot. 1994. Invited Talk: Higher Order Abstract Interpretation (andApplication to Comportment

Analysis Generalizing Strictness, Termination, Projection, and PER Analysis. In Proceedings of the IEEE Computer Society
1994 International Conference on Computer Languages, May 16-19, 1994, Toulouse, France, Henri E. Bal (Ed.). IEEE Computer

Society, 95–112. https://doi.org/10.1109/ICCL.1994.288389

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival. 2009. Why does Astrée

scale up? Formal Methods Syst. Des. 35, 3 (2009), 229–264. https://doi.org/10.1007/s10703-009-0089-6

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints Among Variables of a Program.

In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona,
USA, January 1978, Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski (Eds.). ACM Press, 84–96. https:

//doi.org/10.1145/512760.512770

Joshua Dunfield and Frank Pfenning. 2003. Type Assignment for Intersections and Unions in Call-by-Value Languages. In

Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS 2003 Held as Part of
the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings
(Lecture Notes in Computer Science, Vol. 2620), Andrew D. Gordon (Ed.). Springer, 250–266. https://doi.org/10.1007/3-540-

36576-1_16

Joshua Dunfield and Frank Pfenning. 2004. Tridirectional typechecking. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones and
Xavier Leroy (Eds.). ACM, 281–292. https://doi.org/10.1145/964001.964025

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In FME 2001: Formal
Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

https://doi.org/10.1145/504709.504712
https://doi.org/10.1007/978-3-030-32505-3_15
https://doi.org/10.1016/j.scico.2007.08.001
https://arxiv.org/abs/cs/0701193
http://arxiv.org/abs/cs/0701193
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-642-03237-0_21
https://doi.org/10.1145/2384616.2384659
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/3-540-36576-1_16
https://doi.org/10.1007/3-540-36576-1_16
https://doi.org/10.1145/964001.964025

Data Flow Refinement Type Inference 19:29

12-16, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2021), José Nuno Oliveira and Pamela Zave (Eds.). Springer,

500–517. https://doi.org/10.1007/3-540-45251-6_29

Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN’91 Conference
on Programming Language Design and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, David S. Wise

(Ed.). ACM, 268–277. https://doi.org/10.1145/113445.113468

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting gradual typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 429–442. https://doi.org/10.1145/2837614.2837670

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants.

In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8559), Armin Biere and

Roderick Bloem (Eds.). Springer, 69–87. https://doi.org/10.1007/978-3-319-08867-9_5

Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn. 2016. Pushdown control-flow

analysis for free. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM,

691–704. https://doi.org/10.1145/2837614.2837631

Roberta Gori and Giorgio Levi. 2002. An Experiment in Type Inference and Verification by Abstract Interpretation. In

Verification, Model Checking, and Abstract Interpretation, Third International Workshop, VMCAI 2002, Venice, Italy, January
21-22, 2002, Revised Papers (Lecture Notes in Computer Science, Vol. 2294), Agostino Cortesi (Ed.). Springer, 225–239.

https://doi.org/10.1007/3-540-47813-2_16

Roberta Gori and Giorgio Levi. 2003. Properties of a Type Abstract Interpreter. In Verification, Model Checking, and Abstract
Interpretation, 4th International Conference, VMCAI 2003, New York, NY, USA, January 9-11, 2002, Proceedings (Lecture
Notes in Computer Science, Vol. 2575), Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik Mukhopadhyay (Eds.).

Springer, 132–145. https://doi.org/10.1007/3-540-36384-X_13

Robert Harper. 1992. Constructing Type Systems over an Operational Semantics. J. Symb. Comput. 14, 1 (1992), 71–84.
https://doi.org/10.1016/0747-7171(92)90026-Z

David Van Horn and Matthew Might. 2011. Abstracting abstract machines: a systematic approach to higher-order program

analysis. Commun. ACM 54, 9 (2011), 101–109. https://doi.org/10.1145/1995376.1995400

Suresh Jagannathan and Stephen Weeks. 1995. A Unified Treatment of Flow Analysis in Higher-order Languages. In

Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco,

California, USA). ACM, 393–407. https://doi.org/10.1145/199448.199536

Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Numerical Abstract Domains for Static Analysis. In

Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.). Springer, 661–667. https:

//doi.org/10.1007/978-3-642-02658-4_52

Neil D. Jones and Nils Andersen. 2007. Flow Analysis of Lazy Higher-order Functional Programs. Theor. Comput. Sci. 375,
1-3 (April 2007), 120–136. https://doi.org/10.1016/j.tcs.2006.12.030

Neil D. Jones and Alan Mycroft. 1986. Data Flow Analysis of Applicative Programs Using Minimal Function Graphs. In

Conference Record of the Thirteenth Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach,
Florida, USA, January 1986. ACM Press, 296–306. https://doi.org/10.1145/512644.512672

Neil D. Jones and Mads Rosendahl. 1997. Higher-Order Minimal Function Graphs. J. Funct. Log. Program. 1997, 2 (1997).
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1997/A97-02/A97-02.html

Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster, and Emina Torlak. 2018. Refinement Types for Ruby. In

Verification, Model Checking, and Abstract Interpretation - 19th International Conference, VMCAI 2018, Los Angeles, CA,
USA, January 7-9, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10747), Isil Dillig and Jens Palsberg (Eds.).

Springer, 269–290. https://doi.org/10.1007/978-3-319-73721-8_13

Se-Won Kim and Kwang-Moo Choe. 2011. String Analysis as an Abstract Interpretation. In Verification, Model Checking, and
Abstract Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6538), Ranjit Jhala and David A. Schmidt (Eds.). Springer, 294–308. https:

//doi.org/10.1007/978-3-642-18275-4_21

Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate abstraction and CEGAR for higher-order model checking.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 222–233. https://doi.org/10.1145/

1993498.1993525

Shuvendu K. Lahiri and Shaz Qadeer. 2009. Complexity and Algorithms for Monomial and Clausal Predicate Abstraction.

In Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August
2-7, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5663), Renate A. Schmidt (Ed.). Springer, 214–229. https:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1007/3-540-47813-2_16
https://doi.org/10.1007/3-540-36384-X_13
https://doi.org/10.1016/0747-7171(92)90026-Z
https://doi.org/10.1145/1995376.1995400
https://doi.org/10.1145/199448.199536
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1016/j.tcs.2006.12.030
https://doi.org/10.1145/512644.512672
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1997/A97-02/A97-02.html
https://doi.org/10.1007/978-3-319-73721-8_13
https://doi.org/10.1007/978-3-642-18275-4_21
https://doi.org/10.1007/978-3-642-18275-4_21
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1007/978-3-642-02959-2_18
https://doi.org/10.1007/978-3-642-02959-2_18

19:30 Zvonimir Pavlinovic, Yusen Su, and Thomas Wies

//doi.org/10.1007/978-3-642-02959-2_18

Nico Lehmann and Éric Tanter. 2017. Gradual refinement types. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D.

Gordon (Eds.). ACM, 775–788. http://dl.acm.org/citation.cfm?id=3009856

Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in Abstract Interpretation Based Static Analyzers. In

Programming Languages and Systems, 14th European Symposium on Programming,ESOP 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture
Notes in Computer Science, Vol. 3444), Shmuel Sagiv (Ed.). Springer, 5–20. https://doi.org/10.1007/978-3-540-31987-0_2

Jan Midtgaard. 2012. Control-flow analysis of functional programs. ACM Comput. Surv. 44, 3 (2012), 10:1–10:33. https:

//doi.org/10.1145/2187671.2187672

Antoine Miné. 2007. The Octagon Abstract Domain. CoRR abs/cs/0703084 (2007). arXiv:cs/0703084 http://arxiv.org/abs/cs/

0703084

Bruno Monsuez. 1992. Polymorphic typing by abstract interpretation. In International Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer, 217–228.

Bruno Monsuez. 1993. Polymorphic types and widening operators. In Static Analysis. Springer, 267–281.
Bruno Monsuez. 1995a. System F and abstract interpretation. In International Static Analysis Symposium. Springer, 279–295.

Bruno Monsuez. 1995b. Using abstract interpretation to define a strictness type inference system. In Proceedings of the 1995
ACM SIGPLAN symposium on Partial evaluation and semantics-based program manipulation. ACM, 122–133.

Christian Mossin. 1998. Higher-Order Value Flow Graphs. Nord. J. Comput. 5, 3 (1998), 214–234.
Hanne Riis Nielson and Flemming Nielson. 1997. Infinitary Control Flow Analysis: a Collecting Semantics for Closure

Analysis. In Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Papers Presented at the Symposium, Paris, France, 15-17 January 1997, Peter Lee, Fritz Henglein, and Neil D.

Jones (Eds.). ACM Press, 332–345. https://doi.org/10.1145/263699.263745

Yuya Okuyama, Takeshi Tsukada, and Naoki Kobayashi. 2019. A Temporal Logic for Higher-Order Functional Programs. In

Static Analysis - 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings (Lecture Notes in
Computer Science, Vol. 11822), Bor-Yuh Evan Chang (Ed.). Springer, 437–458. https://doi.org/10.1007/978-3-030-32304-2_21

Luke Ong. 2015. Higher-Order Model Checking: An Overview. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. IEEE Computer Society, 1–15. https://doi.org/10.1109/LICS.2015.9

Zvonimir Pavlinovic, Yusen Su, and Thomas Wies. 2020. Data Flow Refinement Type Inference. CoRR abs/2011.04876 (2020).

arXiv:2011.04876 http://arxiv.org/abs/2011.04876

John Plevyak and Andrew A. Chien. 1995. Iterative Flow Analysis.

Thomas W. Reps. 1998. Program analysis via graph reachability. Inf. Softw. Technol. 40, 11-12 (1998), 701–726. https:

//doi.org/10.1016/S0950-5849(98)00093-7

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and
Saman P. Amarasinghe (Eds.). ACM, 159–169. https://doi.org/10.1145/1375581.1375602

Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast polyhedra abstract domain. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 46–59. http://dl.acm.org/citation.cfm?id=3009885

John Toman, Ren Siqi, Kohei Suenaga, Atsushi Igarashi, and Naoki Kobayashi. 2020. ConSORT: Context- and Flow-

Sensitive Ownership Refinement Types for Imperative Programs. In Programming Languages and Systems - 29th European
Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075), Peter Müller

(Ed.). Springer, 684–714. https://doi.org/10.1007/978-3-030-44914-8_25

Hiroshi Unno and Naoki Kobayashi. 2009. Dependent type inference with interpolants. In Proceedings of the 11th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal,
António Porto and Francisco Javier López-Fraguas (Eds.). ACM, 277–288. https://doi.org/10.1145/1599410.1599445

Hiroshi Unno, Tachio Terauchi, and Naoki Kobayashi. 2013. Automating relatively complete verification of higher-order

functional programs. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 75–86. https:

//doi.org/10.1145/2429069.2429081

Dimitrios Vardoulakis and Olin Shivers. 2011a. CFA2: a Context-Free Approach to Control-Flow Analysis. Log. Methods
Comput. Sci. 7, 2 (2011). https://doi.org/10.2168/LMCS-7(2:3)2011

Dimitrios Vardoulakis and Olin Shivers. 2011b. Pushdown flow analysis of first-class control. In Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, Manuel

M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 69–80. https://doi.org/10.1145/2034773.2034785

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

https://doi.org/10.1007/978-3-642-02959-2_18
https://doi.org/10.1007/978-3-642-02959-2_18
http://dl.acm.org/citation.cfm?id=3009856
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1145/2187671.2187672
https://arxiv.org/abs/cs/0703084
http://arxiv.org/abs/cs/0703084
http://arxiv.org/abs/cs/0703084
https://doi.org/10.1145/263699.263745
https://doi.org/10.1007/978-3-030-32304-2_21
https://doi.org/10.1109/LICS.2015.9
https://arxiv.org/abs/2011.04876
http://arxiv.org/abs/2011.04876
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/1375581.1375602
http://dl.acm.org/citation.cfm?id=3009885
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1145/1599410.1599445
https://doi.org/10.1145/2429069.2429081
https://doi.org/10.1145/2429069.2429081
https://doi.org/10.2168/LMCS-7(2:3)2011
https://doi.org/10.1145/2034773.2034785

Data Flow Refinement Type Inference 19:31

Niki Vazou, Alexander Bakst, and Ranjit Jhala. 2015. Bounded refinement types. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, Kathleen
Fisher and John H. Reppy (Eds.). ACM, 48–61. https://doi.org/10.1145/2784731.2784745

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. 2018a. Theorem proving for all:

equational reasoning in liquid Haskell (functional pearl). In Proceedings of the 11th ACM SIGPLAN International Symposium
on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018, Nicolas Wu (Ed.). ACM, 132–144. https:

//doi.org/10.1145/3242744.3242756

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science,
Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 209–228. https://doi.org/10.1007/978-3-642-37036-

6_13

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Refinement types for Haskell. In

Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September
1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 269–282. https://doi.org/10.1145/2628136.2628161

Niki Vazou, Éric Tanter, and David Van Horn. 2018b. Gradual liquid type inference. Proc. ACM Program. Lang. 2, OOPSLA
(2018), 132:1–132:25. https://doi.org/10.1145/3276502

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refinement types for TypeScript. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,
June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 310–325. https://doi.org/10.1145/2908080.2908110

PhilipWadler. 1990. Comprehending Monads. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming,
LFP 1990, Nice, France, 27-29 June 1990. ACM, 61–78. https://doi.org/10.1145/91556.91592

Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA, January 20-22, 1999,
Andrew W. Appel and Alex Aiken (Eds.). ACM, 214–227. https://doi.org/10.1145/292540.292560

He Zhu and Suresh Jagannathan. 2013. Compositional and Lightweight Dependent Type Inference for ML. In Verification,
Model Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 7737), Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.).

Springer, 295–314. https://doi.org/10.1007/978-3-642-35873-9_19

He Zhu, Aditya V. Nori, and Suresh Jagannathan. 2015. Learning refinement types. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, Kathleen
Fisher and John H. Reppy (Eds.). ACM, 400–411. https://doi.org/10.1145/2784731.2784766

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically learning shape specifications. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 491–507. https://doi.org/10.1145/2908080.2908125

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 19. Publication date: January 2021.

https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3276502
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/292540.292560
https://doi.org/10.1007/978-3-642-35873-9_19
https://doi.org/10.1145/2784731.2784766
https://doi.org/10.1145/2908080.2908125

	Abstract
	1 Introduction
	2 Motivation
	3 Preliminaries
	4 Parametric Data Flow Refinement Types
	5 Data flow Semantics
	5.1 Semantic Domains
	5.2 Concrete Semantics

	6 Intermediate Abstract Semantics
	6.1 Relational Semantics
	6.2 Collapsed Semantics

	7 Parametric Data Flow Refinement Type Semantics
	7.1 Type Semantics
	7.2 Soundness and Completeness of Type System
	7.3 Type Inference

	8 Implementation and Evaluation
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

